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Abstract

Learned Human-in-the-Loop Decision Making

by

Brandon Basso

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor J. Karl Hedrick, Chair

Human beings are decision making engines. From low level automatic activities, such as
walking, to high-level reasoning, we readily solve complex perception and decision problems
in real time. On the other end of the spectrum, computers and robots have proven particu-
larly useful in dull, dirty, and dangerous domains—inspecting nuclear disaster sites, solving
vast optimization problems, and generally accomplishing tasks difficult for humans. Recent
advances in robotics and computer science have only served to underscore the difference be-
tween humans and robots, namely that robots tend to excel at lower level structured tasks,
while humans are unmatched at higher level decision making, particularly when problems
involve unstructured data, soft constraints, and ambiguous objectives.

This thesis explores decision problems that lie in the gap between current robot capabil-
ity and human ability. A generic framework for representing large-scale decision problems,
referred to as the Generalized Planning Problem (GPP), is defined. A learning-based GPP
solution method is presented that captures multiple stochastic problem elements and soft
constraints, which arise in many real world problems. An example routing problem is pre-
sented to showcase the expressiveness of the GPP framework. To leverage human intuition
with such problems, the GPP framework allows for incorporating human input in a struc-
tured way as an external reward signal. Adding human feedback into the learning process
results in a variably autonomous decision making engine that can vary continuously between
fully autonomous, fully manual, and everywhere in between.
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The only way to be truly satisfied is to do what you believe is great work,
and the only way to great work is to love what you do.

If you haven’t found it yet, keep looking, and don’t settle.

As with all matters of the heart you’ll know when you find it,
and like any great relationship, it just gets better and better as the years roll on.

So keep looking, don’t settle.

- Steve Jobs
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Chapter 1

Introduction

Human beings are decision-making engines. From low level automatic activities, such as
walking, to high-level reasoning, our brains readily solve complex perception and decision
problems in real time. On the other end of the spectrum, computers and robots have
proven particularly useful in dull, dirty, and dangerous domains—storing and processing
large amounts of data, inspecting disaster sites, and generally accomplishing tasks unsuit-
able for humans. Recent advances in robotics and computer science have underscored the
difference between humans and computers, namely, that computers tend to exceed at lower
level structured tasks, while humans remain unmatched at higher level decision making,
particularly when problems involve unstructured data, soft constraints, randomness, and
ambiguous objectives. Figure 1.1 captures the human-machine spectrum.

This thesis addresses gap between current computation capability and human ability.
The overall goal is to advance the field of autonomous decision making by learning from and
leveraging human aptitude in high-level decision making.

Dull, dirty, & 
dangerous tasks

Abstract 
tasks

Figure 1.1: The spectrum of tasks that are suited for computers and robots versus humans.

Humans tend to excel at abstract and high-level tasks, whereas computers excel at highly
structured data and processing heavy tasks. Oftentimes robots are better suited than
humans at performing tasks that are either repetitive and boring (dull), undesirable in

some respect (dirty), or potentially life-threatening (dangerous).
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Robotics as a field has benefited from advances in computer science and optimization.
Solving vast and complex problems has become possible with better hardware and better
algorithms. However, high-level tasks in fields such as visual recognition, assignment and
scheduling, and generic decision making remain difficult to even pose as optimization prob-
lems. Yet it is exactly these problems that humans seem to excel at over their automated
counterparts. The core of the human-computer ability gap can be attributed to two hu-
man cognitive traits: contextualization and abstraction. Our innate ability to contextualize
events (I am driving on the highway, therefore pedestrians on the road are an unlikely ob-
stacle) and abstract observations (The gait of this pedestrian leads me to think they are not
running fast enough to intersect my course) about the world sits squarely in the middle of
the human-computer gap.

Inspired by how humans learn through repetition, the focus of this thesis is on solutions
to high-level decision problems through reinforcement learning, which closely mirrors human
experiential learning. Posing generic decision problems in a learning framework is considered
in three sub-problems: representation, modeling and learning, and Human-Machine Interac-
tion (HMI). Representation addresses the underlying problem parameterization and how the
problem is reasoned about in general. Modeling places the problem in a specific formalism
for solution, which is learning based in this case. The final subproblem, HMI, addresses
methods for incorporating human feedback into the learned solution.

Generalized 
Decision 
Problem

Modeling 
& 

Learning
Representation

Human-
Machine 

Interaction

Figure 1.2: Top-level thesis organization.
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1.1 Motivation

This research has been motivated by field robotics experiments carried out by the Cen-
ter For Collaborative Control of Unmanned Vehicles (C3UV) at UC Berkeley. Large-scale
demonstrations performed between 2006 and 2010 involved tasking a heterogeneous fleet of
Unmanned Aerial Vehicles (UAVs) to accomplish certain tasks, such as patrolling areas and
detecting intrusions [23, 60, 58, 59, 57]. An example scenario is depicted in Figure 1.3. The
fixed-wing aircraft used in the scenario, shown in Figure 1.4, collectively possess a variety of
capabilities in terms of operational altitude, endurance, sensor configuration, and processing
power.

Command 
center

Tent 2

Tent 1

mobile evader

mobile warfighter

evader path

communications link

sensor footprint

Figure 1.3: A multi-agent UAV mission planning scenario.

A human operator in the Command Center tasks the aircraft with watching the area
around Tent 1 for pedestrian activity. Upon detection of a pedestrian leaving Tent 1, a new

task is automatically spawned to track the pedestrian. The underlying allocation
problem—which aircraft should take each task—motivates this research in high-level

decision making with teams of mobile agents, dynamic scenarios, and human operators.
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(a) Foam zagi (b) Sig Rascal 110 (c) MLB Bat III

Figure 1.4: Three fixed-wing aircraft operated by the C3UV lab at UC Berkeley.

The C3UV Unmanned Autonomous System (UAS) is designed specifically to demonstrate
the benefits of autonomy. However, many existing military UASs, incorporating ground,
sea, or air robots, operate on the paradigm of many (operators) to one (autonomous agent).
The C3UV UAS reverses the paradigm with many agents to one operator. The enabling
technology for such a system is a robust decision making engine, capable of handling multiple
human and robotic agents with explicit treatment of uncertainty at the agent, task, and
environment level. Several desirable properties such a hybrid human-autonomous system
are as follows:

High-Level Human operators often want to address autonomous systems at a high level
of abstraction, specifying what needs to be accomplished in terms of objectives and
constraints, but not necessarily enumerating how it should be performed, or who should
do it.

Rational Autonomous systems are only useful insofar as they appear to make rational
decisions. Human operators are quick to distrust and entirely abandon a system that
does not appear to be making rational decisions.

Transparent In many cases, explaining why the system made a certain choice can prevent
an operator from abandoning computer-generated decisions, insofar as the decisions
appear rational after explanation.

Adjustable Based on feedback, operators oftentimes would like to make adjustments in
real-time to computer-generated decisions, either because they are dissatisfied with
the generated solution, or because they would like to change the problem objectives or
constraints.

These observations on the interaction between human operators and autonomous systems
motivate research into human-in-the-loop autonomous decision making. The focus of this
thesis is on high-level autonomous decision making augmented with human guidance.
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1.2 Justification and Relevance

The primary function of autonomy is to unburden humans by automating tasks. Examples
herein focus on autonomy through the specific use case of decision making, although auton-
omy in general need not be limited simply to decision making. Taking the scenario in Figure
1.3 as an example, several technologies enable the unmanned aerial vehicles (UAVs1) in Fig-
ure 1.4 to accomplish the objectives. A core technology in mission planning is autonomous
decision making.

What is autonomy? Autonomy is the ability to synthesize sensory input and
a-priori information to make a decision. Autonomy and autonomous decision
making can take place over a single atomic event with a clear start and stop (eg.
deciding to go left or right at an intersection), an episodic event (eg. finding
the sequence of moves that will result in checkmate for a game of chess), or an
infinitely long event (eg. allocating processing time on a server to an incoming
stream of computation tasks). Autonomy can be applicable to many levels of
abstraction, from low-level decisions (beat heart once every second), to high-
level decisions (plan a walking route from my office to the vending machine on
the 2nd floor).

Why autonomy? Autonomy unburdens humans from performing tasks that
are in some way undesirable. The often-cited mantra of dull, dirty, and danger-
ous refers to the areas in which autonomous agent excel; namely, boring tasks,
unpleasant tasks, and life-threatening tasks.

Why robots? Many of the tasks we would like to automate involve inter-
acting with the physical world. In the most abstract sense, a robot is any de-
vice that takes on human abilities of perception—sensing the world—or action—
interacting with the world. Robots are most useful when given some level of
autonomy, mapping high-level requests into low-level actions (eg. setting the
timer on a vacuuming robot), as opposed to direct operation (“teleoperation”).
It is this transfer of abstract human desire to real-world action and task accom-
plishment that is both the definition of and argument for autonomy.

Why multiple agents? Autonomous agents such as robots become even more
compelling work performers when combined in teams. The reasons for teams of
robots are no different than the reasons for teams in general: redundancy and ro-
bustness, potential cost benefits, and potential productivity benefits. This thesis
makes an argument not only for teams of robots, but also team-level autonomy
in the form of coordination and cooperation, which are closely related concepts

1For purposes here, the term UAV implies some level of autonomy. To be precise, a UAV is a type of
Remotely Piloted Vehicle (RPV), which does not necessarily posses any autonomous capabilities.
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[27]. The goal in grouping robots into teams is to leverage individual capabilities
such that a sets of tasks, unaccomplishable by any one robot, becomes feasible
for the team as a whole.

Why hybrid human-robot systems? Many autonomous systems have some
interaction with a human operator. The role of the human can range from passive
and supervisory to an active sensory input element of the system as a whole, as
depicted in Figure 1.5. The best way to incorporate a human operator or human
agent into an autonomous system is to consider them at the outset of design.

Operator

Querry

Direct 

observation

Primary 

Observer

Secondary 

Observer

Human 

observation

Secondary 

observation

Robot 

observation

Querry

Querry

Event

Figure 1.5: Use-case diagram for human interaction with an autonomous system.

In this hybrid human-robot planning scenario, one human operator aggregates data from
multiple sources of variable reliability to assess the situation and choose a course of action.

The last point raises the question: What roles can humans play in autonomous systems?
It is worth considering the specific roles of all system elements as early as possible in the
design phase so that subsequent algorithms, infrastructure, and other implementation details
can be designed appropriately. The potential human use-cases in autonomous systems are
as follows:

Initialization: The initial problem definition typically comes from a human operator in
charge of a team of autonomous agents. As a result, a translation layer is required
that can take the abstract problem definition and put it into a formal language and
instruction set.
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Operation (open-loop): Once an autonomous system is set in motion, the operator may
wish to start, stop, or change the system goals or constraints due to changing priorities
or unforeseen circumstances.

Feedback (closed-loop): In scenarios in which the autonomous system is continually sens-
ing and reacting to the environment to accomplish a task, the human may wish to take
an active role at any time during execution. In this scenario, the operator is an active
element in feedback with the system, and therefore must be considered in the design
and analysis if stability or performance guarantees are to be applied to the system.

Learning: Consider the previous scenario in which the operator observes the run-time of
the autonomous system and chooses to make modifications to the computed decisions.
One point of view would be to consider the human as a disturbance to the system that
needs to be compensated for or rejected. In some scenarios though, the human input
may be be better defined as corrective guidance. In this case, information should be
extracted from the human input to either correct the solution, or correct the decision-
making engine driving the autonomous system.

1.3 Related Fields

The work in this thesis draws upon research in several fields. Associated fields can be grouped
according to the organizational chart in Figure 1.2. The classification given below groups
related work functionally as Design, Theory, and Application.

1.3.1 Design

1.3.1.1 Representation

Decision problems are inextricably linked to their underlying representation, or state. The
choice of state may be obvious in certain highly-structured domains: The state for a pendu-
lum is commonly parameterized by the angle of rotation, θ, for example. However, in fields
such as computer vision, the underlying states can be the intensity value for each pixel, some
higher level features of the state, or a combination of features. General feature identification
and extraction is an active area of research for many fields that deal with large amounts of
unstructured data.

The choice of representation is the first and most important step in solving abstract deci-
sion problems such as the mission planning scenario in Figure 1.3. As many of the examples
herein are inspired by robotics, multi-agent systems, and vehicle routing, representational
inspiration comes from these fields as well [72]. Ultimately, the choice of representation is
largely a matter of design, and is a primary contribution of this work.
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1.3.2 Theory

1.3.2.1 Decision Problems and Machine Learning

This thesis relies upon the formalism of Markov Decision Processes and several associated
variants. Many of the algorithms and example problems are from Sutton and Barto [66],
Thrun, Burgard, and Fox [71], and Bertsekas and Tsitsiklis [6]. Semi-Markov Decision Pro-
cesses are an important extension that underpins much of this research [63]. Several of the
examples presented later hinge upon Reward Shaping techniques developed by Ng, Harada,
and Russell to incorporate human guidance [50].

1.3.2.2 Human-Machine Interaction

A central goal of this thesis is to learn solutions to abstract decision problems with human
guidance. This concept is closely related to supervisory learning in reinforcement learning
[56]. Human-Robot Interaction (HRI) is nearly synonymous, and deals specifically with in-
formation communicated between human users and robotic agents [30]. HRI has been studied
in the specific context of mission planning by the authors of [31]. This research makes use of
concepts developed in HRI/HMI fields, powered by tools from reinforcement learning.

1.3.3 Application

1.3.3.1 Assignment, Routing, and Scheduling

The problem of optimally allocating agents to tasks is generally known as an Assignment
Problem (AP) [10, 33]. The examples motivating this work are closely related to AP vari-
ants, including the Traveling Salesman Problem (TSP) [38] and Vehicle Routing Problem
(VRP) [72]. Both the TSPs and VRPs address the optimal routing of agents to destinations,
and many variants are based around the number and type of agents, number and type of
destinations, spatial and temporal constraints, and other ordering constraints. Scheduling is
a closely-related field to routing that addresses the optimal assignment of jobs to machines
[13]. The types of problems considered here can best be described as spatiotemporal decision
problems that combine elements from both routing and scheduling.

1.3.3.2 Mission Planning

Several motivating examples in this work draw upon the broad field of mission planning.
Much of mission planning research has theoretical underpinnings in multi-agent task and
resource allocation [25], consensus [51], and multi-agent optimization [6, 43].

Large-scale field robotics mission planning demonstrations have been performed by the
C3UV group with teams of UAVs [60, 57, 23], and by the Australian Centre for Field Robotics
(ACFR) with a combination of UAVs and Unmanned Ground Vehicles (UGVs) [32], to
name several examples. A comprehensive review of existing robots and applications that
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can broadly be characterized as distributed information gathering problems can be found in
[40].

1.4 Objectives

The overarching goal of this research is to close the gap between computation capability
and human ability in the area of high-level decision making. This goal is predicated on the
fact that computers (servers, desktops, smartphones, robots, etc.) are particularly adept at
lower-level computationally intensive tasks, while humans exceed at tasks involving abstract
though. This work seeks to identify intelligent means of combining computer and human
decision making capabilities for learning solutions to complex decision problems. To this
end, associated objectives are as follows:

1. To develop representations for high-level spatiotemporal decision problems involving
multiple agents, multiple tasks, and soft temporal and spatial constraints.

2. To identify a modeling formalism best suited for the decision problems considered
herein.

3. To learn generalizeable solutions across problem domains such that the algorithms
require minimal tuning.

4. To learn scalable solutions that do not grow intractably large as the problem size
changes.

5. To incorporate feedback into the developed solutions for the dual purposes of reducing
computation time and improving solution quality.

6. To motivate the choice of representation, underlying model, and solution approach
through simulation of several canonical example problems.

7. Based on analysis of the example problems and performance relative to known heuris-
tics, to state the relative merits of the human-in-the-loop reinforcement learning ap-
proach to solving decision problems.

1.5 Contributions

This thesis makes contributions in three subfields: multi-agent decision making, machine
learning, and HMI.
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1.5.1 Multi-Agent Decision Making Contributions

Choosing the correct perspective on a problem can often mean the difference between
tractability and intractability. A central contribution of this thesis lies in choosing an effec-
tive perspective for problems such as the mission planning example in Figure 1.3. Rather
than encapsulating the world in an unscalable set of states, this thesis presents a lower di-
mensional representation based on features of the overall state. The features are chosen
to be broad enough to capture a variety of routing and scheduling-like problems, which
are referred to as Generalized Planning Problems (GPPs). The chosen states represent a
perspective, which is fundamentally based grouping of like states. Results borne out in sim-
ulation make an argument for the effectiveness (scalability, generality, etc.) of this particular
representation for several example problems.

1.5.2 Machine Learning Contributions

Diverging from standard optimization and search-based strategies for solving established
problems such as the TSP and VRP (both specific decision problem variants), this thesis
presents learning-based solutions. Markov Decision Process (MDP) based models provide a
well-studied and robust means of capturing many of the problem attributes listed in Sec-
tion 1.4. However, factors present in many complex decision making scenarios, including
time varying problem dynamics, stochastic environments, and action outcome uncertainty,
necessitate a more general modeling formalism. As such, the Semi-Markov Decision Process
(SMDP) model is proposed as a means to capture temporal problem elements. Known learn-
ing algorithms for SMDPs are also customized here to come up with efficient and scalable
solutions. Learned solutions are tested against benchmarks and known optimal solutions
where they exist.

This work provides a conduit for incorporating human feedback into learned solutions
based on reward shaping theory [50]. To the knowledge of the author, this is the first time
human feedback has been formally incorporated in such a way so as to provide a method for
guaranteeing optimality.

1.5.3 Human-Machine Interaction Contributions

This thesis makes several contributions in the field of HMI. A formal structure is proposed
for how humans can interact with an autonomous system, both during solution development
(“learn time”) and solution execution (“run time”). Human input is guaranteed to improve
learning time while preserving policy optimality under reward shaping theory.

1.6 Thesis Structure

This thesis is organized roughly in the same order as the listed contributions. Chapter 2
presents an overview of decision problems, assignment problems, and popular variants. For-
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mal problem descriptions are given, as well as motivating examples from real-world scenarios.
Related and well established problems are discussed. From these examples, two canonical
routing problems are defined and used as benchmark examples in subsequent chapters.

Chapter 3 focuses on algorithms for learning optimal policies on MDPs and SMDPs.
These include standard dynamic-programming approaches to reinforcement learning such as
on-policy Value Iterating off-policy Q-learning. Motivated by the nature of the problems
considered, a justification is given for the choice of algorithm for particular problem-types.

Chapter 4 introduces the GPP as a hybrid routing-scheduling problem framework that
is capable of representing all of the basic learning problems discussed in Chapter 3. To
demonstrate the benefits of the GPP framework, an example VRP is cast as a learning
problem and solved.

Chapter 5 addresses the inclusion of human feedback in learned solutions. This includes
both high-level architectures for human-machine interaction and low-level algorithmic de-
tails. An example GPP introduced here aims to show the flexibility, generality, and perfor-
mance of the representation, modeling, learning, and HMI employed here to solve high-level
decision problems.

Chapter 6 concludes with a summary of contributions and future perspectives on associ-
ated fields of research.
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Chapter 2

Decision and the Generalized
Planning Problem

Some smart quote

2.1 Introduction

Decision problems underpin nearly all activities in systems ranging from individual robots,
to networked power grids. Small robotic systems are primarily concerned with motion and
sensing decisions, while large and possibly multi-agent systems need to consider a broader
context, often making macro actions that have a hierarchy of associated consequences. For
both large and small systems, two fundamental decision problems are routing and scheduling.
Routing addresses the problem of moving entities, such as vehicles, from one location to
another in an efficient manner—so as to minimize fuel usage, for example. Scheduling is
focused on efficient time usage rather than space usage, and typically involves an ordering
of tasks such that the overall completion time is minimized. Many problems beyond the
canonical routing and scheduling formulations live at their intersection.

Section 2.2 places routing and scheduling in their appropriate contexts with respect to
decision problems in general. Section 2.3 focuses specifically on routing and Section 2.4
expands on research in scheduling. Section 2.5 discusses the relationship between scheduling
and routing, particularly for two popular problems: the Job Shop Scheduling Problem (JSP)
and the Vehicle Routing Problem (VRP). Section 2.6 introduces a new formulation, linking
the two fields, and referred to as the Generalized Planning Problem. The remainder of this
work focuses primarily on the formulation and solution of specific illustrative GPPs, which
combine elements of both routing and scheduling. The discussion of the space of routing
and scheduling problems concludes in Section 2.6.2 with example problems from each domain
that will be revisited in proceeding chapters.
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2.2 Decision Problems

A problem in which the goal is to determine an outcome or action based on input parame-
ters can most broadly be classified as a Decision Problem (DP). For autonomous systems,
decisions can come in a variety of forms at various levels of hierarchy. Figure 2.1 shows a
generic decision problem as well as several germane to robotics and control applications.

Decision 
Problem

Output
Input

Low-level 
control

(eg. motor 
voltage)

Planning

Control objective

(eg. heading angle)

Mission 
objective

(eg. tasks) Motion objective

(eg. trajectory)

Structured 
feedback

(eg. pose)

Raw sensor data

(eg. accelerometer 
readings)

No

Yes

High-Level Decision Problems

Low-Level Decision Problems

Assignment

Motion 
Control

Sensing

Figure 2.1: Decision problem hierarchy in robotics and control.

For physical systems such as those in robotics, the lowest level DP is motion control. The
goal is to calculate a motor actuation signal given reference input or motion command, such
as an angle or velocity. One level up in the hierarchy is typically referred to as planning,
which determines motion commands based on a desired path or trajectory reference. Above
planning, the highest level in the control hierarchy is typically referred to as assignment.
APs in robotics involve the allocation of resources (computation, actuation, sensing, etc.)
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to tasks. In a single-robot setting, the tasks can be specific actions the robot can take at a
given time that require a shared resource. In a multiple robot setting, tasks can be locations
to visit, for example, and the AP is thus to find an appropriate routing of robots though the
points of interest.

Figure 2.2: Control system perspective of typical robotics decision problems.

Figure 2.2 draws the interconnection between typical robotics decision problems. Each
of the DPs described in 2.2 have many subproblems. Several broad categories are depicted
in Figure 2.3. As a result of their breadth, DPs are addressed in many bodies of research,
including control theory, optimization, and operations research. The focus in this work is on
the highest level of DPs, which is referred to as assignment.

2.2.1 Assignment Problems

Perhaps the most broad class of DPs is in the field of assignment. In assignment, the goal is
to determine an allocation of a set of tasks to a set of agents that satisfies constraints and
meets objectives. A popular APs instance is the Generalized Assignment Problem (GAP),
which is formally stated in Definition 1.

The GAP is an NP-hard combinatorial optimization problem, with specific formulations
and algorithms depending on the application [11]. Figure 2.4 depicts a GAP in which agents
assigned to tasks produce a cost. At this level of abstraction, agents and tasks can live in a
physical space, where cost can be interpreted as distance, for example, or in a nonphysical
space, where cost may be time or some other task completion metric. Sections 2.3 and 2.4
further explore spatial and temporal APs respectively through routing and scheduling.
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Figure 2.3: Hierarchy of decision problems common in control applications

White nodes are problem classifications (eg. routing), whereas shaded nodes are specific
and well-known problems instantiations (eg. The Vehicle Routing Problem).
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.
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Figure 2.4: Deception of an Assignment Problem.

Tasks are assigned to agents according to some optimization strategy (eg. minimum cost).



CHAPTER 2. DECISION AND THE GENERALIZED PLANNING PROBLEM 16

A GAP is composed of n agents m tasks and a cost cij that results from the pairing
of agent i to task j. Agents and tasks both have size in the most general case,
which is to say that each agent can have a unique capacity and each task can have
a unique size. The goal is to find a full assignment of of tasks to agents such that
reward is maximized while size constraints are obeyed.
The principle components of a GAP are agents, tasks, and costs. Subproblems, such
as routing and scheduling inherit the same elements with the following consistent
interpretation:

Agent A work performer with attributes that determine the efficiency with which
it completes work.

Task An indivisible unit of work. Task properties such as size affect the ability of
agents to accomplish tasks.

Cost The product of an agent-task pairing, reflecting the fitness of a specific agent
to perform a specific task. A common interpretation is that agents seek to
reduce cost, which corresponds to task accomplishment.

Definition 1 (Generalized Assignment Problem).

2.2.2 Canonical Problems

APs are roughly divided into two categories: spatially-defined problems, commonly referred
to as routing, and temporally-defined problems, commonly referred to as scheduling. Canoni-
cal routing problems include the Traveling Salesman Problem (TSP) and the Vehicle Routing
Problem (VRP). Canonical scheduling problems include the Job Shop Scheduling Problem
(JSP). Routing and scheduling have many similarities, and differ mainly in historical con-
text, representation, and solution method. Section 2.5 details several of these points of
comparison.

2.3 Routing

Routing problems commonly appear in everyday life. In basic routing, the goal is to find
a path through a set of waypoints that is efficient in some manner (time, fuel expenditure,
etc.). Many variants place constraints on the number of vehicles, number of destinations,
manner in which destinations are visited, time spent at each destination, and so on. Routing
problems are commonly represented as convex optimization problems and then solved by
various algorithms or heuristic.
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Several representative real-world multi-agent routing problems are listed below. In all
cases, the core problem remains the same while spatial and temporal constraints differentiate
each instance.

Package Delivery A fleet of trucks seeks to deliver a typically much larger set of packages
from several depot locations to destinations around the country. Constraints include
package-carrying capacity of each truck, fuel consumption, and deadlines.

Air Traffic Control Given a set of aircraft, start locations, end locations, and intermediate
locations, the goal is to find routes such that all planes take off an land on time while
obeying fuel constraints.

Taxi Dispatch Perhaps the most complicated of the listed examples, a fleet of taxis seeks to
maximize revenue, which is directly correlated to aggregate utilization over all taxis.
Pickup locations and destinations may be known or unknown. Constraints can be
placed on the length or duration of each route.

As is true of all APs, routing problems are comprised of the principle elements listed in
Definition 1—agents, tasks, and costs. The routing-specific interpretation is as follows:

Routing Agent :Typically a mobile entity, such as a person or vehicle, that seeks to ac-
complish tasks. Agents have a velocity which may be variable and may decrease to
zero (ie. ground vehicles). Additional common agent parameters include capacity and
other specializations that render an agent more or less fit to accomplish a certain task.

Routing Task A location to be visited. Task accomplishment involves visiting the location
for some amount time. Much like agents, tasks may be mobile, but are commonly
stationary. Additional task parameters can include a difficulty factor, priority, or
other dynamic characteristics as a function of the environment.

Cost Euclidean distance, or some other spatiotemporal metric on which a general notion
of distance can be defined. Cost in routing is predominately distance, and may be
stochastic in cases of uncertain task or agent location.

2.3.1 History

Routing problems have a long history and draw upon several interrelated fields of research.
The first known formulation of a routing-like problem is attributed to the French mathemati-
cian, Gaspard Monge, who posed the transportation problem in 1781 [45]. Monage’s problem
involved moving piles of rubble from one location to an excavation site with minimum work,
defined as the average distance traveled.

The first known formalized multi-vehicle routing problem was posed by Dantzig and
Ramser in 1959 as the truck dispatch problem [15]. The authors point out that their formu-
lation is special case of the TSP, which is discussed in subsection 2.3.2. The truck dispatch
problem is formally stated in Definition 2.
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(a) Gaspard Monge, 1781 (b) Mémoire sur la théorie des déblais et de remblais

Figure 2.5: Gaspard Monge, Mémoire sur la théorie des déblais et de remblais, 1781

“The Truck Dispatching problem considers the optimum routing of a fleet of gaso-
line delivery trucks between a bulk terminal and a large number of service stations
supplied by the terminal. The shortest routes between any two points in the system
are given and a demand for one or several products is specified for a number of
stations within the distribution system. It is desired to find a way to assign stations
to trucks in such a manner that station demands are satisfied and total mileage
covered by the fleet is a minimum.” [15]

Definition 2 (Truck Dispatching Problem).

2.3.2 The Traveling Salesman Problem (TSP)

The TSP is perhaps the most studied benchmark problems in optimization and operations
research. Formalized by Flood in 1956, the TSP is stated in Definition 3 [21].

A salesman starting in a city must visit m other cities once and only once, returning
to the city of origin at the end of the tour. Costs are associated with traveling
between any two locations, including cities and the origin. The goal is to find the
minimum cost tour through the cities such that constraints are satisfied.

Definition 3 (Traveling Salesman Problem).
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The TSP is an NP-hard optimization problem, for which multiple exact and approximate
algorithms exist. Additionally, many variants exist based on agent capacity (how many cities
the salesman can visit), time, and symmetry in terms of the cost incurred from traveling
from city A to city B versus city B to city A.
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Figure 2.6: A standard TSP.

Bold arrowed lines indicate the solution: the minimum cost route between cities. In this
example, the agent is not required to return to its origin. The cost matrix reflects the costs
associated with traversing edges. If costs are symmetric, edges are undirected, and the cost

matrix is symmetric.

Perhaps the largest limitation of the TSP is the assumption of a single agent (salesman).
The Multiple Traveling Salesman Problem (mTSP) is a variant allowing for multiple sales-
men. The mTSP is closely related to the VRP. A full discussion of routing problem variants
can be found in subsection 2.3.3.

2.3.3 The Vehicle Routing Problem (VRP)

The VRP is a logical generalization of routing problems such as the TSP to n agents (vehi-
cles). The truck dispatch problem of Dantzig and Ramser is closely related, as it considers
“optimum routing of a fleet of gasoline delivery trucks...” and is described as “a gener-
alization of the TSP” in [15]. Like the TSP, the VRP is a known NP-hard combinatorial
optimization problem [22]. A comprehensive modern review of VRP algorithms, heuristics,
and variants is provided by Toth and Vigo [72].

2.3.3.1 Standard Formulation

The VRP is formally stated in Definition 4, adapted from Laporte [35]. A typical VRP and
solution is depicted in Figure 2.7
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Let G = (V,A) be a graph of vertices V and arcs A. Vertices represent cities to
visit with a starting depot at vertex 1 by convention. Arcs connect vertices and
are used to represent path costs. Let C = cij be a matrix containing the path
costs for represented by arcs (i, j) for i 6= j. For symmetric C (ie. symmetric path
costs), arcs A can be replaced with undirected edges E. The number of vehicles
n at the depot is fixed. All vehicles are identical in terms of capacity, speed, and
other attributes.
The goal of the VRP is to find the set of least cost tours with respect to the problem
definition while obeying the following constraints:

C1. Each city is visited once and only once with equal priority.

C2. All vehicle tours start and terminate at the depot.

C3. The number of cities and vehicles remains fixed.

C4. The cost C is deterministic and fully observable.

Definition 4 (Vehicle Routing Problem).
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c31

c23
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T1  c01  c51  0     c12  c13

T2  c02  c52  c21  0     c32 

T3  c03  c53  c31  c23  0

Figure 2.7: A two-agent three-task VRP.

Bold arrowed lines indicate the solution: the set of minimum cost tours visiting each
waypoint only once. The cost matrix C reflects the costs associated with traversing edges.

If cost are symmetric, edges are undirected, and C is symmetric (cij = cji).

Clearly the TSP and VRP have a similar inspiration and interpretation. It is however
useful to point out where the two classic problems differ:

1. The TSP is inherently single-agent, while the standard VRP is multi-agent.
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2. Historically and in practice, salesmen in TSP have infinite capacity, while vehicles in
the VRP may have capacity constraints.

3. Many formulations of the VRP lift the “return to depot” constraint, while the TSP
often requires the salesman to return to the starting city.

2.3.3.2 Common VRP extensions

Several common extensions to the standard VRP formulation follow directly from relaxing
the constraints listed in Definition 4. Acronyms are adapted from [35]; the precise origin
and name of each variant is difficult to determine.

Capacity-constrained VRP (CVRP) Also known as the capacitated VRP, each vehicle
is assigned a carrying capacity qi, and each city a demand dj. Vehicle capacity must
not be exceeded along any route. Closely related, the total number of cities along a
route may be upper bound (a special case of the CVRP).

Distance-constrained VRP (DVRP) The length or time of any route is upper bounded.
Route length includes transit time between cities and stoppage time at each city. For
fixed vehicle velocity, distance and time constraints are effectively interchangeable.

VRP with Time Windows (VRPTW) Specifies a visit interval [t1t2] during which a
specific city must be visited.

Prioritized VRP (PVRP) The order in which cites may be visited is constrained.

VRP with Pickup and Delivery (VRPPD) A set of capacity-constrained vehicles must
complete a set of pickup and delivery tasks, each defined by and origin and a desti-
nation. This formulation differs from the standard VRP in that each origin has an
associated known destination.

Undoubtedly more variants exist. Extensions are possible by relaxing several constraints
at once—the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW), for
example. An extensive list of VRP special cases and known solution methods is provided by
Golden and Assad in [26]. The notation given in Table 2.1 will be used for the remainder of
this work to describe routing and routing-like problems.
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Variable Definition

n number of agents or vehicles
m number of tasks, cities, or customers
d = [d1...dm] non-negative demand weight applied to tasks
q = [q1...qn] non-negative vehicle capacity weight
v = [v1...vm] graph vertices representing tasks
C = [c11...cnm] cost edges between vertices

Table 2.1: Routing problem notation.

2.3.3.3 Routing Problems Solutions

Many exact and heuristic algorithms exist for solving the VRP and its variants. Laporte
and Nobret highlight three exact algorithm classes in [34] and [35]: tree search, dynamic pro-
gramming, and linear programming. Some solutions hinge on problem relaxations that yield
TSPs or GAPs, which are then solved by one of the three listed techniques. A description
of exact algorithm classes is follows:

1. Tree search: A brute-force search through possible vehicle routes. Methods such as
branch-and-bound and others from TSP and AP literature apply here.

2. Dynamic programming : Proposed as a solution method in [20]. Due to vast number
of states required to represent a VRP, effective use of dynamic programming meth-
ods requires reduction in state space size, function approximation, or other compact
problem formulations.

3. Integer Linear programming : The VRP is formulated in terms of sets of cities, decision
variables, and parameters. The objective is defined to be linear and the decision
variables are integer. Sets are clusters of cities to be visited by a vehicle. Decision
variables include binary variables on each arc representing whether or not the arc is on
the tour. Parameters defining the remainder of the problem include demand, vehicle
capacity, arc costs, etc. Constraints are then defined on the decision variables and
parameters.

In addition to the exact algorithms, several heuristic algorithms, including nearest neigh-
bor methods, incremental improvement, and others have been shown to effectively solve
the VRP. Clarke and Wright are accredited with developing a popular heuristic, which in-
crementally builds routes based on relative cost savings [12]. Many algorithms derive from
TSP literature, particularly the closely related mTSP. Heuristic approaches, while leveraging
problem structure to reduce computation and complexity, come at the penalty of subopti-
mality or loss of feasibility.
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2.3.3.4 Stochastic Vehicle Routing

The VRP is an extremely general and flexible framework for describing routing problems.
However, absent from the standard formulation is a notion of stochasticity, which every real-
world problem exhibits to some degree. Randomness in the VRP can enter through several
avenues:

Random Cities Referred to as the VRP with Stochastic Customers (VRPSC) (or Cities),
each vertex vi exists with probability pi. Demand is deterministic and fixed.

Random Demand Referred to as the VRP with Stochastic Demand (VRPSD), the de-
mand di associated with each city vi is a random variable. City existence is fixed
and known. Demands may be independent and identically distributed d = (d1...dm),
d ∼ IID, or may have some dependence relationships.

Random Travel Time Referred to as the VRP with Stochastic Travel Time (VRPST) in
[72]. Random travel times are expressed as random cost edges, which can be interpreted
as stochastic inter-city travel times or stochastic distances.

The set of problems describe here make up the class of Stochastic VRPs (SVRPs). Trav-
eling salesman version exist for nearly every variant discussed above, as well as for multiple
vehicles (TSPSC, mTSPSC, etc.) A comprehensive review is provided by Gendreau, Laporte,
and Sguin in [24] and Toth and Vigo in [72].

SVRP literature consistently highlights the complexity incurred by introducing random-
ness into the VRP. Dror points out in [19] that all but the smallest routing problems are
impossible to solve with stochastic programming. Several algorithms consider two-step so-
lution approach in which an a priori solver finds the optimal solution over all possibilities,
and an a posteriori solves over specific realizations of random variables.

The effect of deleting and adding vertices and edges at random can produce counter-
intuitive results. Two such examples of the SVRP are highlighted in [24]. In the VRPSC
and VRPSD, the end-cost of a particular route is found to be direction-dependent, even
when path costs are symmetric (ie. cij = cji ∀i, j i 6= j). Additionally, increasing vehicle
capacity (ie. vehicles can visit more cities per tour) can result in larger solution cost.

The body of research in SVRPs indicates that solving stochastic routing problems of a
meaningful size is challenging. The price of stochasticity is complexity, which ultimately
reduces the size of feasible problems. Heuristic approaches are necessary to solve large
problems, or problems for which exact solutions do not exist at any scale.

2.3.4 Routing Limitations and Summary

The TSP and VRP including all variants surely cover a wide swath of possible routing
scenarios. Variants are generally based on relaxing constraints from the most general case.
Distance, time, and capacity constraints are all possible with relatively minor changes to
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standard routing solvers. Despite the breadth of the VRP and its variants, several limitations
diminish the expressiveness of the problem, indicating room for a broader approach to routing
and assignment problems. VRP limitations are as follows:

Soft Constraints The standard VRP does not support soft constraints, such as soft task
priorities, soft deadlines, and sliding time windows. Such constraints arise in many
real-world scenarios where the problem designer is either 1) unsure of task priority,
or 2) explicitly wants to build ambiguity into the problem. For example, consider the
problem of choosing a driving route in the presence of anticipated traffic. A particular
route may vary continuously from more desirable to less desirable as a function of known
quantities such as time of day and stochastic quantities such as traffic distribution.

Stochasticity The VRP has been extended to include random elements via the SVRP,
which can be solved by stochastic programming methods, or approximately with heuris-
tics. However, SVRPs are difficult to pose and can produce unexpected results. Few
solutions exist for problems that incorporate multiple stochastic elements, such as ran-
dom vehicle dynamics and capacity, random environmental elements, and random task
location and demand.

Hybrid/Stochastic Constraints Little specific work exists in combining stochastic prob-
lem attributes with hard or soft constraints. For example, a randomly appearing time
window, which could be used to model weather, would be difficult to pose in a classical
VRP setting.

Beyond the specific limitations of the VRP, namely lack of soft or hybrid constraints and
stochastic representations, perhaps the most limiting shortcomings lie in problem definition
and solution generalization. In most cases, even slight constraint modification requires re-
solving from scratch. Solutions tend to generalize poorly, even in cases involving effectively
equivalent problems.

Table 2.2 summarizes the landscape of VRPs in terms of the ability of each variant to
capture different problem dynamics. The TSP is shown for reference; the mTSP is effectively
equivalent to the VRP for the purposes of this analysis.

Table 2.2 additionally considers certain macro problem characteristics: agent, task, and
environment dynamics. Each of these characteristics can be either deterministic or stochas-
tic. Dynamics in the context of APs (scheduling, routing) have the following interpretation:
Problem dynamics can be either deterministic or stochastic. Stochasticity implies that one
or more of the defining agent, task, or environment attributes is a random variable. Ac-
cording to standard VRP formulation, agents and tasks are defined mainly on space and
time dimensions. Agents may have an additional capacity dimension (qi), and tasks may
have an additional demand dimension (di). Certainly, many other SVRP variants exist with
additional random problem attributes.

• Agent Dynamics : At a certain level of abstraction, it is reasonable to assume that agent
motion is roughly deterministic. For example, it may be unnecessary to consider flight
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dynamics when solving an air traffic control problem over the entire United States.
At small spatial scales however, stochastic agent motions can reflect uncertainty in the
interaction between agents and their environment; wind effects on aircraft, for example.

• Task Dynamics : In practical application, tasks are commonly defined by a human user
and are therefore known. Stochastic task dynamics would capture either uncertainty in
the definition process or uncertainty in the environment-task interaction. The VRPSC
could be considered a VRP with dynamic tasks (customers) in that tasks appear and
disappear at random. The VRPSD also exhibits task dynamics in that the demand—
effectively the difficulty factor of the task—is a random quantity.

• Environment Dynamics : The environment is the underlying medium that binds agents
to tasks. In a deterministic environment, the cost associated with an agent-task pairing,
cij, is deterministic. Stochastic environments essentially amount to random cij, which
is typically defined as a function of distance. The VRPST may be interpreted as a
routing problem with stochastic environment dynamics.

The concept of stochasticity as applied to APs, and particularly routing problems, is of
central focus in this work and will be addressed in subsequent chapters. Larsen describes a
class of Dynamic Vehicle Routing Problems (DVRPs in his work, not to be confused with
the Distance-constrained VRP here) which define a superset over classical static VRPs [36,
37]. Larsen defines a dynamic VRP as a VRP in which 1) not all information is available to
the planner at the time the problem is defined, and 2) information can change after routes
have been defined. To the knowledge of the author, no work has addressed routing problems
with both multiple stochastic or unknown problem variables coupled with soft constraints.
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Fixed Constraints

TSP F F F F F F D D D
VRP F F F F F F D D D
CVRP1 F C C F F F D D D
DVRP F F F C F F D D D
VRPTW F F F C F F D D D

Stochastic Constraints2

VRPSC S F F F S F D S D
VRPSD F S F F S F D S D
VRPSCD S S F F S F D S D
VRPST F F F S S F S S S

Table 2.2: Routing problem summary

Several variants of routing problems summarized according to functional and physical
metrics. F=fixed, C=constrained, D=deterministic, S=stochastic. “Fixed” implies that the

particular variable is a constant quantity (eg. a fixed number of tasks), while
“Deterministic” implies that the variable is calculated from a known function (eg.

deterministic agent dynamics).

2.4 Scheduling

Scheduling is in many respects and even broader type of AP than routing. Scheduling is the
process of deciding how to allocate a limited set of resources to accomplish a set of tasks. The
differences between scheduling and routing are primarily due to their history and associated

1The CVRP applies a weight to the demand di at each city, with all vehicle capacities being uniform.
This is however referred to as a capacity constraint: the sum of weights must not exceed the vehicle capacity,
qi. Therefore both di and qi are marked as constrained variables.

2To the knowledge of the author, no work addresses stochastic vehicle capacity as opposed to demand
(the “C” in VRPSC stands for “cities” as opposed to “capacity’ as it does in the CVRP. Though it is likely
that the demand at a city is more unknown than the vehicle capacity, it may prove useful in some settings
to define vehicle capacity as unknown with a particular distribution, separate from demand stochasticity.
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applications: Routing problems involve spatial elements, while scheduling focus on temporal
elements. Scheduling here will primarily be considered through the lens of the The Job Shop
Scheduling Problem, also commonly referred to as the Job Shop Problem (both referred to
as the JSP herein).

Scheduling, like routing, has broad applications beyond the classical problems such as
the JSP. Scheduling theory often addresses problems in the following domains:

• Power grid: Given known and estimated demand, when should utilities be activated?

• Transit systems: What is the appropriate, optimal, or least cost timetable to meet
expected demand?

• Cloud computing: What is the best allocation of processing jobs to processors?

2.4.1 History

Scheduling is as old as the understanding of activities and sequencing. Just as with routing,
modern scheduling theory evolved from an application. Adamiecki, a Polish economist, is
accredited with project management advances in the area of improving production schedules
[3]. Adamiecki published an article in 1931 describing a project management tool called a
harmonogram, a precursor to the modern day Gantt chart.

(a) Karol Adamiecki, 1886-1933 (b) Adamiecki’s Harmonogram [3].

Figure 2.8: Karol Adamiecki and the Harmonogram, an early scheduling tool.

The Polish economist, Karol Adamiecki, is credited with the development of one of the first
formal scheduling tools, the harmonogram, laying the groundwork for modern scheduling

theory.

Modern scheduling theory, like routing theory, draws heavily upon work in optimization,
search, and dynamic programming. A classic review is provided by Conway, Maxwell, and
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Miller in [13]. The modern literature surveyed here pertains specifically to the JSP, discussed
the following sections.

2.4.2 The Job Shop Scheduling Problem (JSP)

The JSP, like its routing counterparts, is a NP-hard combinatorial optimization problem.
The JSP is precisely stated as follows in Definition 5.

Let J = [j1...jm] be a set of m jobs and M = [m1...mn] be a set of n identical
machines. Let C : M × J → [0,∞] be a matrix representing the cost for machine
m to to job j.
The goal is to find the set of sequential assignments of jobs to machines such that
overall cost is minimized while obeying the following constraints:

C1. Jobs are atomic and can not be subdivided.

C2. Each machine can perform exactly one job at a given time.

C3. All machines are identical in terms of work throughput.

Definition 5.

The standard JSP formulation places no restriction on the number of operations each
machine performs on each job. However, a standard assumption is that each of the m jobs
requires exactly n operations to complete—one on each machine. The classic objective in the
JSP is minimum makespan, where makespan is defined as the overall length of the schedule.
From Definition 5, it is clear that the JSP can be considered a generalization of the TSP
(Definition 3, ie. the TSP, is a JSP with n = 1 (one agent).

2.4.2.1 Common JSP Extensions

As with the TSP and VRP, many JSP problem variants are possible. Listed below are
several popular variations, which are devised, like in routing, by relaxing certain constraints.

Non-identical machines: Each machine can have a unique capacity.

Non-atomic jobs: Jobs can be subdivided.

Job priority/ordering: The user can specify a partial ordering of jobs

Two popular scheduling problem variants are the Open Shop Scheduling Problem (OSSP)
and the Flow Shop Scheduling Problem (FSP) [49]. In the OSSP each of the m jobs may
be processed on any of the n machines in any order, unlike in the JSP where an ordering
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Figure 2.9: A Job Shop Scheduling Problem (JSP) depiction.

All jobs must be executed on each machine exactly once such that makespan, the overall
completion time, is minimized.

is specified. In the FSP each of the m jobs has the same unidirectional “flow” ie. requires
processing in the same sequence of machines. By contrast, the JSP places no restriction on
the flow and is therefore a less constrained and potentially more difficult to solve problem
(more options to enumerate). The goal in all cases—JSP, OSSP, and FSP—is minimum
makespan, which is equivalent to and often stated as minimum idle time.

2.5 From Scheduling to Routing

Figure 2.3 highlights two key insights into scheduling and routing: both problems are related
through assignment problems, and both define closely related subproblems. The difference
is the historical context, underlying representation, typical assumptions, and intended ap-
plications.

Based on routing and scheduling literature, the following qualitative comparisons can be
made between the two problem classes (adapted from Beck, Prosser, and Selensky [5]). This
analysis primarily addresses the VRP and JSP, but can be applied to routing and scheduling
in general in most cases.
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Agent Specialization Vehicles typically have a low degree of specialization in that any
vehicle is suitable to perform a given task. However, a common extension of the
JSP is machine specialization. The difference in specialization is primarily due to the
original historical contexts: trucks are typically all suited to deliver packages, whereas
factories with production lines have specialized machines to perform specific tasks.
VRPs can be formulated for heterogeneous fleets (trucks, planes, etc.) and JSPs are
often homogeneous when the machine is a computer (eg. processor scheduling). That
being said, example routing and scheduling problems in literature tend to bifurcate,
with homogeneous vehicles for routing and heterogeneous machines for scheduling.

Task ordering In routing problems, tasks typically have no particular ordering in which
they need to occur. Contrastingly, jobs in scheduling problems typically need to occur
in a particular order. The standard JSP as stated in Definition 5 asserts no task
ordering, however, in practice jobs involve multiple sequential operations and ordering
constraints need to be imposed. The FSP is a well-studied scheduling problem variant
with a strong sense of ordering.

Transit Time and Visit Duration In general, the majority of the cost of a routing task
is associated with the time spent getting there, reflecting vehicle fuel costs, with zero
time spent at the task site. Contrastingly, in scheduling, nearly all of the cost is
associated with doing the task, and zero cost is associated with transit time between
tasks.

Temporal Constraints Neither the standard VRP nor the JSP constrain task time. How-
ever, a popular VRP variant, the VRPTW specifies that tasks occur during a specific
time window, which makes sense in a delivery context in which packages may only be
delivered at particular times of the day, for example. In a scheduling context, time
constraints typically come in the form of deadlines, due to task ordering (one task
must finish before another begins) and the overall objective of minimum makespan.
One perspective is that job priority ordering specifies a moving temporal constraint.
This point is mostly semantic, as deadlines and time windows are closely related.

Table 2.3 summarizes the differences between routing and scheduling.
A comprehensive study performed by Beck, Prosser, and Selensky abstracts the JSP and

VRP to a common level in an attempt to determine the differences between solutions coming
from scheduling theory versus those coming from routing theory. The metric for evaluation
is the ratio of cost in terms of CPU time between the routing solver and the scheduling
solver. Their analysis shows that the routing solver performs better on problems that are
more “routing-like” as defined in table 2.3, and the same for scheduling [5]. Perhaps a more
significant result, the research indicates that hybrid routing-scheduling problems are possible
by abstracting spatial and temporal problem elements to a common level.
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Routing (VRP) Scheduling (JSP)

Agent vehicle machine/resource
Task city/customer job/activity

Objective min distance/time min makespan
Complexity NP-hard NP-hard

Agent specialization homogeneous specialized
Task ordering weak strong

Transit time long short
Visit duration short long

Temporal constraints time windows deadlines

Table 2.3: The VRP and JSP compared qualitatively across several soft metrics.

2.6 The Generalized Planning Problem (GPP)

Previous sections on scheduling and routing highlight advantages and shortcomings of the
two problem archetypes. Scheduling, drawing upon lineage in work flow and operations,
is inherently focused on temporal aspects of problems. Routing, inspired by the transit
of vehicles between locations, tends to focus more on spatial elements. And beyond the
standard definitions are a myriad of problem variants. Variants arise by either 1) relaxing
constraints, 2) adding constraints, or 3) adding stochastic elements.
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Figure 2.10: The Generalized Planning Problem

The shortcomings of the mostly binary perspective on routing and scheduling problems
motivates the need for a new hybrid perspective. The Generalized Planning Problem, as
the name suggests, is an application-centric (planning) top down rather than bottom up
perspective on assignment problems. It is specific neither towards the spatial aspects of
routing nor the temporal aspects of scheduling, and is based around the notion that all
problem dimensions can be jointly random. Certainly this will pose significant modeling and
solver challenges. Figure 2.10 places the GPP in context with decision problems. Distinct
from the GAP, the GPP is concerned specifically with planning problems such as those that
commonly arise in multi-agent systems of taskable robots or other work performers.

2.6.1 Definition

The GPP is concisely stated as follows in Definition 6.
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Let the following tuple define a GPP:

GPP = [An1 , T
m
1 , C

mn
11 , f, g] (2.1)

The set of agents, An1 = [a1, a2, ..., an] seeks to complete a set of tasks Tm1 =
[t1, t2, ..., tm] with minimum overall cost. Cost is defined as a measure of effort or
resource expenditure resulting from an agent-task pairing. The cost for agent i to
perform task j will be defined as cij, the collection of which forms the cost matrix
C.
Cost is defined at all times as a function of the state of the problem, x ∈ X and
chosen action u ∈ U . The state x encapsulates all agent positions, task positions,
constraints, and environmental dynamics.

Ck = fk(xk, uk) st. f : X × U → R (2.2)

xk+1 = gk(xk, uk) st. g : X × U → X (2.3)

The following assumptions are placed on the functions f and g

A1. The cost emission function f is deterministic and known.

A2. The state transition function g can be of any form (linear, nonlinear, time-
varying, probabilistic) but must be realizable (in simulation).

The cost for agent i to perform task j (cij) is the sum aggregate the of 1) cost asso-
ciated just with the agent regardless of task (eg. startup cost), 2) costs associated
just with the task regardless of agency (eg. terminal cost, mandatory loiter time,
“demand” in the VRP sense.), and 3) costs associated specifically with the pairing
of agent to task (eg. distance between the two). Thus cij can be represented withe
the following sum:

cij = f ijk (x, u) + f ik(x, u) + f jk(x, u) (2.4)

The state X contains all information about the problem. For the purposes of
calculating cost, the state is reducible to the following tuple:

X = [S, T, P ] (2.5)

Where s ∈ S represents spatial problem elements, t ∈ T represents temporal prob-
lem elements, and p ∈ P represents additional parameters associated with the en-
vironment or specific details of agent-task pairings. Equation 2.4 may be reduced
further with this state definition by separating independent elements.

Definition 6 (Generalized Planning Problem).
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2.6.2 GPP Example Problem

From Definition 6 and Figure 2.10 it should be clear that GPPs combine many characteristics
of routing and scheduling. A real-world routing-like scenario is provided blow in Example 1.
This scenario is inspired by taxi routing and the fair schedule in New York City. It combines
both spatial and temporal elements. Taxi dispatch is not a new problem, and is commonly
formulated as a VRP with Pickup and Delivery.

Example 1 described below may be considered as a VRPPD with stochastic agent dynam-
ics (action outcome uncertainty), stochastic environment dynamics (traffic), and soft time
windows (drop-off deadlines). To the knowledge of the author, no work has yet attempted to
represent or solve a SVRPPDTW (stochastic pickup and delivery VRP with time windows)
with traditional vehicle routing techniques.

Figure 2.11: Taxi dispatch in New York City can be posed as a stochastic vehicle routing
problem with pickup and delivery
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As the owner of a taxi company in New York City you, would like to route cabs
as efficiently as possible so as to maximize profit. In the scenario depicted in the
figure below, two taxis, one located in Brooklyn (B) and the other in Queens (Q)
may be allocated to pick up the fare at pickup site P. The destination of the fare
(D) is unknown until the time of pickup, tp.

d(Q,P)

B

P

d(B,P)

Q

D

d(P,D)

Random traffic

P(traffic)~Poi(t)

Param. Value Description

d(., .) [0, inf) distance function
vM (6, 60] cab free velocity
vT 6mph cab traffic velocity
t [0, 24] time of day

rf $2.50 fixed pickup cost
rd $2/mile moving cost (v > vT )
rt $.40/min stopped cost (v < vT )
rp $1.00 peak cost (16 < t < 20)
wm $1000000 cab license cost
wc $20000 cab cost

p(d|P ) Poi(P ) destination distance
p(v|t) Poi(t) moving velocity dist.
pfail .01 random cab motion

The r parameters denote reward (to be maximized) and w parameters denote costs
(fixed in this case). We assume that the overall cost for a particular agent (taxi)
allocated to a particular task (pickup) is defined at all times by a combination of
deterministic quantities and known probability distributions that can be sampled.
The state transition g function is defined as follows: All agents move towards tasks
to which they are allocated at velocity v wp. 1 − pfail. Agents move in a random
direction at v wp. pfail, and at v = 0 when unallocated.

Example 1 (NYC Taxi Routing).
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The overall cost for agent i to perform task j can thus be expressed as follows,
where cij is defined in Equation 2.4:

f i = wm + wc (2.6)

f j = −rf (2.7)

f ij =


E[ciP + cPD] if t < tP

d(P,D)× rt
vT

+ d(P,D)× rd if t ≥ tP

(2.8)

The agent specific costs (f i) are the cost of the cab and cost of license. The task
specific costs (f j) are the fixed pickup costs. All other costs are a joint function of
the particular agent and particular task (f ij). Equation 2.8 separates f ij into two
cases: before the pickup (t < tp), when the destination is unknown and treated as
a random variable, and after the pickup, when the destination is known (t ≥ tp).
The full solution can be found in Appendix A.

Solution 1.

2.6.3 Summary

The GPP provides a new perspective on routing and scheduling problems. It assumes no
specific solution method and is left fairly unconstrained, with many of the constraints pushed
into the state as a cost. Other salient GPP attributes include the following:

• Inspired by elements of routing, scheduling, and assignment

• Not tied to a specific solution methodology or tool set

• Inherently based on agents, tasks, and their coupling through the environment and
assignment.

• Potentially constrained in several dimensions at once.

• Potentially stochastic in several dimensions at once.

Reinforcement learning as a solution to decision problems will be introduced in Chapter 3.
Chapter 4 formulates the GPP as a decision problem and present learned solutions.
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Chapter 3

Modeling and Learning

A computer would deserve to be called intelligent if it could deceive a human into
believing that it was human. - Alan Turing

3.1 Introduction

Learning is a an innate human process by which everyday experience is internalized as be-
havior. The process of learning as applied to solving decision problems is commonly referred
to as Machine Learning. Reinforcement learning, temporal difference learning, supervisory
learning, and many other variants make up a set of techniques for solving decision problems.

Learning theory is often contrasted with control theory, which is a a separate but his-
torically intertwined research thread, also concerned with solving decision problems. Classic
control theory dates back to mechanical control in the 1800s, World War II guidance naviga-
tion and control systems, and theory developed by Hendrik Wade Bode, Harry Nyquist, and
others at Bell Laboratories. Control theory is fundamentally concerned with analysis of the
input-output behavior dynamic systems, and the subsequent design of controllers based on
this analysis. Properties of interest include stability, controllability, observability, and other
metrics that aim to separate the hidden parts of a system from the knowable parts, and
then describe how these parts will behave under different conditions. Based on the analysis,
classic as well as modern control techniques, including optimal control, model predictive
control, and nonlinear control, attempt to regulate dynamic systems so as to achieve some
desired behavior.

The following chapter is organized as follows. Section 3.2 provides detail on how learning
differs from classical control theory and motivates the need for learning-based controllers.
Section 3.3 introduces modeling formalisms typically used in learning research, including the
MDP. Section 3.4 discusses learning methods for MDPs based on dynamic programming
and Monte Carlo (MC) methods. Having provided a basis and background for learning, Sec-
tion 3.5 introduces a canonical grid-based maze world example problem. The maze problem
is selected as a means for exploring learning variations that improve upon the learning pro-
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cess. Section 3.6 concludes the chapter with a review of the results, benefits, and limitations
of the learning framework.

3.2 Motivation: Why Learning?

The focus of control theory beyond analysis lies in designing controllers. Closed loop con-
trollers can regulate around a set point (regulation) or follow a reference signal in time
(tracking) to meet some objective, often in the presence of perturbations (disturbance
rejection). Objectives are either based on performance–rise time, settling time, etc.–or
robustness/accuracy–overshoot, undershoot, steady-state error, etc.

The perspective of classical control theory on controller design is certainly analysis first,
design second. The learning approach is the opposite: controllers, often referred to as policies,
are designed by “training” (learning) on examples gathered from experience.

Learning is closely related to optimal control. Richard Bellman is credited with devel-
oping iterative methods for computing optimal policies on a class of deterministic discrete
time models known as MDPs. Policies derived from learning are typically implemented as
a lookup table, which is analogous to a feedback rule in the control setting. Learning is
effectively the process by which information contained in the system dynamics and objective
(reward function) is translated into a policy. Several beneficial properties of learning-based
controller design are as follows:

Randomness Randomness in the environment or system dynamics is directly encoded in
a transition model or simulator. The learning process automatically incorporates this
randomness into learned policies.

Experience-based Learning can produce control policies directly from examples, which is
especially useful in cases where precise dynamics are unknown or difficult to model.

High-level As a result of only having to generate single examples rather than exact dy-
namic models, relatively complex behaviors can be learned from an otherwise high-level
process.

Tuning Tuning a learning algorithm can often be an unguided laborious process. By the
same token, however, many tuning variables allow for direct and precise control over
the learning process and eventuality policy quality.

The rich body of literature in control theory has surely addressed all of the above points to
some degree. It would be a challenge to find a control problem that is completely unsolvable
by one methodology over another. However, just as particular problems lend themselves
well to solutions from control theory, particularly those requiring a-priori knowledge and
analysis, the learning perspective is often better suited for solving problems with the above
characteristics.
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3.3 Modeling

Before solving a problem it must be cast in a particular modeling framework. Control
theory, for example, makes heavy use of discrete and continuous systems of differential
equations. Many analysis tools and constructive design methods are based around these
particular modeling formalisms. For historical and practical reasons, the starting point for
many learning problems is the Markov Decision Process, introduced in the following section.

3.3.1 The Markov Decision Process

The Markov Decision Process is the cornerstone of reinforcement learning. MDPs incorporate
a notion of state, actions, probabilistic state dynamics, and a high-level reward function. The
MDP model is formally described in Definition 7.

A Markov Decision Process is completely specified by the tuple < S,A, P,R >. S
is a set of states. A is a set of actions. R(s′, a, s) is a reward function that assigns
a value for transitioning from state s ∈ S to state s′ ∈ S under action a ∈ A. The
transition model P (s′|a, s) is a conditional distribution on successor states that
describes the likelihood of making a particular state transition.
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Figure 3.1: Markov Decision Process graphical model.

Significant MDP properties are as follows:

Markov The past and future are are conditionally independent given the present.
Successor states are completely determined by one-step predecessor states

One-Step Actions deterministically last exactly one step. MDPs have no notion
of history.

Optimality Dynamic programming computes optimal policies on MDPs.

Definition 7 (Markov Decision Process).
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MDPs are best understood as graphical models in the context of companion models. Fig-
ure 3.2 shows several graphical models divided according to state observability and actions.
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Figure 3.2: Graphical models of canonical decision process models.

The base model in Figure 3.2 is the Markov process, or Markov chain. It asserts the
important conditional independence property, P(x1, x3|x2) = P(x1|x2)P(x3|x2), which is to
say that knowing x2 is all that is required for knowing x3; x1 is irrelevant, and x2 is said
to separate the graph. Since MDPs typically represent a sequence in time, an equivalent
statement is that the past and future are independent, conditioned on the present.

While the Markov processes are useful in many applications for capturing autonomous
state evolution, a model of decision problems must incorporate a notion of actions. The MDP
model makes this extension. It retains the Markov property from the Markov processes, with
the addition that successor states are the produced by actions and governed by a transition
model, P(s′|a, s).

In many applications, the state x of a problem can not be observed. Rather, some lower
dimension projection of the state is available. The link between the state and so called
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observations is an observation or emission model, P(s|x), which can be inverted by Bayes
rule to determine the true state x. The Hidden Markov Model in Figure 3.2 is a simple
autonomous (no actions) graphical model with partial state observability. Hidden Markov
Models (HMMs) are widely used in inference problems, such as speech recognition, where the
hidden variable represents what was actually said and observations are sounds (“phonemes”)
that are heard by a microphone.

The most complicated model possible in this framework is the Partially Observable
Markov Decision Process (POMDP). POMDPs combine the partial state observability of
HMMs with the actions of MDPs. In many cases, POMDPs closely represent real-world de-
cision processes in which actions must be taken under state uncertainty. In robot navigation,
for example, a noisy range-bearing measurement may be the observation, the true state is
the location of the robot, and actions must be taken so as to safely navigate towards a goal
state.

POMDPs combine the expressiveness of MDPs and HMM as well as their aggregate
complexity. MDPs, already plagued by the curse of dimensionality, only becomes more
complex with the addition of partial state observability. POMDPs typically make value
calculations on a belief state, B(s) which is a distribution over a non-random state. Replacing
all the states in an MDP with probabilistic states greatly complicates the process of learning.
Despite their complexity, much modern research, particularly in robotics, is interested in
efficient and approximate calculation of optimal policies on POMDPs [71].

3.4 Learning

The following sections introduce the theoretical underpinnings for learning optimal policies
on MDPs. In all cases, the goal is to transfer experiential knowledge into knowledge on
how to act in future scenarios. The two algorithmic frameworks considered are dynamic
programming and Monte Carlo. Benefits and drawbacks of each are discussed and methods
that combine favorable aspects of both are introduced.

3.4.1 Dynamic Programming

Dynamic programming is a technique that can compute optimal policies on MDPs. The
salient feature of dynamic programming is that it is an iterative method, updating state
values based on future state values. This process is typically referred to as bootstrapping and
is depicted in Figure 3.3. The general formulation requires a system that can be represented
as in Equation 3.1.
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Figure 3.3: Dynamic programming-based learning.

st+1 = f(st) + g(at) (3.1)

Equation 3.1 is a discrete time dynamic system. States evolve in time according to f
and g in a deterministic manner, or probabilistically (P(st+1|st, at)). The goal in dynamic
programming is to compute the value for each state or state-action pair. The value for being
in a particular state can be defined as the expected reward that will be received in the future
starting from that state.

V π(s) = E[Rt|st] (3.2)

Rt = rt+1 + γrt+2 + γ2rt+3 + ...+ γT−1rT =
T∑
k=0

γkrt+k+1 (3.3)

Equation 3.2 is the value equation for each state under policy π. Equation 3.2 can also
be written as a function of itself in Equation 3.5. In this case, V π(s + t+ 1) represents the
“cost-to-go” before reaching the goal.

V π(s) = E[rt+1 + γrt+2 + γ2rt+3 + ...+ γT−1rT |st = s] (3.4)

V π(s) = E[rt+1 + γV π(st+1)|st = s) (3.5)

It would be useful to be able to calculate V iteratively, based on previous values of V and
an expected future reward. That algorithm is known as value iteration and is given with the
following bellman update equation.

Vk+1(s) = max
a

E[rt+1 + γV π(st+1|st = s, at = a] (3.6)

Vk+1(s) = max
a

∑
s′

P (s′|a, s)[R(s′, a, s) + γVk(s
′)] (3.7)
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V will converge to V ∗. Replacing V with V ∗ in Equation 3.7 gives Bellman’s optimality
equation. Sutton and Barto provide a complete review and derivation of value iteration and
other learning algorithms in [66]. A detailed treatment of dynamic programming in general
is given by Bertsekas and Tsitsiklis in [6].

3.4.2 Monte Carlo

The term Monte Carlo refers to a class of simulation-based algorithms. In the context of
learning, MC methods solve for optimal value functions and associated policies. Several key
traits of MC, differing from dynamic programming, are as follows:

• Modeless No explicit probabilistic model is required, learning is completely experience-
based.

• Simulation-based A simulator generates state transitions.

• No Bootstrapping Whereas DP methods bootstrap, MC methods no not update
based on previous estimates.

• Episodic Learning occurs at the end of simulated episodes.

S G

r1

r2

r3

Simulated state trajectories

Value (S) = mean (r1+r2+r3)

Figure 3.4: Monte Carlo-based learning.

A simulator generates state trajectories from start to goal and the total path reward is
recorded. At the conclusion of each episode, the reward adds to the value of the start state.

Successive iterations of MC-based value learning results in an averaging of path rewards
from many simulated episodes.

A depiction of a Monte Carlo-based learning algorithm at work is given in Figure 3.4.
The key assumption in MC value function learning is that a simulator can generate episodes
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(sample paths from any start state to the goal state), and learning occurs at the end of
episodes. The fact that MC methods do not require a model, such as the probabilistic
state transition model in dynamic programming, may seem of dubious benefit, since the
simulator must run some sort of model. However, the simulator need only generate a single
successor state for each state-action pair, whereas dynamic programming requires a complete
conditional distribution for all state transitions.

As an example, consider the card game blackjack as a learning problem. The state,
for simplicity, can be the sum of the player’s cards and the dealer’s showing card. The
following types of situations then arise: Given that player’s total is 16 and the dealer is
showing 10, what is the probability that if the player hits, they win? This type of knowledge
is what dynamic programming would require for all possible combinations. Writing out
a conditional probability table for blackjack would, at the very least, be a laborious task.
Simulating blackjack, however, is very easy. The problem designer need only keep a card deck
in memory, simulate random deals and hits, and sum card combinations. Other problems
that lend themselves well to simulation are those for which training data does not exist or
would be complicated to gather. Learning a controller for a complex vehicle that is yet to
be built or even modeled would be a challenge for dynamic programming. However, MC
methods could be applied with the highest fidelity simulator available.

Perhaps an even subtler point, simulation is also a beneficial means of learning because
it implicitly identifies relevant states. The learning process therefore will necessarily visit
the most relevant states and generate the most likely state trajectories. Those states will
therefore be updated most frequently and be the most refined at the conclusion of the learning
process.

3.4.3 Temporal Difference Learning

The previous sections introduce two methodologies and perspectives on learning optimal
value functions. Dynamic programming has the benefit of bootstrapping–estimates of state
values are updated based on estimates of future states. Dynamic programming makes a
guess based on future guesses. Monte Carlo is not a bootstrapping technique. Rather Monte
Carlo methods are steeped in simulation and experience.

Temporal Difference methods, formalized by Sutton, combine the bootstrapping of dy-
namic programming and experience-based learning of Monte Carlo. Sutton and Barto pro-
vide an excellent review of the history, benefits, and applications of Temporal Difference
(TD) learning. Suffice it to say that TD methods are advantageous over DP in that they do
not require a model of the environment, and advantageous over MC methods in that they
can be implemented incrementally and online, learning at ever time step rather than after
episode completion. This presents a great benefit to control applications, where learning may
in fact be interleaved with actually running the policy learned so far. Table 3.1 summaries
the relationship between DP and MC, and how TD methods combine aspects of both.

A simple Monte Carlo update rule is given in Equation 3.8
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Dynamic Programming Monte Carlo Temporal Difference

Bootstrapping X X
Modeless X X
Episodic X X

Table 3.1: Dynamic programming, Monte Carlo, and temporal difference comparison.

Temporal difference methods have the benefits of DP methods in that they bootstrap, and
the benefits of MC methods in that they are simulation-based and therefore do not require

an explicit transition model.

V (st)← V (st) + α[Rt − V (st)] (3.8)

Rt = rt+1 + rt+2 + γ2rt+3 + ...+ γT−1rT (3.9)

Updating the state value function V (s) is equivalent to updating a state-action value
function Q(s, a), which are related according to Equation 3.12. Policies can be directly
calculated from a Q-function as in Equation 3.13. In it’s most general form, a policy is a
joint probability distribution on states and actions, π(s, a). However, in many MDP-based
learning algorithms, the state is considered 1) fully observable and 2) realized at each time
step. Therefore, a more apt representation would be a conditional distribution over actions
π(a|s). For the purposes of control, the most useful structure to store is a state-action lookup
table, which is no longer random and denoted as π(s) and is computed by the maximization
in Equation 3.13.

V ∗(s) = max
π

V π(s) (3.10)

Q∗(s, a) = max
π

Qπ(s, a) (3.11)

V ∗(s) = max
a
Q∗(s, a) (3.12)

π∗(s) = arg max
a

Q∗(s, a) (3.13)

Since MC updates are based on actual (simulated) reward trajectories, Rt in Equation 3.9
is that actual reward received starting at time t concluding at T . Contrastingly, TD updates
are based on one-step predictions of future returns rather than T -step realizations. A simple
one-step TD update rule is given in Equation 3.14.

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)] (3.14)

Equation 3.14 implies that, rather than waiting to observe the actual return Rt at the
conclusion of the episode, the update is based on an existing estimate of the expected future
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return, as given in Equation 3.2. The update rule in Equation 3.14 is both a bootstrapping
and a modeless rule, and provides a basis for what is know as the TD(0) learning algorithm.

All TD learning algorithms can be classified as either on-policy or off-policy. The distinc-
tion refers to the policy that is being followed during the learning process, referred to as the
behavior policy, πb. This distinction is to distinguish πb from the policy that we would like
to end up with at the conclusion of the learning, the target policy, πt → π∗. The difference
between on-policy and off-policy learning is formally stated as follows:

On-policy A learning algorithm that continually estimates the state-action value function
Qπ by following the behavior policy, πb. The behavior policy is simultaneously and
incrementally improved towards the optimal policy, π∗, as learning proceeds.

Off-policy A learning algorithm for which the behavior policy need not be based on the
current value function, and the current value function Q directly approximates Q∗.
The only requirement placed on πb is that it visit all state-action pairs infinitely often
as t→∞.

The following sections describe two popular learning algorithms, on-policy SARSA learn-
ing and off-policy Q-learning.

3.4.3.1 SARSA

The acronym SARSA refers to the data sequence—< st, at, rt+1, st+1, at+1 >—required for
learning. The algorithm learns by observing the Markovian transition between state-action
pairs, and the associated reward. The central update rule is given in Equation 3.15. Algo-
rithm 3.1 provides a standard implementation of SARSA learning.

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)] (3.15)

π∗(s) = arg max
a

Q∗(s, a) (3.16)

3.4.3.2 Q-learning

The algorithm known as Q-learning was first posed by Watkins as a means to learn optimal
value functions completely independent of the behavior policy. The only requirement is that
the policy being followed is “sufficiently exploratory” ie. all state-action pairs are visited
infinitely often as learning time approaches infinity. The update rule is a slight modification
on the SARSA update rule, and is given in Equation 3.17.

Q(st, at)← Q(st, at) + α[rt+1 + γmax
at+1

Q(st+1, at+1)−Q(st, at)] (3.17)

While separating the behavior policy from the target policy may seem of marginal benefit,
the practical implications are great. Q-learning can learn from any experience, not just
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Algorithm 3.1 SARSA Learning Algorithm

Set number of episodes, N
Set parameters: P = {α, γ, ε, }
function [Q∗(s, a), π∗(s)] = Learn(N,P )

Initialize: Q, π
while current episode < N do

Initialize: t = 0, s0
Select action at from πb(st) derived from Q
while not at the goal: st 6= sgoal do

Take action at in st and observe rt+1 and st+1

Select action at+1 from πb(st+1) derived from Q
Update: Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)]
πb(s) = arg maxaQ(s, a)
t = t+ 1

end while
end while

end function

specific experience. So long as the behavior policy explores the state space, it can be explored
in any fashion. Many online learning applications that involve generating experience from
actual physical systems can run in parallel with Q-learning. The algorithm only needs to
passively observe a state-action-reward sequence to gain knowledge about the system. An
implementation of modeless off-policy Q-learning is provided in Algorithm 3.2.

Algorithm 3.2 Q-Learning Algorithm

Set number of episodes, N
Set parameters: P = {α, γ, ε, }
function [Q∗(s, a), π∗(s)] = Learn(N,P )

Initialize: Q, π
while current episode < N do

Initialize: t = 0, s0
while not at the goal: st 6= sgoal do

Select action at from πb(st) derived from Q or other method
Take action at in st and observe rt+1 and st+1

Update: Q(st, at)← Q(st, at) + α[rt+1 + γmaxat+1 Q(st+1, at+1)−Q(st, at)]
t = t+ 1

end while
end while

end function
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3.5 Learning Examples

The previous section has introduced the Markov Decision Process and basics of reinforcement
learning. The main focus has been on temporal difference methods such as Q-learning, which
combine the best elements of dynamic programming and Monte Carlo methods. Based on
these standard algorithms, many variants exist that attempt to in some way enhance the
learning process. It is important to point out that these algorithmic variations all attempt
to improve speed, accuracy, or robustness, but all aim at the same optimal value function.
The learning variations explored here include:

Eligibility Traces A variable lookahead method that attempts to learn state values in
problems where the start state and goal state are separated by many steps.

Exploration A behavior policy technique that trades off greediness with respect to the
value function versus random action so as to effectively explore the state space.

Prioritized Sweeping A scheme for visiting and update state values in a guided fashion
so as to maximize learning.

These techniques are applied to the canonical grid-based learning problem in Example 2.
This problem is popular because, while the agent dynamics are simple and the world is
limited, it highlights well the differences between learning algorithms.
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An agent is tasked with navigating in a walled 2D grid world from a start state
to a goal state. The goal is to find the optimal policy for navigation through the
maze. The problem is modeled as an MDP with the following definition:

Parameter Value Description

w 10 w × w world size
S [i, j] | 1 < i, j < w state set
sgoal ∈ S [1, 1] goal state
A [↑,→, ↓,←, ] action set
R(s′, a, s) R(sgoal, :, :) = +1 reward function
pfail 0.01 action failure probability
α 0.9 learning rate
γ 0.99 discount factor
ε 0.8 probability of following πb

The reward function gives zero everywhere and +1 at the goal. Agents taking action
at in state st according to the transition model P (s′|s, a) succeed with probability
0.99 and fail with probability 0.01. Walls added to the grid create rooms and
narrow passages. The effect of walls is to increase learning time by increasing the
length of the paths from start to goal. Learning must also take into account that
the shortest path to the goal may involve moving away form the goal for a period
of time. The learned policy over successive iterations for the example problem is
shown in Solution 2 below. Learning parameters variation is further explored in
subsequent examples.

Example 2 (Maze World).



CHAPTER 3. MODELING AND LEARNING 50

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

10x10 grid. Episode: 400  λ=0.3  ε=0.6

In the solution, each grid square, representing each of the 100 states, contains
several pieces of information. Black squares represent walls, and the black square
with the star located at [1, 1] is the goal state. The arrows indicate the policy
learned for each state, which is calculated by Equation 3.13. Grid cells are shaded
according to the value at each cell(state). Black corresponds to zero value and
white corresponds to high value. Value increases with proximity to the goal state
since those states are visited most often. The learned policy in some states is
suboptimal, as can be seen by arrows not pointing directly at passageways or the
goal. This can be solved by longer learning time or tuning parameters.

Solution 2.

3.5.1 Learning Metrics and Analysis

Several useful analytical tools give insight into the learning process. Metrics can be roughly
divided into those that assess the learning process and those that assess end policy quality.
Learning performance and policy quality are not necessarily co-varying and, in fact, often
inversely related: An algorithm that takes a longer time to learn for a fixed number of
iterations may in fact produce a better policy than a faster algorithm.

Utility The utility of a policy can be calculated as follows in Equation 3.18 by summing
the value at each state multiplied by the prior probability of that state. Utility is often
calculated online during learning as a measure of how close the policy is to stationary.
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Uπ =
∑
s

V π(s)P(s) (3.18)

Learning Curve The learning curve shows episode length versus learning iteration. If
the behavior policy is at least in part derived from the learned value function, episode
length should decrease in time as the Q→ Q∗. Several learning curves are often plotted
on the same axis for a varying parameter to compare learning speed and convergence
to the optimal policy.

Bellman Error It is often useful to define a Bellman operator, T that operates on Q as in
Equation 3.19. T is said to be a contraction mapping for which Q∗ is a fixed point. The
measure of proximity to optimal value function, Q∗(s, a), is the Bellman error, which is
calculated state-wise in Equation 3.20. For the purposes of analysis, a scalar Bellman
error for each learning step can be calculated as a maximization over all state-action
pairs, as in Equation 3.21.

Q′(s, a) = T[Q(s, a)] (3.19)

B(s, a) = Q′(s, a)−Q(s, a) (3.20)

B = max
s

[max
a

[Q′(s, a)−Q(s, a)]] (3.21)

Episode Length At the conclusion of learning, the main metric on which to judge a policy
is episode length. Episode length is typically calculated by simulating the final learned
policy for a variety of initial states and/or goal states if the goal state is movable. For
episodic tasks that should all take approximately the same amount to time, it may
make sense to average episode length over many test iterations, so as to have a scalar
quantity to compare with other policy tests. For non episodic problems, huge state
spaces, or problems for which episode length is not uniformly distributed over the state
space, several test cases can be used as a benchmark of policy performance.

3.5.2 Eligibility Traces

Learning problems operate on the principle that taking an action in a state produces a
successor state along with a reward or a penalty. The received reward or penalty ascribes a
certain value to the state-action sequence. Over successive iterations, a state-value function
is obtained, which essentially tabulates the value of being in a particular state based on past
experience.

Issues arise in learning when the goal state is far from the starting point. In these cases,
it may take many steps before reward is applied to the start state or the states along the
path. Take for example the maze problem in Example 2. At the outset of learning, when
Q(s, a) = 0 for all states, the probability of reaching the goal from s = [4, 1] is 1

4

20
. Eligibility

traces are the means by which temporal gaps between start and goal can be bridged through
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temporal credit assignment. Eligibility trace methods may also be seen as a bridge between
pure Monte Carlo and Temporal Difference methods. Sutton and Barto provide a review of
Eligibility Trace (ET) methods in [66].

MC methods backup the estimate (V (st) in Equation 3.23) of the true state-value function
(V π(st) in Equation 3.22) with the complete return:

V π(st) = Eπ[Rt|st] (3.22)

V (st)← V (st) + α[Rt − V (st)] (3.23)

Rt = rt+1 + γrt+2 + γ2rt+3 + ...+ γT−t−1rT (3.24)

Equation 3.23 is an estimate of Equation 3.22 because the sample return in Equation 3.24
is used to approximate the real expected return, which is unknown. On the other end of
the temporal spectrum lie TD methods, with TD(0) introduced in subsection 3.4.3. TD
methods update the value of a state st based on a guess of the one-step expected return.
The TD update in Equation 3.14 is commonly referred to as TD(0). The return is a one-step
estimate of the full return.

R
(1)
t = rt+1 + γVt(st+1) (3.25)

R
(2)
t = rt+1 + γrt+2 + γ2Vt(st+2) (3.26)

...

R
(n)
t = rt+1 + γrt+2 + γ2rt+3 + ...+ γn−1Vt(st+n) (3.27)

In Equation 3.25, the reward is the immediate reward at the next time step and the
estimated value of the next state, rather than the full reward used in the MC sample return
in Equation 3.24. The corrected two-step return is given in Equation 3.26. Continuing,
Equation 3.27 gives what is referred to as the corrected n-step truncated return, truncated
by n and corrected by the estimated value of the nth state. Clearly as n grows, the sample
return takes into account more samples and approaches the MC return. Figure 3.5 shows
TD and MC on a spectrum, with the parameter λ controlling the blend between the two
methods.

TD(λ)λ=0 λ=1

Monte 
Carlo

Temporal 
difference

Rt
1 = rt+1 + γ Vt(st+1) Rt

n= rt+1 + γ rt+2 + ...

Figure 3.5: Monte Carlo versus temporal difference methods.
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As suggested in [66] the return need not be a simple sum of sample returns. With MC on
one end of the spectrum, incorporating all rewards from start to goal into each backup, and
TD(0) on the other, incorporating the one-step reward plus an estimate of the remainder of
the reward, it may be useful to combine these two poles as an average. A commonly-used
reward, parameterized by λ, is given in Equation 3.28.

Rλ
t = (1− λ)

∞∑
n=1

λn−1R
(n)
t (3.28)

The λ-return weights each of the n-step returns in a decreasing manner. For λ = 1 the
return is the MC return as in Equation 3.24. For λ = 0, the return is the one-step estimate
in Equation 3.25. Parameterizing the return by λ produces a new class of off-policy learning
algorithms known as TD(λ) methods. The following example demonstrates the effect of
eligibility traces on maze exploration problem.

We would like to find the optimal policy for navigating from any start location to
the end location in a 10x10 maze world. The underlying MDP, M =< S,A, P,R >
is as defined in Example 2. The action set is expanded to include a loiter action.
Navigating into a wall results in no progress from the current state (ie. s′ = s).
A positive reward of +1 is received for reaching the goal. A additional negative
reward of −0.1 is received for loitering in any state.
The optimal policy π∗ is solved for over successive learning iterations by Q(λ)
off-policy temporal difference learning algorithm (Q(λ)). Policies are learned for
λ = [0, 0.3, 0.7, 1], which essentially varies the algorithm from pure dynamic pro-
gramming (TD(0)) to pure Monte Carlo (TD(1)).

Example 3 (Maze World: Eligibility Traces).
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Solution 3 (Maze World: Eligibility Traces).
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Episode λ = 0.7 λ = 1.0
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Solution 3 (Maze World: Eligibility Traces).
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Solution 3 shows the evolution of the learned policy over successive iterations for varying
λ. From the figures it appears that smaller values of λ learn slightly slower. Figure 3.6a
shows the utility of the value function over the learning horizon. Several episodes early on in
the learning process took more than 1000 steps to complete. However, after the correct policy
is learned, particularly at the narrow passageways, learning proceeds rapidly. It does not
appear that an appreciable difference exists between the different experiments. Additionally,
the learning curves in Figure 3.6b shows that for all values of λ, learning rate is approximately
the same.
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Figure 3.6: Learning results for varying eligibility trace parameter λ.

Some differences exist in the quality of the policy learned for the fixed number of learning
episodes. In Figure 3.7, the value of λ that produces the best results in terms of policy quality
is λ = 0.3. The results in [66] show a larger value of λ for a similar maze task. It is difficult
to predict whether a large or small value of λ will be optimal for a given problem. Certainly
problems that require many steps before arriving at the goal will update many states at once
as λ → 1. As learning proceeds and more of the states have a non-zero value, λ → 0 may
be better, as updates occur at each time step rather than at the end of the episode.
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Figure 3.7: Policy test varying eligibility trace weighting λ for 10x10 maze world.

3.5.3 Exploration versus Exploitation

Perhaps the most important tradeoff in any learning algorithm is the exploration v. ex-
ploitation tradeoff. The tradeoff refers specifically the the behavior policy, which guides the
learning process. An exploitative behavior policy is said to take actions that are “greedy
with respect to the value function” ie. calculated as in Equation 3.13. Greedy policies exploit
what has been learned over what has yet to be discovered. On the other hand, an exploratory
behavior policy will not take the greedy action, valuing exploration over learning more about
those states that have already been visited. Particularly in the maze-world problem, where
local-minima in the value function are possible, it is necessary to take exploratory actions
some percentage of the time.
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The parameter governing the exploration versus exploitation is denoted as ε, and has the
interpretation here of the probability of taking a greedy (exploitative) action. (1 − ε is the
probability of taking a random action). For ε = 1, the behavior policy is Equation 3.13 with
probability 1. For ε = 0 a random action is always taken. A test problem is proposed in
Example 4. Learning results for varied ε are shown in Solution 4.

This test case explores the relationship between learning speed, end policy quality
and variable exploration probability, ε. All properties are as defined in the maze
world problems in Example 2 and Example 3 unless otherwise specified.
The optimal policy π∗ is solved for over successive learning iterations by Q(λ) with
fixed λ = 0.5. Policies are learned for λ = [0.2, 0.4, 0.6, 0.8]. Results are given in
Solution 4.

Example 4 (Maze World: Exploration versus Exploitation).
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Solution 4 (Maze World: Exploration versus Exploitation).
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Solution 4 (Maze World: Exploration versus Exploitation).
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The learning results in Solution 4 indicate the intuitive trend that a more exploratory
behavior policy covers a larger swath of the state space earlier in learning. The utility trend
in Figure 3.8a shows that as ε decreases, aggregate state value increases. All states have
been visited even after 100 episodes for ε = 0.2. Surprisingly, it would appear that after 200
episodes, the lower ε examples have learned a comparable if not better policy.

The learning curve in Figure 3.8b shows that more exploratory behavior policies take
longer to reach the goal. In fact, the steady-state episode length value for ε = 0.2 is appre-
ciably higher than other policies. This trend is not indicative of policy quality, and in fact
indicates that a nearly random behavior policy can in fact learn the best target policy.
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Figure 3.8: Learning results for varying ε.

Policy test results in Figure 3.9 indicate the trend implied by the learning results: more
exploratory behavior policies produce the best ultimate target policy.
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Figure 3.9: Policy test varying exploration ε-greedy policy for 10x10 maze world.

3.5.4 Prioritized Sweeping

Prioritized sweeping is an essential technique for learning problems with vast state spaces.
Many learning algorithms hinge on the principle that convergence to an optimal value func-
tion can be achieved by visiting all states infinitely often. Several factors complicate complete
state coverage in practice.

• Visiting all states often enough such that the Bellman error is close to zero requires
longer learning times as the size of the state space increases.

• In many problems, certain states are more important to learn than others, such as
those that are close to the goal along common state trajectories.
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• Learning can achieve faster and better results by visiting states in proper sequence
such that value is effectively propagated back from goal to start. In large problems
and especially at the early stages of learning, unprioritized state visitation can result
in exceedingly long learning times.

A priority queue is an ordered list of states or state-action pairs that stand to gain or
loose significant value. Essentially, the priority queue lists the states in order of maximum
learning or information gain. Priority is calculated after each state update as follows in
Equation 3.29.

p = |r(s′, a, s) + γmax
a
Q(s′, a)−Q(s, a)| (3.29)

A basic priority queue implementation is given in Algorithm 3.3. Other implementations
exist, such as the one in [66]. The algorithms differ in how the queue is maintained and
which states are updated. In Algorithm 3.3, only the top state to popped off the queue to
initialize the next learning iteration, rather than emptying the entire queue at each update.
The queue is then updated at every learning iteration. Since the convergence and optimality
of Q(λ) and other learning algorithms are not affected by state visitation, other schemes for
effective state visitation can be applied to address problem-specific considerations.

Algorithm 3.3 Basic Prioritized Sweeping

Initialize pQ = zeros(nS, nA), pmin = priority minimum
while Learning do

function Initialize(s0)
Pick initial state: s0 = arg maxs maxa[pQ(s, a)]
Reset priority: pQ(s0, :) = 0
return s0

end function
function Update(pQ, Q′)

Choose action a by any on or off policy method
Take action a, observe s′ and r
Choose action a′ based on s′

Calculate priority: p = |r + γmaxaQ(s′, a)−Q(s, a)|
if p > pmin then

pQ(s, a) = priority
end if
Update Q(s, a) by any learning algorithm
return pQ, Q′

end function
end while
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In this example, a priority queue is implemented to achieve faster convergence
to the optimal policy on the maze introduced in Example 2. The parameters
controlling eligibility trace length and exploration are fixed at λ = 0.5 and ε = 0.6
respectively, based on experience gained in Example 3 and Example 4. The priority
queue is calculated according to the method described in Algorithm 3.3. Results
are gathered for both standard random state initialization and initialization via the
priority queue.

Example 5 (Maze World: Prioritized Sweeping).
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Solution 5 (Maze World: Prioritized Sweeping).
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Solution 5 highlights how learning progresses under prioritized sweeping. When the queue
is used, value propagates back from the goal, as indicated by the grid cell shading. The top
and bottom rooms are the last areas explored, as they are farthest from the goal. In this
relatively small example problem, it may appear that the priority queue does not add much
value, and in fact makes learning progress slower: it takes 750 episodes to explore all the
states under the priority queue, whereas the entire space is sufficiently explored after 300
episodes without the queue. Where the priority queue stands out is in policy quality–the
learned policy is often correct earlier, whereas the random state space search must visit the
same state multiple times before the correct policy is learned. This policy quality effect is
also evident in the learning curve in Figure 3.10b.
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Figure 3.10: Learning results for prioritized sweeping.

For pQ = 0, the priority queue is off and initial states are selected at random. For pQ = 1,
the priority queue is on, and initial states are selected according to priority.

Figure 3.10 provides more insight into learning with a priority queue. The utility plot
in Figure 3.10a shows that without the priority queue, more states gain value sooner, which
is also the trend seen in Solution 5. When using the queue, value seems to be added in a
more linear and less exponential fashion, with both methods achieving the same utility at
the conclusion of learning.

The benefits of prioritized sweeping are clearly seen in Figure 3.10b. Despite the ir-
regularity in utility growth, the learned policy is better earlier on in learning, and both
policies achieve the same optimal after several hundred learning episodes. Prioritized sweep-
ing should be of even more benefit as the state space becomes larger and the learning time
increases.
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3.6 Conclusions

This chapter introduces the basic principles of reinforcement learning and several popular
variants. The learning approach, in contrast to methods from control theory, solves de-
cision problems through experience. Experience comes in the form of multiple simulated
examples. The example decision problem introduced in this chapter is a simple 10x10 grid
maze navigation task. Though basic in concept, the problem provides a standard backdrop
for understanding several popular learning extensions. Eligibility traces are introduced as
a bridge between pure Monte Carlo and pure single-step temporal difference learning. The
test results show that some blend of the two produces the best learning results on the maze
world example. The classic exploration versus exploitation tradeoff is also explored through
varying randomness in the behavior policy. Test results show that a high degree of random
exploration produces both the best learning and end policy quality. Last, a basic prioritized
sweeping method is implemented as a means to guide state space exploration. Particularly
in large learning problems, completely unguided exploration of the state space can result in
prohibitively long learning times. Initializing states from a priority queue benefits even the
100 state maze problem, and likely will benefit the larger problems introduced in subsequent
chapters.

One of the most significant developments in learning research introduced in this chapter
is temporal difference learning. Algorithms such as Q-learning and the more general Q(λ)
combine favorable aspects of dynamic programming and Monte Carlo learning. All of the
examples in this chapter are solved using some variant of Q(λ) learning. Temporal methods,
most of all, do not require a state transition model, a feature of great significance for complex
learning problems, such as the GPP that will be introduced in Chapter 4.
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Chapter 4

Learning and The Generalized
Planning Problem

Machines take me by surprise with great frequency. - Alan Turing

4.1 Introduction

The Generalized Planning Problem was introduced at the conclusion of Chapter 2 by way
through the taxi routing problem in Example 1. Chapter 3 describes the process of reinforce-
ment learning and several learning algorithms in the context of a simple maze navigation
problem. The is small and simple by design to showcase learning algorithm variations. Ap-
plying this experience to a larger problem, this chapter focuses on posing and solving a
routing problem as a GPP. Routing, addressed Chapter 2, not typically solved by learning-
based methods. In order to do so, subsequent sections address the following questions:

Why is learning a viable solution method to complex spatiotemporal decision
problems. (Section 4.2)

How can the GPP be represented? What is the state? How does it scale?
(Section 4.4)

What underlying model (Section 4.5) and learning techniques (Section 4.7 can
solve the GPP?

Why should human input be included and how can it be done in a structured
manner? (Section 5.1)

How is a GPP implemented in a larger hybrid human-machine systemChapter 5.
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4.2 Motivation

The benefits of learning as a method for obtaining control policies have been highlighted in
Chapter 3. In the context of the GPP, the benefits of and motivation for a learning approach
can be summarized as follows:

• Modeling: A GPP such as a constrained stochastic routing problem may have high-
dimension, nonlinear, and generally difficult to model state transition dynamics. How-
ever, simulation is often much easier than explicit modeling. Modeless TD-approaches
introduced Chapter 3 can compute optimal policies without an explicit transition
model.

• Randomness: Learning directly addresses randomness by allowing nearly every prob-
lem characteristic to be random so long as they can be simulated. Through experience
based learning, randomness is automatically included in learned policies.

• Temporal Abstraction: Semi-Markov learning methods previously discussed closely
model the reality of scheduling and routing problems: inherently discrete actions (eg.
assignments/allocations) take place over (possibly random) time periods, and can be
interrupted at any time without consequence to the overall learning problem.

• Flexibility: Learning affords the problem designer direct control of high-level behav-
iors through the reward function.

• Human Input: A large body of learning research exists in learning from humans
and learning about humans, including supervisory learning and inverse reinforcement
learning.

Despite advantages, several classic pitfalls of learning require attention when posing the
GPP as a learning problem.

• Size The exponential explosion of the joint state-action space is a consideration for
any decision problem and associated solver. This so-called curse of dimensionality in
the context of the GPP demands judicious choice of the underlying state such that
increasingly large problems remain tractable.

• Tuning: A blessing and curse of learning is tuning. Parameters such as discount factor,
learning rate, eligibility trace weight, and others allow tight control over the learning
process. However, tuning these parameters is often opaque and problem-specific.

• Tuning: (might need to do some more research here) Q∗ is optimal reward function
wrt the reward, but was the problem defined appropriately to begin with.
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• Function Approximation: A survey of current learning literature indicates that
many of the meaningful problems are inherently large, and the only hope of solving
them lies in function approximation techniques. However, several theoretical holes,
specifically in the area of function approximation and TD-learning with eligibility
traces, require further research.

4.3 Routing Problems and Learning

This chapter focuses on the intersection of decision and learning. The specific context is
multi-agent generalized planning, which includes well-known problems from scheduling, rout-
ing, and generalized assignment. These types of problems have gained popularity in the
learning community because they present several challenges: characteristically large state
and action spaces, state and/or action hierarchy (further discussed in Section 4.6), and
uncertainty at many levels of abstraction.

Several researchers have studied advanced learning techniques in the context of single
agent assignment. Sutton et al. has applied a temporally abstract SMDP model to a sin-
gle agent routing problem with uncertain environmental elements [67]. Theocharous, Ro-
hanimanesh, and Mahadevan has proposed a hierarchical POMDP model for single-robot
navigation [69, 68].

Adding a layer of complexity, many researchers have studied multi-agent decision making;
Mathews, Durrant-Whyte, and Prokopenko provides an excellent overview of decentralized
decision making by optimization-based methods [42, 43]. Sugawara and Lesser proposed a
learning based framework for cooperative decision making with an emphasis on assessment
of network health in a decentralized manner [62]. In both cases, the authors identify the
problems with decision making in vast networks, where the number of states and joint
actions increases exponentially with the number of decision points.

Directly addressing the task allocation problem, Dolgov and Durfee proposes a reduced
“loosely-coupled” MDPs model for problem size reduction. The coupling constraints are the
tasks themselves. The solution is based on decoupling and reducing the problem to a set of
smaller mixed-integer linear programs [18]. Abdallah and Lesser addresses the same multi-
agent task allocation problem, but proposed a learning-based solution based on a SMDP
model. [2]. Perhaps the most abstract problem, Midtgaard et al. propose a learning-based
solution to a real-time strategy game, modeled as a SMDP Midtgaard et al.

All research in the field of multi-agent decision making must address the problem of
problem size reduction. Guestrin, Koller, and Parr addresses learning and the so called curse
of dimensionality with a factorized MDP specifically in the multi-agent planning context [28,
29]. Makar, Mahadevan, and Ghavamzadeh applies the MAXQ framework to multi-agent
learning by using intrinsic hierarchy to decompose the problem into subtasks [39].

Thought not directly addresses here, some research has focused on how to even evaluate
performance of a multi-agent decision engine. Metrics are mainly borrowed or adapted form
legacy TSP and VRP literature. Challenges arise in evaluting problems with a high digree of
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uncertainty, for which optimal solutions may not exist in the general case, or would be over
laborious to calculate. Particularly of interest here is evaluating the performance of hybrid
human-machine decision making. Crandall and Cummings has developed several metrics in
the context of supervisory control, where the human is the supervisor [14]. In many cases,
performance metrics will be problem specific.

4.4 Representation

The question of representation is of central importance to any problem. It determines the
underlying state on which a problem is defined. Representation is also a matter of perspec-
tive, where multiple perspectives are possible. Points in space can be represented in polar
or cartesian coordinates, for example, each with their own benefits and disadvantages in dif-
ferent circumstances. Representation can also be viewed as a parameterization, with certain
parameterizations that are more compact than others. The Fourier basis, for example, is a
parameterization that is extremely compact for periodic signals. Gaussian distributions are
completely parameterized by a mean and a variance.

The central question of this thesis can be stated as follows: Does their exist a compact
representation, parameterization, or basis for the GPP, as described in Definition 6? Many
representations may exist, and the challenge for the problem designer is to find one that is
expressive enough to capture important problem details, but not so granular that it becomes
intractable for marginal expressive benefit.

4.4.1 Representational Requirements

Formally, representation refers to the state on which a problem is defined. The notion of
representation is expanded here to also include actions, and conditions and constraints on
both. The specific use case in mind here is a hybrid routing/scheduling problem such as the
taxi problem described in Example 1. The representation must therefore be able to capture
the following properties and behaviors.

• A notion of agents, tasks, environment and all associated properties therein.

• Deterministic or stochastic agent, task, and environment dynamics.

• Distinct agent task costs attributed to their properties (capacity, for example).

• A discrete or continuous state set.

• A notion of start, intermediate, and goal states.

• A means of deterministically or probabilistically modeling or simulating state transi-
tions.

• A discrete or continuous action set.
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• Low-level actions associated with locomotion, sensing, or other primary behavior.

• High-level macro actions such as “allocate” and “deallocate”.

• A means of deterministically or probabilistically modeling or simulating the translation
between high-level actions and low-level actions.

With inspiration from the rich body of routing, scheduling, and assignment literature, the
central representational feature used here is the cost matrix C as described in Definition 4
and Definition 6. Unlike in standard routing and scheduling problems, however, the notion
of cost here is expanded to encapsulate all aspects associated with an agent or set of agents
performing a particular task.

The cost for each agent i to perform each task j (cij) can be aggregated into the cost
matrix C(x, a)ij in Equation 4.1. The cost matrix is a function of the state and action (x, a).
The total cost is a sum of three components: the cost associated with just the task regardless
agency Jj(x, a), the cost associate with just the agent regardless of task Ji(x, a), and the
cost associated with the specific agent-task pairing Ji,j(x, a).

C(x, a)ij = Jij(x, a) + Ji(x, a) + Jj(x, a) (4.1)

Jij(x, a) = S(i, j) + T (i, j) + P (i, j) (4.2)

Ji(x, a) = S(i) + T (i) + P (i) (4.3)

Jj(x, a) = S(j) + T (j) + P (j) (4.4)
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Function Example

Joint Costs (Jij)

S(i, j) euclidean distance between two points, difficulty score
T (i, j) agent-task rendezvous, agent-task specific deadline
P (i, j) specialization - certain tasks require certain agents

Agent Costs (Ji)

S(i) absolute agent position (“no fly zone”)
T (i) agent-specific deadline
P (i) agent capacity

Task Costs (Jj)

S(i) absolute task position (high spatial priority tasks)
T (i) task timeout, reoccurring tasks
P (i) fixed pickup cost, priority

Table 4.1: Cost function examples.

The state of a GPP is defined on these spatial, temporal, and parameter dimensions.
Problem elements that are typically represented as constraints in a traditional VRP, for

example, are folded into the state here.

The joint state action space can be divided into three primary dimensions: spatial, tem-
poral, and constraint. For notational brevity, each element of the cost is expressed as a sum
of these three dimensions as in Equations 4.2, 4.3, and 4.4.

4.4.2 Constraint Incorporation

Differing from traditional optimization based approaches, constraints here are folded into the
state and captured in the cost function, and its analogue, the reward function. In certain
cases it may be unclear whether to incorporate a desired problem dynamic or behavior into
the state or the reward. For example, in the taxi problem in Example 1 the initial cost of a
taxi, $1, 000, 000 can be considered as a negative reward in every state, or as part of the “cost
state” itself. The approach taken here is to push problem constraints into the state, and learn
the optimal policy through successive simulation Figure 4.1 shows how spatial, temporal, and
parametric constraints are incorporated directly into the state of the problem.
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Figure 4.1: Spatial, temporal, and parametric constraint cost-based representation.

Rather than explicitly enumerate all state and action constraints, the proposed method
transfers constraints to the state itself. This transfer of complexity allows for great

flexibility but places the onus on the problem designer to define appropriate task costs
based on the constraints.

Constraint incorporation has several potential benefits over traditional constraint enu-
meration. By incorporating the constraints directly into the state, certain infeasible states
may be identified and disregarded, reducing the size of the learning problem. Additionally
soft constraints are possible to express simply by scaling the cost A task deadline, for exam-
ple, can be expressed as a temporal step function where the cost goes from zero to infinity
at a certain time. A soft deadline can then be expressed as a linear or exponential ramp in
cost over time.

Constraint incorporation–the folding of state and action constraints directly into the state
space itself–promotes an abstracted, highly flexible, cost-based view of the world. Much
like in optimization-based methods, the onus is on the problem designer to come up with
realistic costs. Complexity is therefore effectively transfered from constraints to the state,
and functions on the state such as the reward function, transition model, or simulator if one
exists.

Important considerations include the resolution of the cost variable. Since cost takes on
all meaning in a problem, it must be granular enough to capture relevant problem dynamics
and differentiate between states.
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4.5 Modeling

Representation provides a perspective by which a problem can be defined . Modeling ties
the perspective to a particular mathematical formalism for solution (Section 4.7). For the
GPP

Most of the modeling requirements follow directly from the representation requirements
listed in Section 4.4. Based on the requirements, the benefits of learning highlighted in
Chapter 3, and the generality of graphical models, Markov decision based models are used
here. As defined in Definition 7 MDPs require a state set, action set, transition model,
reward function, and additional parameters depending on the learning algorithm. For the
GPP, an MDP model can be formulated as follows.

State The state of the GPP is essentially the cost matrix discussed in Section 4.4. At a
minimum it must contain agent-task costs, but may also include agent-agent costs, and,
in the case of routing, task-task costs, which are required to optimal vehicle routing
solutions. [35, 34].

Action Actions are generally agent specific: the actions for a simple robot as in Example 2
are up-down-right-left, whereas the actions for a server that is being scheduled in a
JSP would be to take a certain job over another. As such, defining a general action
set that will work for all GPPs is essential. The action set chosen here is the joint set
of all possible agent-task pairing, and are referred to as “allocations” herein. While
exponential in the number of agents (n) or tasks (m), the accessible set can be vastly
reduced by eliminating infeasible actions, such as disallowing allocations to completed
tasks, and allowing only one agent per task, for example.

Transition Model A transition model is required for any non-temporal difference learning
method (subsection 3.4.3). This requirement can present challenges for a GPP where
state transitions may be difficult, if not impossible to explicitly model. It is for this
reason that modeless approaches are proposed as a solutions means for GPPs such as
vehicle routing and scheduling.

Reward Function The most significant and least straightforward modeling element is the
reward function. The reward function essentially encapsulates the goal of a problem.
The most common reward function for any learning problem is R(sg) = +1 which
assigns a value of +1 to the goal state, sg, and zero everywhere else. However, in many
learning problems, particularly those with subgoals, long distances between start and
goal, and complex dynamics, a simple reward function will not suffice. As such, the
GPP reward is a function of the current state, current action, and successor state:
R(s′, a, s). The primary goal, in all cases, is to accomplish all tasks. Other rewards
can be added, Example 6 provides an example of a complete reward function for a
learned VRP.
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Parameters The standard MDP model includes one parameter, the discount factor (γ),
which guarantees convergence for non-episodic tasks. Other parameters, such as learn-
ing rate (α), are both learning algorithm and problem specific. Table 4.4 summarizes
all the parameters for a learned VRP.

The standard MDP model provides a good basis for evaluating different representations
and learning algorithms. However, due the inherent size of the state and action spaces and
poor scaling properties of the GPP, alternate methods need to be considered for anything
other than toy problems and test cases. The following sections addresses hierarchical models,
which present huge representational benefits as well as potential problem size reductions.

4.6 Hierarchical Models for Inference and Decision

Making

The examples in the previous section have demonstrated the flexibility of the reinforcement
learning framework. High-level tuning parameters provide the problem designer with intu-
itive means for controlling learning speed and end policy quality. The 10x10 maze world
setting is simple and small by design, so as to exhibit parameter effects. However, many
problems have vastly more states, more complicated dynamics, and more complicated en-
vironments. Often, the process of determining a tractable state space represents the vast
majority of effort put into a learning problem.

As an extension to one-layer models such as the MDP, Hierarchical models capture
the multi-resolution nature of of perception and action in decision making. The models
discussed in the following section each exploit either state hierarchy, action hierarchy, or
both to achieve more efficient representations. Several reasons why hierarchy may be useful
in RL in particular are as follows. Barto and Mahadevan provides an excellent overview of
learning with hierarchical models [4].

• State hierarchy can be used to capture problem structure, as in natural language
processing, where sentences, words, phones, and letters each live on different levels of
hierarchy/abstraction [46].

• Partial observability can also be viewed as state hierarchy, where the observed state
(observation) is some noisy projection projection of the true state.

• State approximation methods in which the observed state is a lower dimension projec-
tion of the true state can also be represented as state hierarchy, such as in HMMs and
Hierarchical Hidden Markov Models (HHMMs).

• Action hierarchy can be used to represent temporally abstract actions, as in SMDPs
[63].
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• Incorporating hierarchy in models has been shown to improve inference performance
over the equivalent “flat” model in some cases [48].

Several of the most popular graphical models are shown in in Figure 4.2. The most
basic Markov process model is shown for reference. Models can broadly be categorized as
autonomous, active, partially-observable and fully observable. Autonomous models have no
actions, and the state is said to progress forward in time “autonomously”. So called “active”
models such as the MDP incorporate the notion of actions driving the state forward in time.
State observability is categorized as full when the state of interest in available to the user,
and partial when user only gets to see observations. Observations are often categorized as
noisy projections of the true state in state estimation applications. In these cases, the user
only gets to see a sensor reading (eg. laser range scan), and must infer position based on
a sensor model, or observation model. However, in higher level application such as those
that arise in planning and allocation domains, observations may take on the interpretation
of a lower-dimension projection of the “hidden” state. In these cases, the hidden state may
in fact be directly measurable, but due to computation and storage constraints, only the
observed state is considered as a simplification.
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Figure 4.2: Graphical models: autonomous, active, observable, and partially observable.

Shaded nodes indicate observed states, hatched nodes are actions directly commanded,
versus un-hatched action nodes, which represent consequent or lover level actions.

Unshaded state nodes are unobserved.

4.6.1 Hierarchical Hidden Markov Models (HHMMs) and
Dynamic Bayes Nets

A Dynamic Bayes Net (DBN) is a standard Bayes net, expanded to represent sequences.
Perhaps the best known DBN is the HMM, shown in Figure 4.2. HMMs have one hidden
level, while HHMMs expand on the include multiple hidden levels. As with many graphical
models the goal of HHMMs is efficent inference of hidden nodes. Full conditional probability
distributions can be defined for a general HHMM and are given in [46]. Closely related to
the SMDP in Figure 4.2 is a specialization of HHMMs referred to as hidden semi-Markov
model (HSMM) [47]. This HSMM should not be confused with a SMDP, in which actions
are semi-Markov, not states. Nevertheless, the HSMM provides some insight into how one
would construct a graphical model that would account for both abstract (hierarchical) states
and actions.
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4.6.2 Abstract Hidden Markov Models

Closely related to HHMMs, we next consider Abstract HMMs [9]. AHMMs arise in applica-
tions where we would like to infer the policy an agent is following. The “state” captured in
an AHMM is a (possibly hierarchical) policy, which results in an action, is applied to the
system state, and results in an outcome/observations. AHMMs are used in setting where,
given an observation sequence and observation probabilities, the goal is to infer variables
that parameterize the policy.

4.6.3 Dynamic Abstraction Networks (DANs)

The authors of [41] present a small but notable augmentation to HHMMS and AHMMs,
which they refer to as DANs. A DAN is a AHMM, which encodes policy abstraction, and
a HHMM which encodes state abstraction. The joint representation gains some expressive
power over AHMMs by encoding multiple state abstraction levels, the guiding principle being
that abstract states are useful for learning abstract policies.

The authors of [41] compare DANs and AHMMs by 1) using expectation maximization
to learn model parameters given an observation sequence and appropriate emission prob-
abilities, and 2) applying the learned model to the RL Taxi problem in [17]. The learned
policies are then compared. The results show some empirical learning advantage for DANs
over AHMMs, though the advantage is not great, and EM takes longer in DANs due to a
greater number of parameters.

4.6.4 Hierarchical Abstract Machines (HAMs)

HAMs, first introduced by [52], are yet another way of adding hierarchy and abstraction
to traditional flat MDPs. Hierarchy of Abstract Machiness (HAMs) provide hybrid control
scheme, where a state machine switches between lower level controllers; in HAMs the low
level controller is an MDP and the supervisor is a SMDP. Resulting policies are hierarchies of
finite state machines. The theoretical results of Parr and Russell show that the composition
of MDP M and HAM H, H ◦M , is an MDP, and that optimal policies in H ◦M are also
optimal for M [52].

The theorems in [52] essentially say that solving a reduced problem inferred from the
HAM hierarchy is equivalent (and more efficient because there are less states and actions) to
solving the original MDP. This is the key reason why learning policies for SMDPs can present
great efficiency gains over solving the original MDP. It is an intuitive result that introducing
high-level (temporally abstract) actions, essentially ignoring lower level dynamics, can make
previously intractable problems tractable (It may be impossible to get to the grocery store if
you are forced to enumerate a sequence of joint angles for your limbs, as opposed to several
well-placed intermediate waypoints).
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4.6.5 MAXQ Value Function Decomposition and Task Graphs

MAXQ, developed by [17] also hinges on SMDP option-based planning theory. Unlike HAMs
however, MAXQ methods do not restrict the resulting model to a be single SMDP. Rather,
complex tasks are decomposed into a set of nested MDPs. Corresponding to the task hi-
erarchy, a decomposed value function can also be defined, and a RL problem can be posed
that solves subtasks simultaneously. The MAXQ model is significantly different from those
previously presented, as the authors are focused on creating optimal hierarchical policies,
rather than using inference techniques to compute distributions of hidden variables in the
GM.

4.6.6 Partially Observable Models

POMDPs are notoriously intractable problems to solve. Barto and Mahadevan indicates
that hierarchical POMDPs such as those in [68] may possess some expressive benefits over
planning with traditional POMDPs [71]. In most cases, POMDPs increases the state space to
intractable dimensions and are therefore of limited application in real planning applications
without considering simplifications, such as parameterization [8].

4.6.7 Temporal Abstraction and Semi-Markov Decision
Processes

Many decision problems are modeled as Markovian: the past and future are conditionally
independent given the present, and successor states are produced from origin states by
applying an action over exactly one time step. However, many problems have actions that
inherently occur over multiple time steps. Even the simplest of day-to day decision problem
involve a hierarchy of actions: A high level action (eg. Walk to the door.) begets a lower
level action (eg. Move forward one step.), and possibly still an even lower level action (eg.
Move left foot in front of right.). Indeed, an infinitely fine resolution of subactions may be
considered. The SMDP model, formalized by Sutton, Precup, and Singh, provides a means
for expressing hierarchical actions and temporal abstraction in the context of MDPs.

The focus of this thesis is on hybrid scheduling-routing decision problems, termed Gen-
eralized Planning Problem. The Semi-Markov Decision Process model has been chosen to
represent the GPP for the following reasons.

• SMDPs are a minimal extension of the classic MDP model to include multi-step actions,
protracted in time, for a possibly random amount of time. Temporally extended actions
underpin many real decision problems.

• Much of the underlying MDP theory applies to SMDPs.

• SMDPs present a potentially huge reduction in problem size by considering macro
actions (referred to as options), rather than traditional primitive actions.
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• On and off policy learning algorithms that compute optimal policies on MDPs have
been extended to compute optimal policies on SMDPs.

• The temporal difference SMDP Q-Learning off-policy temporal difference algorithm
(SMDP-Q) algorithm can compute optimal policies on SMDPs without need of a tran-
sition model. Complex multi-agent planning problems such as the GPP introduced in
Chapter 4 have complex underlying dynamics for which a transition model is difficult
if not impossible to define.

• Figure 4.3 illustrates that the general SMDP structure (which is a HHMM in [46])
can be reduced to a one-level state and action hierarchy by considering the complex
underlying MDP as hidden internal dynamics. Modeless solutions methods in subsec-
tion 4.7.1 solve for optimal policies as long as the internal dynamics are simulateable.

x1 x2 x3

a1 a2 a3

o1 o2 o3

s1 s2 s3

o1 o5

s1 s2 s3

o4

s4 s5 s6

o5o4
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x1 x2 x3

a1 a2 a3

Options

Actions

Internal state

Observed state

General SMDP (HHMM)

Reduced SMDP

Internal (unobserved) 
dynamics

Figure 4.3: SMDP graphical model

The general SMDP model on the left may be conceptualized as the model on the right,
with options acting directly on observed (high-level) states s ∈ S.
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Name Def Note

Markov action a ∈ A lasts exactly one time step
Markov policy π(s, a) : S × A→ [0, 1] selects actions at every time step
Termination condition β(s) : S → [0, 1] Markov option termination
Markov option a ∈ A terminates in st+1 wp. β(st+1)
History sequence htτ ∈ Ω history from t to τ
Termination condition β(h) : Ω→ [0, 1] semi-Markov option termination
Semi-Markov option o ∈ O terminates in sτ wp. β(htτ )
Policy over actions π(h, a) : Ω× A→ [0, 1] policy over histories and actions
Semi-Markov policy µ(s, o) : S ×O → [0, 1] policy over states and options

Table 4.2: Relevant SMDP variables and definitions.

SMDP theory and the concept of options flows natural from first principles of MDPs.
A Markov action is drawn from a Markov policy–a distribution over states and actions
in its most general form. Markovian actions last for exactly one time step by definition.
Contrastingly, a Markov option transfers the state from st to st+1 and terminates there with
probability β(st+1) or continues as such forward in time.

A Markov option is a generalization of classical Markov actions to allow for multi-step
actions. A Markov action is still fully defined by the current state. It would thus be useful
to define a setting in which a policy may look more than one step backward in time in order
to determine termination. To do so, a history sequence ht,τ = st, at, rt, ...sτ , aτ , rτ is defined
to include the full state–action–reward sequence from time t to τ . Following logically, a
semi-Markov option is defined as a temporally extended macro action, stating at time t and
ending at time τ in state sτ according to the termination condition β(htτ ). Last, a semi-
Markov policy µ(s, o) is defined over options and states and depends on history in the same
way as a semi-Markov option. For convenience, Table 4.2 lists all of the relevant variables
for defining SMDPs. A formal SMDP descriptions is provided in Definition 8.
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A Semi-Markov Decision Process is specified by the tuple < S,O, P,R, β >. S is
a set of states. The reward function for a SMDP reflects the total path reward
received when executing option o starting in state st and ending in state sτ . P is
a transition function that describes the likelihood that an option terminates in a
particular state. Rather than actions, a SMDP consists of a set of semi-Markov
options O defined over a traditional MDP. The termination condition β determines
whether an option continues or ends in a particular state.
The reward sequence is defined to be the sum of expected future rewards from the
time an option begins executing until termination:

R(st+k, ot, st) = E[rt+1 + γrt+2 + ...+ γk−1rt+k] (4.5)

The state transition function is the probability that o terminates in s′ after k steps.

P (s′|o, s) =
∞∑
k=1

p(s′, k)γ (4.6)

Options are formally specified by the tuple < I, π, β > where π and β are as
defined in Table 4.2. I ⊆ S is an initiation set, which can be the entire state
space. Semi-Markov options are actions selected from a policy that depends on the
history from the start of the execution of the option up to the current time, and
terminating according to a termination condition that also depends on the history.
A semi-Markov policy is thus a policy that selects options based on history. Key
properties of SMDPs are as follows. A full list explanation of properties with proofs
can be found in [63].

Semi-Markov options Options are semi-Markov because the policy that selects
them and the termination condition are functions of history rather than just
the previous state.

Flat Policy A policy over options µ specifies a policy over actions π, referred to
as a flat policy.

Semi-Markov policies In the same way that options are said to be semi-Markov
because they depend on history, policies that depend on history are also semi-
Markov. Semi-Markov policies are also non-stationary in that they depend
on events back to a particular point in time.

Definition 8 (Semi-Markov Decision Process).

SMDP present several practical and advantages over traditional MDPs:
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• A semi-Markov policy is inherently multi-step, allowing for macro action that take
place for a random amount of time.

• Since the termination condition β depends on the history sequence ht,T , semi-Markov
policies allow for time-dependent behavior, such as timeouts, time-based penalties and
rewards, as well as soft and hard time windows. MDPs, being one-step temporally
myopic, do not consider time-based effects.

• While a Markov policy π(s, a) is of dimension S ×A in general, a semi-Markov policy
µ(s, o) is of dimension S × O. Assuming that the number of options is far less than
the number of actions, the storage size may be vastly reduced.

• Traditional MDP actions are in actuality one-step options. Therefore, every MDP is
representable as a SMDP

• Options are highly versatile structures, and can be changed easily by changing termi-
nation conditions, for example, without change to low-level underlying policies.

4.6.7.1 Temporal Abstraction Extensions

SMDPs amount to one of the most significant advances in decision theory, decoupling action
duration from time. SMDPs, a superset of MDPs, allow for actions that can take place
over one to many time steps, where duration is itself a random quantity. However, one
additional extension is needed to fully generalize MDP action duration. Time-dependent
Markov Decision Process (TMDP) proposed by Boyan and Littman provides this extension
[7]. Recent work in the XMDP model [54] GSMDP [54] and TiMDP model [55] have further
solidified the concept of temporal abstraction for Markov Decision Processes. The TMDP
model proposed by Boyan and Littman in [7] is in fact equivalent to the XMDP model with
the addition of a “wait” (loiter) action [54]. Table 4.3 summaries the differences between
existing models in terms of action duration
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Model State transitions Action duration Action selection

MDP [66] stochastic deterministic, time invariant a = policy(s)
SMDP [63] stochastic stochastic, time invariant a ∼ policy(s, a)
TMDP [7] stochastic stochastic, time varying a(t) ∼ policy(s, a(t))

Table 4.3: Temporal abstraction in Markovian decision models

Actions in the MDP case are often deterministically selected by the learned policy, whereas
options, which determine low-level actions are drawn according to a distribution over states
and options. It should be noted that in [7] actions are considered rather than options–for

consistency, the table refers to actions drawn from an abstract policy (markov or
semi-Markov).

4.7 Learning

After identifying an appropriate state for the GPP (Section 4.4), and selecting a model
(Section 4.5), the final step is calculating an optimal policy through learning. Section 3.4
presents the basic theory of reinforcement learning. In the context of the GPP, two factors
weight heavily into the choice of learning algorithm: size and transition model. The issue
of size is partially solved through judicious choice of representation: a balance between
granularity and generality is selected by condensing certain groups of “similar” states into
one state. After a certain point though, a problem can be distilled no further into its principle
components, and further reduction would result in loss of information. Hierarchical models
and learning algorithms though can help by 1) further reducing the state or action set or 2)
factorizing a problem into solvable subproblems [28]. The learning approach taken here is
the former.

As identified in Section 4.5, deriving a GPP transition dynamics model may be difficult
if not impossible. The probability of moving from one high-level state to the next given an
MDP action or SMDP option is ambiguous, and is in itself, the part of the solution of the
problem and therefore unknown at the outset. As such, the approach taken here is one of
purely modeless temporal differences learning as described in subsection 3.4.3

4.7.1 Semi-Markov Decision Process Learning

As with MDPs, dynamic-programming based iterative methods readily solve for optimal
semi-Markov policies on SMDPs. Of particular interest is SMDP Q-learning, which is the
off-policy TD analogue to SMDP value iteration [63]. The update rule is as follows in Equa-
tion 4.7
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Q′(s, o)← (1− α)Q(s, o) + α[rtt+k + γk max
o′

Q(s′, o′)] (4.7)

R(st+k, o, st) = rkt + rk−1t+1 + ...+ rt+k (4.8)

The convergence of the state-option value function Q→ Q∗ has been proven by Parr in
[53]. An implementation of SMDP Q-learning is provided in Algorithm 4.1.

Algorithm 4.1 SMDP-Q Learning Algorithm

Set number of episodes, N
Parameters: P = {α, γ, ε, λ, pQ, ...}
function [Q∗(s, o), µ∗(s)] = Learn(N,P )

Initialize: Q,π
while current Episode < N do

t = 0
Initialize agents and task positions: st ∈ S,
while not at the goal: st 6= sgoal do

Select option: ot ∼ µ(o|st)
k = 0, discount = 1, rp = 0
while option not complete (ie. not terminal) do

Determine low level action at from ot
Step state forward: st+1 = Simulator(st, at)
Observer one-step reward: r = R(st+1, ot, st)
Update path reward: rp ← rp + r × discount
Update discount: discount← γ × discount
k = k + 1

end while
function Q′ = Update Value Function(Q,rp)

Q′(s(t), o)← rp + discount×max
o

[Q(s(t), o)]

t = t+ k
end function

end while
end while

end function

The implementation of SMDP-Q learning in Algorithm 4.1 follows the familiar structure
introduced in Algorithm 3.2. Four distinct phases are as follows: 1) Initialize values, 2)
Select and option, 3) Carry out the option until terminal, and 4) Update the value function.
This implementation presents several challenges. First, it is clear that options must be com-
plete before learning can take place. This hurdle can be overcome by Intra-option learning,
the details of which can be found [63]. Perhaps more subtle, two models are required by
Algorithm 4.1. In addition to the state transition simulator (st+1 = f(st, at)), an action-
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generation model must also exist (at = h(ot)). In many cases this model may be refereed
to as a “low-level controller”, and may be much easier to simulate than to create a-priori
probabilistic models.

Of particular interest is variations on the SMDP-Q algorithm. Sutton, Precup, and Singh
notes that an extension of eligibility trace methods to SMDPs should be straightforward,
although no work in this direction exists to the knowledge of the author. Several researchers
have noted functional challenges with combining reward shaping with SMDPs []. A spe-
cial case time-based reward shaping strategy is proposed in [44] which can preserve policy
optimality for SMDPs.

One major deficiency of standard SMDP-Q-Learning is that options must be completed
before the visited states are updated. Sutton et al. addresses this problem with so called
“intra-option value learning”. An example in which options can be interrupted during exe-
cution is provided in [67]. Options may in fact be interrupted at every time step, in which
case the resulting single-step problem behaves like a classical MDP. Indeed the interesting
research areas in SMDP theory lie at the intersection of MDPs and SMDPs: construction
options from actions, decomposing options into constituent parts, and interrupting options
are all active areas of research in reinforcement learning.

4.7.2 GPP Problem Size and Scaling

The learned solution to a GPP will be either a state-action value function Q(s, a) or a
state-option value function Q(s, o). In the depicted case, the four actions with result in
a Q(s, a) ∈ RnS×4 versus Q(s, o) ∈ RnS×2 in the SMDP case. Iterating over and storing
twice as many state-action pairs may seem insignificant for this case, but quickly scales as
the number of primitive actions increases. Figure 4.4 plots the number of state-action pairs
for a 2-agent variable task assignment problem. When the number of primitive actions is
increased from four, as in Figure 4.19, to 10 and 100, the differences in problem size and
scaling become more apparent.
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Figure 4.4: Scaling properties of a routing problem represented as an MDP v. SMDP

Represented as an MDP, the number of primitive actions is nA2 versus (m+ 1)n) options
when represented as an SMDP.

4.8 Learned Vehicle Routing Simulation Setup

A simple vehicle routing task is set up to demonstrate the representational scheme discussed
in Section 4.4, the modeling discussed in Section 4.5, and learning algorithms discussed in
Section 4.7. The goal is to demonstrate several basic VRP characteristics with the learned
solution.

• Multi-agent routing solution

• Task allocation, deallocation, loitering

• Temporally extended actions (options in SMDP model)

Chapter 2 introduced the Generalized Planning Problem as particular class of Assignment
Problem with an emphasis on hybrid-routing and scheduling. Example 1 highlights how
some routing and scheduling elements may manifest themselves in a real-world problem,
with an additional emphasis on stochastic problem elements. Beyond learning solutions to
just VRPs or even a more complex VRPPD, we would like to learn solutions to the GPP.
Several elements that would have to appear in the solution to the GPP are as follows:
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• Task sharing (dual allocation)

• Asynchronous action interruption and termination

• Action outcome uncertainty

• Stochastic action duration (SMDP model)

• Inclusion of human feedback at learn-time or run-time

Section 4.4 first introduced the cost-based GPP representational scheme. Section 4.5 cast
this representation as a MDP and SMDP model, with Section 4.7 providing algorithms for
learning policies on both models. The GPP representational and modeling scheme combined
is depicted in Figure 4.5 for the SMDP model.
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Figure 4.5: GPP representation, modeled as a SMDP

In the depiction, X is the entire state space, including all agent, task, and environmental
information. Defining any GPP based on X would produce a hopelessly large state space.
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As such, X is projected to a lower dimension space, S, a process that is described in detail
in Section 4.4. The lower dimension abstracted space is cost-based, and many x will map
to the same s by the map J. The map J, constructed as shown in Figure 4.1 is therefore a
surjective and non-injective map from the domain X to the codomain S (every element of the
codomain is maps to more than one element of the domain). It is exactly this surjectiveity
that results in a massive reduction in the number of states.

Though the standard GPP formulation does not specify a learning method, modeless
temporal difference methods are exclusively used here. Therefore a low-level simulator is
required, which is exactly the state transition map T. Additionally, for SMDP learning,
the map, or controller, K is required to generate low-level actions from options. Figure 4.5
shows the high-level transition function H : S × O → S, which we assume to be unknown
at the time of learning. H is effectively simulated by translating O → A with K, applying
a ∈ A to x ∈ X and producing the successor low-level state x′ ∈ X, which is translated to
the high-level state S via the surjective map J. In effect, options O are applied directly to
the state S as depicted in Figure 4.3.

The Matlab-based test environment shown in Figure 4.6 is used for all subsequent simu-
lations. Agents are modeled as velocity-constrained point-masses. A more expressive vehicle
model is possible, although the benefits of including one at this level of abstraction are min-
imal. Tasks are modeled similar to vehicles and are stationary for subsequent simulations.
The environment is also static, although a wind model or other environment dynamics would
be easy to implement.
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# Agents (variable)  
-placed randomly 
-variable cruise velocity  
-low loiter velocity 

# Tasks (variable) 
-placed randomly 
-static 

Agent State 
1: allocated to task 1 
2: allocated to task 2 
3: loitering 

Task Cost (variable) 
-state of the problem 

Figure 4.6: Learned VRP simulator overview

The VRP simulator used here has the ability to independently vary the all problem
attributes, such as the number and type of agents and tasks, the environment, agent/task

dynamics, learning algorithm, and all learning parameters

At the outset of each simulated episode the agents and tasks are initialized to a random
and uniformly distributed position over the physical space. Learning is carried out as follows
for any learning algorithm (standard value iteration, Q(λ), SARSA(λ) on-policy temporal
difference learning algorithm (SARSA(λ)), etc.):

Algorithm 4.2 provides a generic overview of how a TD learning algorithm would solve for
optimal GPP polocies. It could easily be modified to work for value iteration, for example,
by sampling from a transition model instead of forward simulation.
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Algorithm 4.2 GPP Learning Algorithm

Set number of episodes, N
Parameters: P = {α, γ, ε, λ, pQ, ...}
function [Q∗, π∗] = Learn(N,P )

Initialize: Q,π
while Current Episode < N do

t = 0
Initialize agents and task positions: st ∈ S,
while Not at the goal: st 6= sgoal do

function at = Select Action(st)
Via ε-greedy or other method
at ∼ πb(at|st)

end function
function st+1 = Take Action(st, at)

Step state forward: st+1 = Simulator(st, at)
Simulator includes agent motion or environment stochasticity

end function
function Qt+1 = Update Value Function(Qt)

Reward: r = R(st+1, at, st)
Update rule: Qt+1 = UpdateRule(Qt, r)

end function
t = t+ 1

end while
end while

end function

4.8.1 Simulator Implementation

As discussed in Section 4.4, the proposed GPP state is essentially the cost matrix of a VRP,
where edges generalized costs rather than (just) distances. The simulator therefore must
perform the critical action of distilling the abstracted cost state S from the full state X.
This translation is largely an implementation challenge and must be performed efficiently,
or stored as a lookup table to be accessed at run-time.

A full list of parameters available to the simulator at learn-time and run-time (“Testing”)
is included in Table 4.4. Ranges are provided for variables where applicable. Several variables
are limited by computation and storage constraints and therefore have no listed maximum.

Specific parameter values are provided in subsequent example problems. The simulator
is written in Matlab as a set of abstract classes, also listed in Table 4.4. Base classes are
provided for agents (agn), tasks (tsk), and the environment (env). A super-learner class
takes these elements as arguments. A super-problem class takes the leaner as an argument.
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Parameter Range Description

Environmental

m [1,M ] number of tasks
n [1, N ] number of agents
c [1, C] cost state grid resolution
w [1,W ] w × w world size
v (0, V ] agent velocity
vL (0, VL] loiter velocity
vT (0, VT ] task velocity
pfail [0, 1] action failure probability
s0 [−w,w] agent/task initial locations
env(params) {static, windy} environment dynamics model
agent(params) {line, grid, uav, taxi} agent dynamics model
task(params) {static, wandering, } task dynamics model

Learning

e [0, E] number learning episodes
tmax [0, Tmax] learning episode timeout
γ (0, 1) discount factor
α (0, 1] constant learning rate
αd (0, 1] learning decay rate
ε [0, 1] exploration probability
εd [0, 1] exploration decay rate
λ [0, 1] eligibility trace parameter
pQ {0, 1} priority queue flag (off, on)
pQmin [0, 1] priority queue threshold
learner(params) {Q(λ), SARSA(λ), SMDPQ} learner object
problem(params) {gridMDP, vrpMDP} problem object

{vrpSMDP, taxiMDP}

Testing

h [0, H] number test episodes
tmax [0, Tmax] test episode timeout
test(params) problem(params) test object

Table 4.4: Simulator parameters and associated values for a learned VRP.

Lower-case letters indicate specific values for a particular problem; upper-case letters
indicate maximum values, which depend on the computation and storage capabilities

available.



CHAPTER 4. LEARNING AND THE GENERALIZED PLANNING PROBLEM 94

In this way, many problems can be created by interchanging agents, tasks, environment, and
learner.

The test class (tst) is an instantiation of a problem class. It can take a different agent and
task model, which is useful for showing policy generality. For example, a policy can be learned
for agents with one cruise velocity and tested for agents with a different cruise velocity.
Clearly, changing the underlying simulator will have effects on the policy performance, as
the policy is only valid for the dynamics on which it is trained. However, in practice, small
perturbations to agent and task dynamics do not affect the outcome.

All subsequent simulations have been carried out on an IBM ThinkPad T61p Windows
7 machine with Core 2 Duo Intel processor clocked at 2.4GHz and with 2GB of RAM.

4.8.2 Policy Properties

The learned policy, as a direct result of decoupling the problem state from a strictly physical
space, is general to any agent-task spatial configuration; the policy need not be relearned
when changing agent or task location. Additionally, the policy has been shown to generalize
well to small changes in agent dynamics such as changing the agent cruise velocity.

4.9 Learned Vehicle Routing Simulation Results

Several simulations have been carried out in similar fashion to those presented in Chapter 3
for the 10x10 maze world in Example 2. The learned VRP-like scenario in Example 6 presents
several challenges different than those in the maze world.

• The VRP state space is vast. The relatively simple 2-agent 3-task VRP has on the
order of 104 states, whereas the 10x10 maze in Example 2 has 102 states.

• The VRP goal is often far from the starting location. As a result, it may take many
steps before receiving a reward.

• The optimal VRP solution oftentimes involves motion away from the goal (ie. non-
greedy actions) before the goal can be achieved.

• Despite the great number of states, many scenarios states are similar in that, despite
different spatial arrangement of agents and tasks, the policy is the same.
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In this vehicle routing scenario, two agents must successfully navigate through
three waypoints. The overall mission is said to be complete when all task have
been visited at least once. The two agents are homogeneous and have a constant
velocity. The three tasks (waypoints) are static. The problem is modeled as an
MDP with the following parameters.

Parameter Value Description

m 3 number of tasks
n 2 number of agents
w 6 km w × w world size
v 30m/s agent velocity
s ∈ S Cij state set
sgoal Cij = 0 ∀i, j goal state
a ∈ A [A1T1, A1T2, ..., A2T1, ..., AnTm] action set
R(s′, a, s) see below reward function
λ {.1, .3, .5, .7, .9} eligibility trace parameter
ε {.3, .5, .7, .9} exploration probability
e 5000 number learning episodes
h 100 number test episodes

The reward function is comprised of several components and is structured as follows:

Rtotal = Rgoal +Rnloiter +Rndualalloc

Rgoal , R(sgoal, a, s) = 1

Rnloiter , R(s′, au, s) = −1 where au =any agent unallocated

Rndualalloc , R(s′, ad, s) = −1 where ad =any dual allocation

Several additional constraints and assumptions are as follows:

C1. Tasks are static (do not move) and all have the same demand.

C2. A task is considered to be done when any agent, whether allocated to it or
not, enters a small radius about the task location.

C3. Once a task has been done by any agent, it is considered done for all agents.
This is equivalent to the standard VRP “visit once” assumption.

Example 6 (Learned Routing).
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Chapter 3 introduced several learning techniques of particular consequence for solving a
learned vehicle routing problem as in Example 6. Eligibility traces (subsection 3.5.2) blend
Monte-Carlo full backups with Dynamic Programming backups. The TD(λ) algorithm was
shown to be useful in cases where the goal state and reward is far from the start state. The
exploration vs. exploitation rate can also be tuned (subsection 3.5.3). In applications with
vast state spaces, the sequence of states updated can be prioritized with prioritized sweeping
methods(subsection 3.5.4).

The VRP has several defining features that motivate the use of these learning techniques:

• The goal can be far-removed from the start, resulting in long episodes, particularly at
the early stages of learning where possible state-action trajectories are vast.

• Many state-action trajectories that lead towards the goal (all tasks done).

• The VRP state space is vast, scaling exponentially with the number of agents, tasks,
and the level of discretization of the cost variable. Additionally, many of the states are
unlikely/impossible to be visited. Both qualities indicate that some state visitation
scheme is necessary.

The solution to Example 6 is presented in the following results. Eligibility trace, ex-
ploration v. exploitation methods, and prioritized sweeping methods are applied to jointly
study their effects on the solution, and conversely, what the effecacy or lack thereof of the
applied method indicates about the underlying problem. All solutions are compared against
the near-optimal greedy solution to the 2-agent, 3-task learned VRP. Performance metrics
are similar to those used to study Example 2 in Chapter 3.

Utility As defined in Equation 3.18 Utility is a learning performance metric that indicates
the speed of a learning algorithm: the acquired value versus learning episode number.
The learning curve, also a learning performance metric, shows episode duration as a
function of learning episode number, and thus the quality of the policy as a function
of learning iteration. As a metric of final policy quality, the policy is simulated over
a fixed number of iterations. The differences between policies learned under varying
parameters can thus be studied.

Learning Curve The learning curve shows the trend of episode length versus learning
iteration number. In the case of Example 6, “length” is normalized by the step size
(steps/distance per step) so that simulations with different vehicle velocity can be
compared. The horizontal axis is expressed in terms of learning episode number rather
than iteration to normalize the data to a specific number of episodes, as is commonly
done for episodic learning problems.

Policy Performance Once a policy has been learned, it is simulated over a number of
either randomly seeded or predetermined test episodes. In the case of a 10x10 maze
world such as Example 2, the number of states is small (100, less the number of “wall
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states”), and policy testing takes place over all these possible states. In the case of a
VRP as in Example 6, the state space is vast, so a representative subset of states is
used to test policies. A timeout is set on each episode, and episodes that timeout are
thrown out of the test data. Timeouts occur when imperfections in the learned policies
lead to livelock and deadlock situations which would continue indefinitely.

4.9.1 Learned Vehicle Routing with Eligibility Traces

Tests were performed on the two-agent three-task VRP in Example 6 to determine the
efficacy of eligibility trace-based learning. The parameter λ = [0, 1] was varied over several
tests comprised of 5000 episodes. The results indicate a significant positive effect on both
the learning performance (Figure 4.7) and end policy quality (Figure 4.8).
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Figure 4.7: VRP learning performance results for varying λ.

The utility analysis in Figure 4.7a indicates that λ = 0.7 test gained more value than
the other cases, which would be indicative of end policy quality and learning rate. The
learning curve in Figure 4.7b also indicates high-lambda learning performs the best, with
λ = 0.9 performing slightly better than λ = 0.7. It is important to note that the bottom
learning curves are based on a fit for clarity, and may not be able to discriminate between
two neighboring tests, such as λ = 0.7 versus λ = 0.9 due to noise.

The overall trend in both utility and learning curve data both indicate that the policy
improves the most over successive learning iterations as λ increases.

To test the resulting policies, 100 randomly-seeded trials were simulated for each value
of λ (with the same random seeds used across all tests).

Figure 4.8 shows both a histogram of episode lengths and a plot of episode length as a
function of λ. The test results are compared against a hand coded greedy policy, which is
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Figure 4.8: Policy test varying eligibility trace weighting λ for a 2-agent 3-task VRP.

The exploration parameter ε is set at 0.5.

close to the optimal policy for the two-agent three-task VRP studied here. The last bin in
the histogram contains all the episodes that took 35 episodes or greater and can be thought
of as a grouping of all the worst case performances. These poorly performing trials can
potentially be removed or mitigated through longer learning, as it is clear from the utility
plot that the optimal value function and policy has not yet been reached after 5000 learning
episodes. Predictably, the number of long episodes is small for the greedy policy, as it not
susceptible to the policy imperfections that plague the learned solutions.

The results in Figure 4.8 indicate that the learned solutions for λ > 0.5 perform compa-
rably better than small-lookahead λ < 0.5 policies. This result will likely be even more true
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as the number of tasks relative to agents increases, and episodes thus become longer, further
separating the start state from the goal state. The greedy policy performs best in all cases,
likely because it has no imperfections, as can be seen in the histogram.

4.9.2 Learned Vehicle Routing with Varied Learning Exploration

As was introduced in subsection 3.5.3, ε− greedy off-policy learning can drastically improve
learning performance. Early in learning, when little is known about the target value function
and policy, exploratory actions are favorable in that they further explore the state space.
Later in learning however, after a rough value function has been learned, more exploitative
actions that are greedy with respect to the current value function V π are favored.

The parameter ε in the following experiments is interpreted as the the probability with
which exploitative/greedy actions are taken versus exploratory actions. In the case of ε = 1
actions are always chosen according to Equation 3.13. In the case of ε = 0, the behavior
policy is always random.
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Figure 4.9: VRP learning performance results for varying ε.

Learning performance for varying ε is analyzed in Figure 4.9. The trend in the utility data
shows that increasing ε (ie. less random actions) corresponds to better learning performance.
However, between ε = .7 and ε = .9 utility destabilizes and drops off. In all cases, as learning
time approaches infinity, the same utility should be reached, since varying the probability of
taking exploratory actions does not change the end optimal policy. However, clearly certain
high values of ε can destabilize the learning procedure. It may be the case that other other
parameters, such as learning rate (α) and discount factor (γ) could stabilize the ε = 0.9 case.

The learning curve in Figure 4.9b indicates an intuitive trend: that as more random
actions are taken, the episode length increases. While utility is a reflection of the target
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policy, the learning curve is more indicative of the behavior policy, which is chosen to be
some amount of random so as to increase state coverage. So while the “best” learning curve
corresponds to the ε = 0.9 case, that case may not necessarily correspond to the best target
policy.
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Figure 4.10: Policy test varying eligibility trace weighting ε for a 2-agent 3-task VRP.

The eligibility trace parameter λ was set at 0.8

Testing the learned policy over successive random trials reveals that small ε, more ex-
ploratory behavior policies produce the best target policies. This result makes sense partic-
ularly in the context of a VRP, where the branching factor of the associated decision tree is
high. In complex settings, certain regions of the state space may remain unexplored with-
out introducing random actions. Random action also aid in learning optimal policies that
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must be non-greedy. In the maze world problem, for example, certain optimal trajectories
require initially moving away from the goal so as to reach it in the long run. VRPs also
have this non-greedy solution characteristic: the optimal solution in many cases requires
initially not moving towards the closest task, because the greedy action will ultimately lead
to sub-optimality.

A common variation on exploratory behavior policies is variable exploration. At early
learning iterations, a more exploratory behavior policy ensures the state space is sufficiently
surveyed; as learning progresses, the behavior policy should turn increasing “exploitative”
ie. greedy with respect to the current value function. The following results show learning
and policy performance for linearly increasing ε as learning progresses. The behavior policy
is governed by Equation 4.9 where e is the current episode number and E is the total number
of learning episodes.

ε(e) = (εmax − εmin)× e

E
(4.9)

For εmax = εmin, ε remains a constant parameter throughout learning, as in the previous
results in Figure 4.10.



CHAPTER 4. LEARNING AND THE GENERALIZED PLANNING PROBLEM 102

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

Episode Length

C
o

u
n

ts

Histogram of test episode lengths (100 Trials)

 

 

0.5 [0.3, 0.5] [0.2, 0.8]
16

18

20

22

24

26

28

30

32

δε

M
e

a
n

 E
p

is
o

d
e

 L
e

n
g

th

Episode Duration Statistics

 

 

ε=0.5
ε=[0.3, 0.5]
ε=[0.2, 0.8]
Greedy

Learned Policy
Greedy Policy

Figure 4.11: Policy test for linearly varying exploration probability

The test consists of three sets of [εmin, εmax]: [0.5, 0.5], [0.3, 0.5], [0.2, 0.8]

Figure Figure 4.11 shows that policy performance can be greatly improved using a
variable-ε behavior policy.

4.9.3 Learned Vehicle Routing with Prioritized Sweeping

Prioritized sweeping was introduced in subsection 3.5.4 as an efficient way for exploring
a state space. Results on the 100-state maze world (Figure 3.10) indicate that even for
relatively small problems, learning performance can be improved through intelligent choice of
initial state. The two-agent three-task VRP has 15, 625 states–still a small learning problem
by modern standards (computer Go in [61] has 10170 states! Function approximation with
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106 features is used to solve it.)
The prioritized sweeping method described in Algorithm 3.3 is applied to the VRP of

Example 6. The learning curve in Figure 4.12b shows that using the priority queue to explore
the state space (pQ = 1) results in faster learning. Value function utility in Figure 4.12a
also seems to improve with the use of a priority queue, and appears to even still be steadily
gaining value at the end of 5000 learning episodes. In all cases, other parameter values (λ,ε)
are held constant.
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Figure 4.12: VRP learning performance results with prioritized sweeping.

Previously identified parameters λ = 0.8 and ε = 0.3 were used in these learning trials.

The resulting target policy is tested in the same way as previous experiments–with 100
randomly seeded test trials. Figure 4.13 shows that the use of the priority queue drastically
reduces the average episode length, from 26 to 20. Referring back to previous policy test
results for varying λ (Figure 4.8) and ε (Figure 4.10), it is clear that appropriate parameter
selection combined with prioritized sweeping produces the best policy.

Figure 4.13 provides further insight into how the use of a priority queue may specifically
benefit the learned-VRP. The learned policies in fact outperform the greedy policy in short
and medium-length episodes. Problems arise, as in the other experiments, with the longer
episodes, indicating policy imperfections for some particular cases. The histogram further
discriminates between the two learned-policy cases (pQ = 0 and pQ = 1). The case in which
the priority queue is not employed (pQ = 0), while comparable for short and medium cases,
has poorer “worst case” performance. The histogram show that approximately one third of
the non-priority queue episodes took 37 or more steps to complete, while one third of the
episodes trained with the priority queue took 32 steps to complete.
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Figure 4.13: Policy test with prioritized sweeping for a 2-agent 3-task VRP.

4.9.4 Reward Shaping

Reward shaping is a powerful technique for adding additional guidance to a learning problem
beyond the primary reward function, R(s′, a, s). In a standard learning problem, no specific
requirements are placed on the reward function, and choosing “correct” reward functions,
in the sense that they produce good policies with a minimal learning iterations, is largely a
matter of design. In practice, reward functions are often tuned through a sometime laborious
trial-and-error process until a desired outcome is achieved. The question then arises, having
determined an appropriate reward function, how much can a problem designer change the
function and still arrive at the same policy?

Ng, Harada, and Russell provide an answer in a technique known as reward shaping [50].
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The theorem of reward shaping essentially says that R(s′, a, s) can be augmented, or shaped,
with an additional additive function, and the overall problem under the new reward will be
optimal, so long as the shaping function has certain properties. Theorem 1 provides further
detail:

Theorem 1 (Policy invariance under reward shaping). Let M =< S,A, P,R > be an MDP
according to Definition 7 with optimal value function V ∗ and policy π∗. Consider the aug-
mented reward function:

R′(s′, a, s) = R(s′, a, s) + F (s′, a, s) (4.10)

F (s′, a, s) , γΦ(s′)− Φ(s) (4.11)

Let M ′ =< S,A, P,R′ > be a new MDP based on R′ rather than R. If there exists a potential-
based shaping function F : S × A × S → R according to Equation 4.11, then every optimal
policy in M ′ will also be optimal in M .

A proof of Theorem 1 is provided in [50]. The proof establishes that the existence of
the potential-based shaping function F is a necessary and sufficient condition for policy in-
variance under reward shaping.Reward shaping theory provides no insight on constructing
admissible potential functions Φ, but does provide a method of checking them with Equa-
tion 4.11.

4.9.4.1 Reward Shaping and Semi-Markov Decision Processes

Few applications of reward shaping applied to SMDP can be found in the literature. Ng,
Harada, and Russell propose a modified shaping function, given in Equation 4.12, where τ
is the option execution time and β is the SMDP discount rate.

F (s′, a, s, τ) , e−βτΦ(s′)− Φ(s) (4.12)

The proposed extension of reward shaping presents several practical challenges to mod-
eless SMDP learning used here. First, option execution is carried out by a simulator and
therefore execution time is unknown until the option is completed. F (s′, a, s, τ) must there-
fore be calculated online. Additionally, although unimplemented here, SMDP learning with
option interruption combined with the proposed shaping function may present problems
since the execution time τ can change at any point due to interruption.

The authors of [44] propose an alternate to the time-based shaping function in Equa-
tion 4.14 in the context of a multi-agent strategy game. The additional negative reward,
τ(o), is the number of steps to episode completion (they use τ(a), but o is used here for con-
sistency to denote semi-Markov options rather than Markov actions). By removing the state
from the potential function and under certain conditions, they guarantee consistency under
SMDP-Q learning. In general, applying reward shaping techniques to temporally-abstract
Markov models such as those described in subsection 4.6.7 is an open area of research.
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F (s′, o, s) = τ(o) (4.13)

(4.14)

4.9.4.2 Learned Vehicle Routing Under Reward Shaping

The concept of rewarding subtask accomplishment has been proposed in [50]. In the given
example, similar to the grid maze world in Example 2, an agent must navigate through
several waypoints before reaching the ultimate goal waypoint. The reward function, R gives
−1 everywhere except for the goal. The shaping function F is then introduced, which gives
a reward proportional to the Manhattan distance to the subtasks.

A similar approach is proposed for the VRP in Example 6. The proposal shaping function
F in Equation 4.16, rewards accomplishing individual tasks, while the original reward R (+1
for accomplishing all of the tasks remains unchanged. Since the goal of a routing problem
is to determine the order in which agents should visit tasks, the shaping function rewards
individual task accomplishment equally, rather than specifying an a-priori ordering as in [50].

F (sd, a, sd−1) = 0.5 (4.15)

R′ = R + F (4.16)

States sd ∈ S are those in which d tasks have been completed and m − d remain to be
done. States sd−1 ∈ S are states in which d− 1 tasks have been done. The shaping function
therefore rewards intermediate task completion equally: specifically in the three-task setting,
it rewards the transition between zero tasks done and one task done, and one task to two
tasks, and so on. It should be noted that a full successor state-action-state valued reward
function is required to capture subtask completion; a state-action valued reward function is
not expressive enough to reward the event of a task transitioning from undone to done.

Learning performance is compared for the unshaped and shaped cases below in Fig-
ure 4.14a and Figure 4.14b. Previously identified parameter are used along with the priority
queue for increased learning speed. Learning performance under reward shaping seems to
be comparable to the unshaped case.

The policy test results in Figure 4.15 indicate that the inclusion of the shaping function
F produces worse results relative to the unshaped case. The lack of improvement in the
learned policy under reward shaping may be explained by one of two possibilities:

1. The shaping function F is not potential based and therefore there is no guarantee that
policies optimal in the original mdp M will also be valid in M ′.

2. The shaping is valid in most cases, but also a poor choice for solving a VRP

It seems likely that, while rewarding proximity to tasks in the single agent case in [50] is
a valid choice, the choice is invalid for a multi-agent VRP. Indeed the reason why VRPs are
a challenge to solve is that the best short term path (the greedy solution) is not the optimal
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Figure 4.14: VRP learning performance under reward shaping.

Previously identified parameters λ = 0.8, ε = 0.3 and pQ = 1 were used in these learning
trials.

strategy in all cases. By this logic, the proposed shaping function in Equation 4.16, despite
being valid in some scenarios, does not satisfy the condition for a valid shaping function.

Reward shaping theory provides a necessary and sufficient conditions for policy optimality
under an augmented reward function. A particular shaping function being inadmissible,
however, does not necessarily mean it won’t produce good results. The success of heuristic
methods in TSP and VRP indicate that other inadmissible shaping functions may exist that
work well in practice.

4.9.5 Learned Vehicle Routing: Seeding

Thus far, varying λ, ε, priority queues and reward shaping techniques have steadily improved
the solution of the learned vehicle routing problem. As has been demonstrated by the
varied exploration-exploitation tests, some degree of randomness in the behavior policy is
absolutely essential for convergence in the off-policy temporal difference learning setting.
Despite improvements gained from tuning various parameters, the learned policy has, in all
cases, consistently underperformed relative to the greedy policy. For the small two-agent
three-task VRP considered, the greedy policy should be close to optimal in all but a few
cases. The cause of the performance gap as seen in the policy performance histograms, can
largely be attributed to a small number of fringe cases that tend to live-lock or deadlock
and eventually timeout. For this reason, before increasing learning time so as to refine those
cases that are already performing comparably to the greedy policy, it is important to root
out the worst-case test scenarios.
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Figure 4.15: Policy test with reward shaping for a 2-agent 3-task VRP.

The only requirement placed on the behavior policy is that it be “sufficiently exploratory.”
Therefore more complex policies beyond ε-greedy may be considered. Surely the best policy
to choose to guide learning would be the optimal policy, but having the optimal policy would
invalidate the purpose of learning in the first place. The next closest thing would be the
greedy VRP policy. This policy is easy to compute and small to store (O(nS) integers). In
addition to the greedy policy, denoted by πg, some exploration and some exploration is still
required to achieve the true optimal VRP solution. Following on the previously introduced
variable-ε behavior policy, a parameterized 3-part hybrid behavior policy, π3, is proposed.
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Figure 4.16: A π3 policy, blending, exploration, exploitation, and greedy VRP behavior
policies.

In this example, [εmin, εmax] = [0.2, 0.8] and η = .5. P(Q) refers to the probability that an
exploitative action is taken, P(rand) is the probability a random action is taken, and P(G)

is the probability a greedy action is taken

P(Q) = (εmax − εmin)× e

E
(4.17)

P(R) = (1− P (Q))× (1− η) (4.18)

P(G) = (1− P (Q))× η (4.19)

Equation 4.19 describes the probability of taking each class of action in the behavior
policy. The linear policy shifting scheme is parameterized by εmin, εmax,, and η. Exploitative
action are chosen with increasing probability over the learning horizon (E), from εmin to
εmax,. Exploratory behavior is therefore chosen with probability 1 − ε. In this case, the
greedy policy is used with probability η and a random action is chosen with probability
1− η.

A behavior policy is required to be “sufficiently exploratory” so as to guarantee con-
vergence of Qπ

b → Q∗ [66]. As time (episodes) approaches infinity, the policy depicted in
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Figure 4.16 is sufficiently exploratory. The area under each segment, which can be thought
of as cumulative probability, approaches infinity as time approaches infinity.

Learning results show vast improvement using the hybrid π3 behavior policy. The utility
in Figure 4.17a indicates that increasing η increases the utility of a given policy, indicating
that following the greedy policy more often than the random policy reaches the goal more
often. A small amount of randomness (decreasing over the learning horizon) is still required
so as to avoid falling in local minima. Additionally, following the greedy policy in all cases
could result in learning the greedy solution rather than the optimal solution, which are
similar in cases where the number of agents relative to the number of tasks is small.
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Figure 4.17: VRP learning performance under greedy policy seeding.

Previously identified parameters λ = 0.8 and pQ = 1 were used in these learning trials.

The learning curve in Figure 4.17b also indicates that increasing η results in faster learn-
ing, since the greedy solution is close to the optimal solution. In fact, it would appear that
later in learning, when the behavior policy becomes increasingly exploitative, selecting ac-
tions based on the learned value function rather than random or greedy options, the variance
of the learning curve increases. A possible explanation is that the value function has not
yet learned optimal behavior, which could be remedied by either increasing learning time
or decreasing epsilonmax, the upper bound on the probability with which actions are drawn
from the value function.
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Figure 4.18: Policy test with π3 policy for a 2-agent 3-task VRP.

The parameters λ = 0.8, ε = [.2, .8], and pQ = 0 were used in these learning trials.

4.9.6 Semi-Markov Vehicle Routing

Section 4.6.7 introduced the Semi-Markov Decision Process modeling formalism for tempo-
ral abstraction. SMDPs have the advantages of both providing a general representational
framework over MDPs, but also typically reducing problem size. This latter benefit comes
as a result of defining a set of macro actions, referred to as options. Most problems re-
quire less options than actions and only need a simulator, or controller that can translate
between options and actions. Semi-Markov policies are then learned over options as given
in Definition 8.

A central claim of this thesis is that routing problems and potentially many other GPPs
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are well represented within the SMDP framework. The reasoning is as follows:

• The highest level action in routing or scheduling–allocation–is fundamentally tempo-
rally extended.

• The already vast state-action space of a routing problem can be greatly reduced by
considering options over actions.

• SMDPs natively support action interruption, which is vital in problems with uncer-
tainty.

In Figure 4.19 the evolution of an allocation problem is represented as an MDP and
SMDP. At time step 1, the vehicle can choose from four primary actions, similar to the
maze world problem in Example 2. After choosing action a1 the vehicle advances forward
in spaces, choosing again from the four primitive actions until reaching the goal. Consider
however, the high-level macro action o1. At time 1, o1 advances the state directly to the
waypoint at time step 4.

a1

a2

a3o1

ot+k

ot+k+l

t1 2 3 4 5 6

Figure 4.19: SMDP vehicle routing

The vehicle in this setting can choose between 4 primitive actions or 2 options at every
time step. The reduction in the number of actions results in a reduction in storage and

computation.

In similar fashion to previous sections, learning experiments have been carried out to
determine the efficacy of SMDP-learning for a vehicle routing problem. The problem setup
is exactly as in Example 6. Q-learning is implemented as in Algorithm 3.2 and SMDP
Q-Learning is implemented as in Algorithm 4.1. Figure 4.20 shows learning results, with
SMDP-Q performing the best of the tested algorithms. It should be noted that action-
interruption as described in [63] and [67]. Is not implemented here. For small numbers of
tasks relative to agents and completely deterministic agent, task, and environment dynamics,
switching allocations mid-task would not produce optimal behavior. While it is possible
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that a switched behavior policy would produce better learning results since it would be more
exploratory, the target policy is not switched, and therefore should not be learned.

Figure 4.20: SMDP-Q learning curve for a 2-agent 2-task VRP.

Results show learning progress as a function of mean episode length for a MDP
representation (Q-learning), MDP representation with a shaping function that rewards

subgoal accomplishment as outlined in [50], (Q-RS learning), and an SMDP representation
(Q-SMDP).

To determine the end policy quality produced by the SMDP framework versus the MDP
framework, the resulting policies were trained and tested for varying numbers of tasks.
Figure 4.21 shows results for a 2-agent multi-task scenarios, averaged over multiple episodes.
The greedy policy lower bounds the performance of the policies, measured as normalized
episode length. Unsurprisingly, all policies perform the same for 2-agent 1-task tests, while
the Q and SMDP-Q policies perform the same and are bested by the greedy (optimal) policy
for the 2-agent 2-task scenario. Policy performance roughly increases linearly, with the
SMDP-Q policy slightly outperforming the Q policy as the load on the system increases.

Due to computation and storage constraints, the problem could not be extended to more
agents and tasks. It is expected that at some point, as the greedy policy becomes further
from optimal, on average, for a large number of agents and tasks, the SMDP-Q policy would
outperform it. The Q policy should in theory converge to the same optimal policy. However,
as the problem increases in size, computation limitations dictate that for the same number
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Figure 4.21: SMDP-Q policy test for a 2-agent multiple task VRP

Results from the SMDP representation are compared against an MDP representation and
hand-coded greedy policy. Reward shaping is omitted here for simplicity. The greedy

policy is optimal for n ≤ m and close to optimal from small differences.

of learning episodes, the SMDP-Q policy should be closer to optimal. On average, SMDP-Q
learning will update the less numerous state-option pairs than Q-learning will update the
more numerous state-action pairs. Storage limitations, a harsher limit, dictate that past
a certain size, a problem can not be held in memory, favoring intrinsically more compact
representation. Table 4.5 summarizes the performance of each policy as well as the number
of states and actions considered in each problem.
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Tasks Agents States Actions Options Q SMDP-Q Greedy

1 2 36 16 4 1.51 1.37 1.43
2 2 729 16 9 2.91 2.86 1.79
3 2 11664 16 16 4.64 3.51 2.02
4 2 164025 16 25 5.81 4.52 3.44

Table 4.5: Multi-agent multi-task simulation results

In all tests, the number of agents is held constant at 2 while the load on the system–the
number of tasks–is increased. Episode length is then compared for the three learning

algorithms: Q, SMDP-Q, and greedy.

4.9.7 Learning Summary

Previous section have explored the effect of learning parameters on learning performance
and end policy performance. Results have shown that learning speed, utility, and policy per-
formance are not proportional or even co-varying, and in some cases, negatively correlated:
A small ε policy (highly exploitative) for example, will have poor learning performance and
utility, but will produce a good target policy.

Parameters were identified by performing simple line search, holding all other parameters
constant. Identified optimal values were carried forth to subsequent single variable tests. The
assumption is that learning parameters such as λ, ε, and η are sufficiently independent. A
more advanced analysis could be performed by co-varying parameters or bootstrapping over
multiple iterations off of previously identified values. The experimentally determined values
not only improve learning and policy performance, but also give insight into underlying
problem structure. Table 4.6 summaries the identified values and implications.
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Value Result

Eligibility Trace λ = 0.7 The general trend indicted that both learning
performance and policy performance improve for
increasing lambda

Exploration ε = 0.5 Lower values of ε (more exploration) produced
the best policy, while learning performance was
best at higher ε.

Seeding η = 0.8 Following a near-optimal greedy policy, particu-
larly early in learning, results in a drastic reduc-
tion in learning time and improved policy perfor-
mance.

Prioritized Sweeping on The simple priority queue algorithm reduces both
learning time and improves policy performance.

Reward Shaping subgoals The subgoals shaping function does not improve
learned policy performance.

Table 4.6: Learned VRP parameter identification summary

4.10 Conclusion

Having laid the prototypical groundwork for learning in Chapter 3, this chapter is the first
foray into applying learning to a non-trivial decision problem. That problem is described as a
Generalized Planning Problem, which is essentially a Generalized Assignment Problem, but
with an emphasis on blending the routing and scheduling application domains. A formulaic
approach is taken to develop effective GPP solutions. The first step is representation, which
defines the state and action spaces of a general GPP. The representation chosen is abstract
and cost based, with a cornerstone feature of incorporating constraints directly into the state
as costs. This design decision comes at the price of granularity–two states that both “cost”
5 may in fact be different–but at the great benefit of abstraction: any problem that can be
reduced to agents and tasks and pairings therein is representable under this GPP framework.

Following representation is modeling–the casting of the GPP into a specific modeling for-
malism. The models chosen here are Markovian graphical models. MDPs are an extremely
general modeling formalism, incorporating notions of states, action, stochastic transitions,
and a great body of literature exist for computing optimal policies on problems cast as
Markov Decision Processs. However, as with many learning problems, the curse of dimen-
sionality precludes all but the smallest of examples. Especially true for the GPP, the joint
state and action spaces grow exponentially with the number of agents, tasks, or resolution
of the cost state variable. To remedy the explosion of states, and in addition to judicious
choice of state representation, hierarchical models are explored. The Semi-Markov Decision
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Process model in particular not only reduces the action space by considering a hierarchy
of actions, it allows for temporal abstraction, and is a generalization of the MDP model.
SMDPs introduce the options framework–macro temporally extended actions–which have
both intuitive and practical benefits for GPPs such as the VRP.

Learning optimal policies on MDPs and SMDPs is a well-studied area of research. Mod-
eless temporal difference algorithms exist for both. Both Q-learning and SMDP-Q are im-
plemented on an example VRP, cast as a GPP. The cost state is simple distance between all
tasks and agents. Constraints, such as preventing dual allocations, and disallowing loitering
are explored through selective rewards and penalties in the reward function.

Learning results are presented for a 2-agent 3-task VRP in Example 6. Following from
Chapter 3, learning is optimized for several tuning parameters: eligibility traces, exploration,
prioritized sweeping, and reward shaping. Additionally, a new state space exploration tech-
nique referred to as η-search is introduced. The technique attempts to expedite learning
by incorporating guidance from the greedy VRP solution, which is suboptimal, but easy to
compute. The parameter η controls the blend of exploration (random), exploitation (greedy
with respect to the value function), and sub-optimal greedy VRP actions. The results show
a significant improvement in learning speed when implementing an η-behavior policy during
learning. And for large learning problems, increased learning speed often results in increased
performance, and more relevant states are visited more often for a constant learning duration.

The final learning results are for semi-Markov vehicle routing. Though other work has
applied SMDP theory to robotics decision problems, to the knowledge of the author, this
is the first application of SMDPs directly to the canonical VRP. Results show a significant
increase in learning performance and end policy quality when considering semi Markov-
options over primitive actions. Beyond the apparent computational and storage benefits, the
SMDP is conceptually a well-suited model for the GPP. GPPs are intrinsically temporally
abstract–the fundamental action and agent can take, allocating itself to a task, takes place
over multiple time steps for a random and indeterminate amount of time.

The purpose of this chapter has been to show the expressive power of the learned GPP.
This has borne out in simulations of a canonical NP-hard optimization problem, the VRP.
The final chapter addressed the incorporation of human feedback to aid in learning solutions
to an ever more challenging stochastic GPP.
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Chapter 5

Human Guidance

5.1 Introduction

Human beings are decision making engines. From low-level automatic activities, such as
walking, to high-level reasoning, our brains readily solve complex perception and decision
problems in real time. On the other end of the spectrum, computers and robots have proven
particularly useful in dull, dirty, and dangerous domains: inspecting nuclear disaster sites,
solving huge state-space games, and generally accomplishing tasks difficult for humans. As
such, human input can and should be leveraged wherever possible to learn faster and better
solutions to complex decision problems.

The Generalized Planning Problem architecture, introduced in at the conclusion of Chap-
ter 2, is primarily associated with decision problems at higher levels of abstraction. Although
it can be applied to lower-level, more classical control problems, those problems are, by def-
inition, better defined than more abstract allocation, planning, and decision making tasks.
Figure 5.1 depicts this spectrum as a control system diagram, from assignment, to planning,
to lower-level problems such as motion control.

Section 5.2 further motivates the reasons for incorporating human guidance into the GPP.
Section 5.4 introduces the specific reward shaping-based architecture used herein as a conduit
for human guidance. To showcase both the expressive power of the GPP, the benefits of
human-guided learning, and the specific implementation used here, Section 5.5 provides an
example problem as a testbed. The complex decision problem is essentially a taxi pickup and
delivery problem which incorporates several stochastic elements as well as human guidance.
Section 5.6 presents the results from learning, and Section 5.8 draws several conclusion from
these results.
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Figure 5.1: Multi-agent control system.

5.2 Motivation

Many hard decision problems display common features. Vast state spaces, ambiguous ob-
jectives, and uncertainty of any kind can render a problem practically unsolvable. However,
humans display great aptitude at solving some of the most difficult decision problems. One
reason for this is our innate ability to infer meaning from context. A car driving down a
neighborhood road at noon on a Saturday poses less danger than a car on the highway on
a rainy night. Context is how we distill our past experiences to make inferences about cur-
rent situations. Context, being an inherently vague concept, is challenging to encode in an
algorithm.

The second more nebulous uniquely human skill is our ability to think abstractly about
groups and similar situations rather than just on a per example basis. Classification is
one relevant example that both humans and computers attempt to solve. In classification, a
visual processing system (human or computer) attempts to apply labels to objects, effectively
grouping them into classes. The challenge comes in understanding objects at all scales,
shapes, sizes, and permutations. Humans, for example, could label all of the chairs in a
room without error, and even all of the objects that would provide suitable seating. A
computer-classification system can not, however, think in this manner, and can only classify
chairs based on examples of chairs it has been given, let alone answer the even higher-level
question of suitable seating surfaces.

The two human skills that often far surpass their computer-based counterparts are contex-
tualization and abstraction. Human aptitude at solving hard decision problems by applying
these abilities is a chief motivating factor human-guided learning. Formal definitions are as
follows, as well as a depiction in Figure 5.2.

Contextualization The ability to think about or provide information about the situation in
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which something happens. Humans use the context of a situation–the surroundings–to
infer meaning. Analogous computer contextualization includes function approxima-
tion, which systematically infers a functional context from existing data.

Abstraction To consider as a general quality or characteristic apart from specific objects
or instances. The human ability to label an entity as part of a group–chairs–place
that group in a hierarchy–recliners in chairs in seating–then reason about that object
as part of a group is unmatched by computers. An analogous computer abstraction
procedure is classification, which clusters data according to some similarity metric.

What does human intuition have to say about a GPP such as a routing problem? This
question is primarily answered in the results section, where human guidance is directly
incorporated into the learning via a human reward signal. Suffice it to say that understanding
context of a GPP and being able to abstract away low-level detains can certainly augment
existing optimal VRP solvers.
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Figure 5.2: Human - machine attribute comparison.

On the upper right is a pictorial representation of function approximation, which is
analogous to human contextualization. On the lower right is a pictorial representation of

classification, which is analogous to human abstraction.

5.3 Previous work

Advances in robotics and computer science have only served to underscore the difference be-
tween humans and robots, namely that robots tend to exceed at lower level structured tasks,
while humans are unmatched at higher level decision making, particularly when problems
involve unstructured data, soft constraints, and ambiguous objectives.
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Human-Robot Interaction (HRI) is a broad field of research, touching upon human fac-
tors, autonomous systems, adjustable autonomy, and human in the loop learning [30]. The
authors of [70] provide a simple example of incorporating human feedback via a reward sig-
nal for learning how to perform a sequential cake baking task. Other work focuses on large
scale problems in which robots learn a human model for the purpose of determining online
when to query a human operator [31] [32]. Work specific only to multi-agent problems of any
domain has studied broadly applicable performance metrics [14].

A recent advancement in the field of reinforcement learning has been apprenticeship
learning. Apprenticeship learning involves an expert (human) who teaches the apprentice
(learning algorithm) by way of example. Through a learning mechanism, often inverse rein-
forcement learning, the reward function of the expert is learned, which can then subsequently
be used to learn a policy for control [1].

5.4 Human Feedback Architecture

How and when should human guidance, of any kind, be included in a decision making
process? Any decision making process will have three distinct phases during which a human
operator can add advice, as shown in Figure 5.3. In the setup phase, the problem is defined
and relevant parameters are initialized. The next phase, labeled “Learn” in Figure 5.3 solves
the problem, and the final phase, “Run”, implements the solution. For many problems,
setup transitions directly to solving, which transitions directly to running. In the learning
framework, learning solutions and implementing them online are often interleaved, with a
(sub-optimal) policy available to the problem designer at any point in time; this is known
as the just-in-time algorithm property.

A human is likely to be involved in the initial setup phase of a learning problem, but not in
feedback. During the learning phase, a human can add advice based on learning performance
feedback (learning curve, or utility, for example). And while running the policy, a human
can make corrections based on policy performance. The two paradigms of human advice are
therefore precisely defined below with associated definitions

• Operator: A human who sets up a GPP, including original placement of tasks, agents,
and specification of know problem dynmaics and constraints therein.

• Learn Time: The learning phase of a problem during which policy improvement
occurs and V π → V ∗.

• Run Time: The phase during which a policy is used to determine the actions of a
system. Run time can refer to simulation or real world action.

***

• Learn-time human feedback: To include human feedback to improve learning time
while preserving policy optimality.
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Figure 5.3: Human feedback learning architecture.

In the setup phase initial variables and objectives are defined. In the learning phase, a
simulator or motion model propagates the state forward it time; the system receives reward

and an update rule (Q, SARSA, value iteration, policy iteration, etc.) incorporates the
reward into a value function. A policy may be drawn from the learning algorithm at any
point and tested online. A human operator observing the autonomous system evolve may

choose to input advice in the form of an exogenous reward signal, resulting in online
learn-time human feedback.

• Run-time adjustable autonomy: To create human-assisted systems, where the
operator can choose any value between manual and autonomous control.

As has been highlighted in subsection 3.4.3 of Chapter 3, TD-algorithms, which are based
on bootstrapping, essentially interleave learning and running. If learning and running are
interleaved as shown in Figure 5.3 then human guidance can be added just during the learning
phase. This proposed human feedback architecture is agnostic to the specific guidance signal
and algorithmic details of how the signal is incorporated. Section 5.5 proposes an intuitive
conduit for incorporating human feedback based on reward shaping.

5.5 Human-in-the-loop Learning

Consider the scenario depicted in Figure 5.3 in the context of a vehicle routing problem GPP.
After the human operator has defined a set of tasks, a goal (complete all the tasks) and other
problem parameters, an (offline) learning algorithm solves for the optimal allocation of agents
to tasks. That solution is then implemented online, or the learning phase itself may have
occurred in an online fashion of the learning algorithm can run in real-time. The operator
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observes the outcome of the problem–namely agents completing tasks in a certain order–and
may at that point define a new problem.

However, two run-time issues may occur that would motivate the human operator to
make online changes to the learned policy. First, the operator may be dissatisfied with
the solution because they defined the problem poorly in the first place. This is the case
of operator error. Second, unmodeled agent dynamics, random environmental events, or
uncertainty in task location, may necessitate a run-time change to the problem definition in
order to compensate for unpredictable occurrences.

Whether due to operator problem definition error or unforeseen problem dynamics, the
outcome is the same: the operator wants to make changes to the learned solution. Learning
algorithms discussed up to this point leave the operator with two options: redefine the prob-
lem and solve from scratch, or make ad-hoc corrections to the solution, losing all optimality
guarantees.

The third and alternate solution proposed here is to leverage the theory of reward shaping
as introduced in subsection 4.9.4 to incorporate human feedback in a structured fashion.

5.5.1 Incorporating Human Feedback via Reward Shaping

The theory of reward shaping allows for construction of reward functions as a sum of indi-
vidual rewards. The proposed total reward R is comprised of an intrinsic reward, RI , and a
human-inputed reward, RH . The intrinsic reward is the original reward that gives positive
reward at the goal state(s) and negative elsewhere. The human reward is simply ascertained
by having a human observer assign a value to a full state transition sequence, defined by the
tuple < s, a, s′ >. The full reward function is given in Equation 5.1.

R(s′, a, s) = RI(s
′, a, s) +RH(s′, a, s) (5.1)

RH(s′, a, s) , γΦ(s′)− Φ(s) (5.2)

The shaping function, RH , is admissible if and only if it can be written as a potential
based shaping function as in Equation 5.2. This guarantee can never be met so long as the
human is permitted to give any and possibly faulty guidance. If an admissible Φ(s) were
known (V ∗ (s) is suggested in [50]), then RH could be tested with Equation 5.2 as a criteria.
However, in that case, a reward function based on Φ(s) should just be used rather than RH ,
unless RH could be shown to be a more effective reward than the one based on the potential
function.

Ng, Harada, and Russell note that in fact any policy is optimal under R if it is potential-
based. Therefore potential based shaping reward functions have no policy preference, they do
not prefer one policy over another, which is the reasoning behind why all policies optimal in
the original MDP are optimal in the shaped MDP. The human reward need only be potential
based to be admissible, leaving the optimal policy due to the intrinsic reward unchanged,
and speeding up learning in the process.
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5.5.2 Adjustable Autonomy

In many real-world autonomous systems, human operators primarily provide supervisory
oversight over the operation of the system. If the unexpected occurs, they are left with either
allowing the system to continue to execute, or shutting it down, taking over manual control.
With the addition of human-based learn-time guidance via reward shaping as described
in the previous section and depicted in Figure 5.3 a human operator is allowed to make
learn-time changes to the learned value function. Changes are incorporated as an exogenous
human reward signal using the reward shaping architecture. However, changes will not be
incorporated immediately, as they will depend on learning parameters, including learning
rate, discount factor, and others.

A useful addition would be a framework for hybrid human-machine continuously vari-
ably autonomous systems. Such a system would seamlessly transition between full manual
operation, full autonomous operation, and everywhere in between. The following modified
shaping function is therefore proposed in Equation 5.3 and depicted in Figure 5.4 based on
a simple weighted sum of intrinsic and shaping reward functions.

R(s′, a, s) = (1− w)RI(s
′, a, s) + wRH(s′, a, s) (5.3)

w ∈ [0, 1]

The proposed weighted sum combination of rewards preserves policy optimality. The
original MDP, M =< S,A, P,RI >, is reward function scale invariant: Policies under RI

are optimal under (1−w)RI . Additionally, the only requirement for the shaping function is
that it be potential-based, which is also scale invariant, in that if RH is potential based, so
too is wRH .

Human Machine

w = 0w = 1

Figure 5.4: Adjustable autonomy via reward shaping.

The parameter w variably weights the intrinsic reward (standard reward function) with the
human reward (shaping function)
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5.6 Variably Autonomous Planning

The previous section proposes a method for incorporating weighted human feedback as a
reward signal is a learning problem. In this section, an example GPP is introduced to show-
case human-in-the loop adjustable autonomy. The problem is based on a well know routing
problem variant known the VRP with Pickup and Delivery. The problem characteristics can
be described in brief as follows:

• Multiple agents seek to accomplish a set of pickup and delivery tasks.

• Tasks consist of a pickup site and a delivery site.

• Agents have a capacity and tasks have a “weight” (how many units of agent capacity
they require).

• The goal, like in vehicle routing, it to complete all tasks with minimum aggregate
distance traveled (or time for constant velocity vehicles).

The VRPPD is adds complexity to the standard VRP which ultimately results in larger
state and action spaces and more constraints. Stochastic VRPPD are perhaps some of the
most complex routing problems. Of the surveyed current literature, VRPPDs incorporating
stochastic elements tend to allow only one random problem parameters, while the rest are
deterministic. A complex spatiotemporal routing problem proposed is proposed in Example 7
with multiple stochastic elements.
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Multiple taxis are tasked with completing a set of pickup and delivery tasks. At
the outset of the problem pickup locations are known along with estimates of the
distance to the destination. After a task has been picked up by an agent, the true
destination is revealed, and the taxi proceeds directly to the destination. The goal
state is after all tasks have been picked up and delivered. Problem parameters are
listed below or in Example 6 and defined in Chapter 4 if not specified.

Parameter Value Description

m 3 number of pickup/destination tasks
n 2 number of agents
w 5 km w × w world size
v 15m/s agent velocity
R(s′, a, s) see below reward function
pfail 0.05 agent action failure probability
λ 0.7 eligibility trace parameter
ε [0.3.08] exploration probability
η 0.8 seeding parameter
w [.1, .3, .5, .7] shaping weight

Pj U(−w,w) pickup locations - uniform over the space
Dj N(P,Σ) destinations - normally distributed about P
Ej N(P,Σ) estimated destinations - same distribution as D

The overall reward is constructed as a weighted sum as in Equation 5.3. The
intrinsic reward includes the static reward for reaching the goal, Rg = 3, and a
temporal penalty, Rt = −0.01, for every second of travel. The human reward is as
follows

Φ(s) = −F (J(s)) (5.4)

RH = F [J(s)]− γF [J(s′)] (5.5)

F (J) , ‖J‖F =

√√√√ m∑
i=1

n∑
j=1

|Jij|2 (5.6)

Several additional constraints and assumptions imposed by the simulator are de-
scribed in Appendix A.

Example 7 (Taxi Routing).
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The human reward function described in Example 7 is simulated based on observed human
behavior. After several qualitative experiments in routing-like scenarios, it appears that the
human operators value state transitions that bring all agents closer to tasks on average.
Unfortunately, this strategy is suboptimal for the VRPPD; many scenarios arise in which
agents need to move away from the closest task in order to accomplish all tasks in minimum
time. Nevertheless, a norm-based human reward function is selected, which awards value
proportional to the decrease in aggregate agent-task distances. The Frobenius norm in
Equation 5.6 therefor selected, since the state is represented as a non-square matrix: J ∈
<n×m.

It is easy to construct counter-examples in which Equation 5.5 is not potential-based.
However, overall the cost of the problem (even if cost is just distance-based) should be
decrescent, as the cost-state is explicitly designed to do so. Additionally, in practice, the
human guided reward will be inputed by a human operator rather than a simulator; therefore
a realistic human simulator should be suboptimal to reflect the fact that the human reward
signal will not always obey the conditions for optimality under reward shaping.

5.7 Learned Stochastic Pickup and Delivery Results

The problem described in Example 7 is a stochastic VRP with Pickup and Delivery. It
however departs from the standard formulation in that all constraints are soft and reflected
as costs in the state. All goals are aggregated in the reward function, and all other problem
dynamics are simulated. The cost (state) and simulator each have stochastic elements. The
learned policy represents the confluence of effects from the cost, reward, and simulator.

As in Example 2 in Chapter 3 and Example 6 in Chapter 4 learning performance is
judged based on utility and learning curves, and end policy quality is judged by successive
simulation. It is important to note that, unlike in previous examples, there is no true baseline
optimum by which to judge the learned policies. If the problem at hand were a standard
VRPPD, a third-party solver could compute optimal baseline policies. However, no standard
solution method exists for the switched-stochasticity introduced by the random destination
location, which is realized only upon pickup. In lieu of an optimal baseline comparison, a
handcoded greedy policy provides some fixed point for comparison.

In order to demonstrate the representational power of the GPP method as applied to this
problem two important cases are compared side-by-side. The metrics for comparison in both
cases are cumulative distance–the sum distance of all vehicle routes–and episode length: the
total time for episode completion. The episode length criteria is similar to the makespan
criteria in the JSP–the time between state and finish of a job, made up of tasks.

Noloiter This case is inspired by vehicles such as fixed-wing aircraft, which can not loiter,
ie. their velocity is constant. In this case, the episode length cumulative distance
metrics will be the same, as cumulative distance traveled must increase with time.
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Example 6: Routing Example 7: Taxi

Eligibility Trace (λ) 0.7 0.7
Exploration (ε) 0.5 [0.3, .08]

Seeding (η) 0.8 0.8
Prioritized Sweeping on on

Reward Shaping subgoals human reward

Table 5.1: Learned VRP and taxi problem parameter identification summary

Minor discrepancies exist between the two problems. A variable exploration probability
seemed to work better for the more stochastic taxi problem. The same handcoded greedy

solution is also used for both problems, and seeding parameter η is kept the same.

Loiter This case is inspired by vehicles such as ground vehicles that can come to a stop and
loiter at a location for an indefinite amount to time. In this case, cumulative distance
is the appropriate metric for discerning policy quality, as it is the only way to capture
the learned loitering behavior.

5.7.1 Learning Parameters

In all cases, learning parameters (α, ε, η, λ) are set based on a similar tuning process the
the one used in the routing problem in Example 6 in Chapter 4. The parameters listed
in Table 4.6 are used as starting points. In general, the optimal parameters for the taxi
problem (VRPPD) differ very little from the parameters for the routing problem VRP).
Minor discrepancies in learning parameters are a testament to the generality of the cost-
based representation and GPP framework. Learning parameters are listed below in Table 5.1
for both problems.

5.7.2 Learning Algorithm

As demonstrated at the conclusion of Chapter 4, the SMDP-Q learning algorithm can im-
prove both learning time and end policy quality over standard Q(λ) learning. The purpose of
this experiment is to explore the benefits of variably weighted human-guided reward shaping.
As such, learning is performed by Q(λ) rather than SMDP-Q.

5.7.3 Learning Performance Under Human Guidance

Experiments have been carried out to both determine the efficacy of human-guided reward,
specifically for the simulated human reward in Equation 5.5, and the appropriate the weight-
ing, w, of the intrinsic reward versus the human reward. This section compares the learning
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performance for varying w, and the following section compares end policy performance,
which, as explained in Example 6 are not always directly related points of comparison.

Figure 5.5 shows learning results for the noloiter case: ie. agents are aircraft-like, and
must always move with constant velocity. The trend reflected in the utility and learning
curves to some degree is that increasing w decreases utility over the learning horizon, and
may in some cases slow learning for high w. However, this trend is to be expected, particularly
for the utility, since wRH is negative everywhere, and increasingly so for increasing w. The
final value of the utility is therefore somewhat meaningless, since the underlying reward
function is changing. The general trend in Figure 5.5b is qualitatively the same for all w,
which indicates that the learning problem is not fundamentally changing (ie. utility smoothly
increases and appears to approach a steady state value in all cases).
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Figure 5.5: Taxi-routing learning curves for the noloiter case, varying w.

Figure 5.6 shows learning progress for the loiter case: ie. the agents are ground vehicle-
like, and can essentially park. Despite this significant change to the underlying agent dynam-
ics, it appears that the value-function utility perspective in Figure 5.6b remains the same in
terms of trend. Several of the fitted learning curves in Figure 5.6a seem to vary widely, which
is likely due to outliers in the data. In both the noloiter and loiter cases, the learning curves
do not provide much information. The learning curves are consistent with the results in
Example 6 for low ε (highly exploratory behavior policy). Here, ε begins at 0.3 and increases
linearly to 0.8 over the learning horizon (4000 episodes). Therefore is expected that at least
early in learning curves would be high-variance for all weighting w, since random actions are
being taken more often than actions greedy with respect to the current value function.
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Figure 5.6: Taxi-routing learning curves for the loiter case, varying w.

5.7.4 Policy Performance Under Human Guidance

The previous section reveals that the value function is approaching a fixed point for all
w. However, due to the stochasticity in the problem (random agent motion, uncertain
destinations, etc.), as well as a high degree of exploratory learning, few trends are discernible
in the learning curves.

This section explores policy performance, which, is the primary point of analysis for
Example 7. Noloiter cases are explored first, followed by the more relevant loiter cases, since
real taxis would have the ability to park in low work-load scenarios. The two previously
described performance metrics–episode length cumulative distance–are compared as well.
Cumulative distance, as opposed to episode length, should be able to discriminate between
the cases in which loitering is allowed, since an agent that can loiter with zero velocity will
not add to the overall tour length.

In all cases, tests are performed by generating 100 random initial states. Each policy (
w = [.1, .3, .5, .7]) is then simulated from each initial state to the goal state as runtime statics
(episode length, cumulative distance) are recorded. Outliers beyond a 2σ bound are rejected,
and a timeout is set to address rare but possible deadlock and livelock scenarios. The outliers
can clearly be seen in the histograms. All statistics are normalized and dimensionless so that
problems with different parameters—agent velocity, world size, etc.—can still be compared.

Figure 5.7 shows the policy test results for the noloiter case. The first obvious result is
that the data episode length data in Figure 5.7a and Figure 5.7b are off by a constant factor,
since agent velocities are constant and agents can not loiter. The shape of the curves reveals
the following interesting result: for no shaping (w = 0, R = RI), performance is slightly
worse than the baseline (greedy policy). For w = 0.1, which essentially weights the simulated
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human reward by 10% and the intrinsic reward by 90%, performance is approximately equal
to the baseline. This increase in performance is remarkable considering that 1) the shaping
function RH is not potential-based, and 2) the problem has a high degree of stochasticity,
particularly the destination locations.

The second noteworthy result for the noloiter case is that for w > .1, performance
immediately degrades and appears to settle at a suboptimal level near w = 0.7. Possible
explanations are as follows:

• Choice of shaping function: Since RH does not satisfy the necessary and sufficient
reward shaping conditions for policy invariance under reward shaping, the learned
policy, while monetarily improved for w = 0.1, is in general not improved by the
human guidance.

• Poor numerical conditioning : As RH is increasingly scaled up relative to RI , the goal
reward (+3) must also be increased to counteract the negative effect from the human-
based reward.

• Stochasticity While stochasticity is the same for all problem scenarios, w directly scales
RH which is a function of the cost-state, which is itself stochastic. As w increases, the
randomness is amplified more relative to the true state.



CHAPTER 5. HUMAN GUIDANCE 133

5 10 15 20 25 30 35
0

5

10

15

20

25

30

Episode Length

C
o

u
n

ts

Histogram of test episode lengths (100 Trials)

 

 
w=0
w=0.1
w=0.3
w=0.5
w=0.7
Greedy

0 0.1 0.3 0.5 0.7
14.6

14.8

15

15.2

15.4

15.6

15.8

η

M
e

a
n

 E
p

is
o

d
e

 L
e

n
g

th

Episode Duration Statistics

 

 
Learned Policy
Greedy Policy

(a) Episode length policy test for the noloiter case

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Cumulative Distance Traveled

C
o

u
n

ts

Histogram of cumulative distance traveled (100 Trials)

 

 
w=0
w=0.1
w=0.3
w=0.5
w=0.7
Greedy

0 0.1 0.3 0.5 0.7
14.2

14.4

14.6

14.8

15

15.2

15.4

15.6

η

M
e

a
n

 C
u

m
u

la
ti
v
e

 D
is

ta
n

c
e

Distance Statistics

 

 
Learned Policy
Greedy Policy

(b) Cumulative distance policy test for the noloiter case

Figure 5.7: Taxi-routing policy tests for the noloiter case, varying w.
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Figure 5.8 shows results for the loiter case, where agents are essentially allowed to park,
and therefor learn policies with this behavior. It is important to note that changing the
underlying simulator would not simple be enough to encourage loitering behavior. But by
the same token, loitering is not explicitly encouraged in the reward function. The behavior
is essentially undefined. However, the reward function does not encourage motion wither,
and the initial policy is to loiter. Therefore, while agents my learn to move around without
any purpose due to random actions during the learning process, there is no benefit to doing
so, so the target policy tends towards favoring loiter actions wherever possible.

Figure 5.8a shows data collected on overall episode length over the 100 trials for varying
weight w. A slight improvement in the policy is seen for w = 0.1, with little change to policy
performance thereafter (w = [0.3, 0.5]). The first policy that weights RH more relative to
RI (w = 0.7), degrades in performance drastically. In this case, the human reward seems to
provide marginal benefit up to the point of overtaking the intrinsic reward, after which the
suboptimal human reward degrades the quality of the policy.

Figure 5.8b shows the same test, but from a perspective of distance rather than time.
As anticipated, allowing the agents to loiter results in a significant increase in policy quality.
This is the first policy that out performs the greedy baseline policy, which does not allow
loitering. The result is somewhat obvious in that agents that are allowed to park should
cover less distance than agents that are not. Less obvious though is the fact that the agents
in fact learned this behavior through a combination of intrinsic and simulated human reward.
The policy performance follows a similar trend to that seen in Figure 5.7: w = 0.1 is by far
the best policy, with a degradation in performance thereafter.

This final result validates that the chosen human reward stimulant indeed improves per-
formance with the right weighting, as it did for the noloiter case.
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Figure 5.8: Taxi-routing policy tests for the loiter case, varying w.
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5.8 Conclusions

Human guidance in learning is conceptually an idea worth exploring, since humans have
shown great promise at solving decision problems. The innate human cognitive abilities,
abstraction and contextualize allow us to automatically recognize salient problem features,
reason about these features in a broad sense, and make decisions based on this reasoning.
Automated intelligence essentially tries to encode human ability as classification, function
approximation, and many other well-studied techniques. Figure 5.9 captures the overall
architecture of hybrid human-machine decision making within a multi-agent control system.

Figure 5.9: Multi-agent control system.

The approach taken here first recognizes the innate ability humans have at solving routing
and scheduling-like decision problems, which have broadly been referred to as Generalized
Planning Problems. It makes no assumption on the form of the input other than providing
humans with a conduit for valuing certain problem configurations over another. The theo-
retical underpinning for this human-guided evaluation is reward shaping. This perspective
and method is, to the knowledge of the author, the first time that human guidance is incor-
porated in such framework that can provide optimality guarantees. The approach assumes
nothing other than that the problem can be modeled as a GPP as described in Definition 6.

Reward shaping allows for the combination of two reward signals, referred to here as
the intrinsic reward (RI , standard reward) and the human reward (RH , shaping reward).
A modification of the standard reward shaping formulation inversely weights these two re-
wards, allowing for a range of learn-time possibilities, from full automated (R = RI) to
fully manual/human-based (R = RH), and everywhere in between. This augmentation to
human-based reward shaping is an implementation of true adjustable autonomy.

The testbed to showcase human-guided learning and adjustable autonomy is a stochastic
VRPPD, which is essentially a taxi routing problem. Several problem elements are set as
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random to show the expressive power of the chosen cost-based representation over more
standard VRP-derived representations. Additionally to motivate the modeless learning-
based approach itself, underlying agent dynamics are changed at the simulator level, and
new policies are automatically learned, without any other changes to the problem setup.

The results in Section 5.7 show two cases: the noloiter case in which the agents are
not allowed to park, and the loiter case, inspired by actual ground vehicles such as taxis,
are allowed to park. Tests are carried out at several weighting values, although an infinite
number are possible since w, the adjustable autonomy variable, is continuous.

The results show both that the adjustable autonomy concept can work, and in fact
produces the best end policies for w = 0.1. One conclusion is that the choice of human
simulator is not a good one, but it is purposely chosen to be suboptimal, as a real human
would be. The overall results show that for all values of w reasonable results are obtained,
which is an encouraging validation of the setup and procedure for incorporating human
feedback in an intuitive, meaningful, scalable, and theoretically sound manner.
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Chapter 6

Conclusions

This thesis has presented a new methodology for solving complex decision problems. The
following sections summarize contributions and pose future research directions.

6.1 Summary of Contributions

The contributions contained herein lie in several disparate fields of research. All pertain to
posing, modeling, and solving hybrid-routing scheduling problems with human-in-the-loop
guidance. As such, contributions are divided into the following three categories: representa-
tion, modeling and learning, and human-machine interaction.

6.1.1 Representation - The Generalized Planning Problem

This thesis introduces a new framework for posing assignment problems such as canonical
routing and scheduling problems, referred to as the Generalized Planning Problem frame-
work. A GPP is completely defined by the problem attributes: agents, tasks, and costs. The
representation is fundamentally cost based in that every agent-task pairing (allocation) is
completely defined by a cost. The job of the task designer is to come up with meaningful
costs that account for spatial problem elements (eg. distance), temporal problem elements
(eg. processing time), and other problem elements or constraints that may affect the overall
fitness of a particular agent accomplishing a particular task. One of the chief representation
benefits of the GPP framework is the ability to include multiple stochastic problem elements
as well as hard and soft constraints directly into the state.

The GPP is introduced in Chapter 2. Chapter 4 poses a VRP as a GPP, and Chapter 5
poses a complex pickup and delivery problem with multiple stochastic elements as a GPP.
The breadth of examples in this thesis shows is a testament to the representational power
and generality of the GPP framework. The GPP framework does not assume a particular
solution method, although it has been designed with learning-based solution methods in
mind.
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Figure 6.1: Summary of thesis contributions fields.

6.1.2 Modeling and Learning

This thesis introduces a learning-based approach to solving Generalized Planning Problems.
Several advantages of learning make it a particularly compelling choice for solving GPPs.

• A standard learning problem definition involves a state and action set definition, tran-
sition model, reward function, and choice of algorithm with associated parameters.
Constraints are simply encoded in the reward function or transition dynamics.

• Many learning algorithms incorporate a notion of randomness through a transition
model or simulator.

• A simulator may be used in place of an explicit probabilistic transition model in prob-
lems for which a transition model would be difficult or impossible to define.

• Learning is an experience-based solution method. By simulating state dynamics over
many episodes, in conjunction with a reward function that values certain state-action
configuration over others, an optimal policy can be learned for all states.

• Many learning algorithms include intuitive tuning parameters that control both the
speed of the learning process and the quality of the end policy.
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This thesis presents an MDP-based model for the the GPP. A significant limitation of
MDPs however, is that actions occur over exactly one time step. Many real problems,
however, are more realistically modeled with temporally extended actions that occur over
multiple time steps. As such, a significant innovation presented in this thesis is a method of
temporal abstraction for the GPP via the SMDP model. SMDPs extend the standard MDP
model with the inclusion of macro actions, referred to as options, which occur over multiple
time steps. The incorporation of options allows for a more expressive representation, a dras-
tically reduced state-action space, and more effective learning as a result. To the knowledge
of the author, this work is the first example of modeling a hybrid routing-scheduling decision
problem as a SMDP.

6.1.3 Human-Machine Interaction

A core insight presented in this thesis is that in many real world examples, humans interact
with autonomous systems. However, hybrid human-autonomous decision making is poorly
understood, and in many cases the human acts either as the primary operator or as a
passive observer. Ideally though, systems would be “adjustable autonomous”, intelligently
combining human advice with autonomous decision making, producing a hybrid solution.

This thesis adds to the body of knowledge in variably autonomous human-machine sys-
tems by providing a intuitive and structured conduit for including human feedback into
learned GPP solutions. The underlying theory of reward shaping is leveraged to combine a
human reward function with an implicit a-priori reward function. The human reward func-
tion may be checked against conditions to determine its admissibility, guarantying policy
optimality even under human-guided solutions.

Human feedback is included as a weighted sum of human reward and a-priori reward.
This approach effectively implements adjustable autonomy while providing conditions for
guaranteeing policy optimality. The resultant policy is allowed to vary between fully au-
tonomous and fully manual (human control) and everywhere in between. This variation can
occur both at learn-time and at online at run-time.

6.1.4 Stochastic Pickup and Delivery

Chapter 5 presents an example problem to showcase the contributions of this thesis. The
hybrid routing-scheduling problem is most closely related to a VRPPD, in which vehicles
must both pickup and deliver passengers or goods. A common real-world VRPPD is taxi
routing. The example problem includes several stochastic elements: both the destination of
each pickup task and the vehicle dynamics are treated as random quantities. Additionally,
task destinations are revealed upon pickup, making the problem switched-stochastic: random
variables are realized and replaced with the actual quantities at random times. The example
also includes a soft temporal constraint which increasingly penalizes loitering as each episode
progresses. Traditional solution methods are ill-equipped to deal with such a large-scale
decision problem with multiple random elements and soft constraints.
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This taxi routing example problem is modeled as a GPP. Reward shaping is leveraged
to include human guidance and expedite the learning process while improving policy qual-
ity. Although no baseline optimal solution exists for this kind of problem, an hand-coded
near-optimal greedy solution provides an indication of learning performance and policy per-
formance.

6.2 Future Research Prospectus

6.2.1 Implementation

Several avenues of future research are as follows.

6.2.2 Unified Assignment Problem Representation

The space of assignment problems is vast, including applications from server scheduling to
air traffic control. The utility in unifying these disparate domains under one representational
framework is threefold: common heuristics, solution generalization, and software reuse.

Common heuristics: Defining a common representational framework for the space of as-
signment problems implicitly sets a common level of abstraction. As a direct result,
human input in the form of heuristics has the opportunity to generalize across several
problems that are all defined in the same way. As useful heuristics are typically hard
to find and problem specific, defining problems broadly allows for heuristics that may
also be applied broadly.

Solution generalization: A direct result of a generalized state representation is a cor-
respondingly general solution. By considering high-level features of the state rather
than low-level state dynamics, the eventual solution may be perturbed along low-level
dimensions without changes to the higher level policy.

Software reuse: An increasingly popular software design paradigm is Component Based
Software Design (CBSD), which essentially imposes modularity in the form of indi-
vidually executable components for the purpose of portability and reuse. A practical
benefit of a common representational framework is that the software tools written to
solve for the optimal policy of a vehicle routing problem may also be used to solve a
different assignment problem with minimal changes to the underlying code.

The GPP framework lays the foundation for future representational breadth. Currently,
knowledge gained in one GPP is not transferable to another. For example, sub-policies
learned in a VRP-like problem can not be leveraged to solve a similar VRPPD. Essentially,
no precise notion of problem and policy similarity exists. Some of the difficulty in solution
generalization lies in implementation details and reusable software. Other challenges lie in
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the theory of policy generalization—how a policy learned in one domain applies in another.
Future research in unified representation and policy generalization will allow for reuse of
learned policies in similar problems.

6.2.3 Semi-Markov Learning

Much of the modeling and learning algorithms used in thesis are well-studied by the machine
learning community. The SMDP model is a relatively recent innovation, and several future
directions of learning research are yet to be explored for the multi-agent routing problems
presented in this thesis.

Action Interruption In any problem where the environment is random, and agent needs
to ability the current course of action for more valuable action. Sutton et al. has
demonstrated the utility of asynchronous action interruption for a stochastic single-
vehicle routing problem. It would surely be well-applied to the multi-agent case.

Reward Shaping Example problems in Chapter 4 have shown how reward shaping may be
combined with the SMDP model. However, several complications exist, a particularly
for interrupted actions and other SMDP variants. Considering the benefits of reward
shaping as a method of incorporating human feedback, research into reward shaping
for SMDPs would be a necessary area of research for extending the results of the taxi
routing example problem in Chapter 5 to the SMDP domain

Function Approximation Function approximation is a necessary technique for solving
large decision problems, and the combination of SMDP learning and function approx-
imation techniques is the subject of current learning research. The subsequent section
address function approximation in general for the GPP.

6.2.4 Function Approximation

Vehicle routing problems are a class of NP-hard decision problems with few solution methods
(optimization or search-based) that both scale and generalize well. Especially in the multi-
agent setting, problems become intractably large as time and space constraints are added
on top of the standard formulation. The problem designer is thus left with approximation
techniques.

Several function approximation techniques exist for solving large reinforcement learning
problems. Promising methods include radial basis functions [66], Kanerva coding [64], and
Gaussian processes (GPs) [16]. Kanerva coding has worked well in applications where a large
amount of the training data is irrelevant or erroneous . GPs have show particular promise
recently in dealing with high dimension functions where little data is available.

Indeed, multi-agent assignment problems can be intractably large, with no hope of so-
lution without approximation. This reality motivates research into function approximation,
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since many of the relevant assignment problems—air traffic control, power grid scheduling,
FedEx, and similar—are fundamentally large scale.

6.2.5 Human Heuristics

Humans are particularly adept at developing fast solutions to complex decision problems.
Particularly true when state spaces are vast (consider all the states involves in just walking
down the street), our brains readily extract pertinent features for the task at hand (feature
identification), determine the state (classification), and make reliable decisions (control).
Specifically, humans readily leverage problem context and abstraction to render difficult
decision problems (chess, strategy games, image classification) tractable. The following
questions are related to future work in human decision modeling:

• To what extent do humans use heuristics to solve spatiotemporal problems?

• Are the heuristics based on a small or large set of features, what are the features, and
can they be learned?

• Are the features / heuristics transferable from one problem domain to another (hyper-
features)?

• How close to optimal can an average human get in solving specific decision problems
(ex: vehicle routing)?

• How does human performance degrade as a function of problem size?

• What data structures are useful for capturing human heuristics?

• Can human heuristics be learned effectively in a reinforcement learning scenario?

• What class of graphical models, if any, can be leveraged to model human decision
making?

6.3 Summary

Both contributions and future work of this thesis address solving large-scale decision prob-
lems for which no other adequate model or solution method exists. Much of the future work
pertains to improving solution quality by decreasing problem size and increasing the ex-
pressive power of the GPP framework. This thesis makes significant strides towards solving
meaningful real-world decision problems by efficient representation and leveraging human
guidance.
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Appendix A

Example Problem Solutions

A.1 Example 1: NYC Taxi Routing

A.1.1 Setup

Let:

pT = p(v < vT |t) Probability of traffic given time of day

pM = p(v ≥ vT |t) Probability of moving given time of day

cij|vT =
d(i, j)rt
vT

Cost in traffic

cij|v = d(i, j)rd Cost while moving

A.1.2 Before Pickup (t < tp)

The expected cost before pickup at P can be expressed as follows:

f ij = E[ciP + cPD]

= E[ciP ] + E[cPD] ciP ⊥ cPj = cPD

= E[ciP |vT ] pT + E[ciP |v] pM

+ E[cPD|vT ] pT + E[cPD|v] pM Total expectation

The velocity v is sampled from p(v|T ) and is no longer random. Velocity is updated (resam-
pled) and an interval H. During each period between sampling the velocity is assumed to
be constant.
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f ij = ciP + E[cPD|vT ] pT + E[cPD|v]pM

= ciP + E[
d(P,D)

vT
] rt pT + E[d(P,D)] rd pM

A.1.3 After Pickup (t ≥ tp)

After pickup, the random distance variable d(P,D) is realized, and velocity can be sampled
from its distribution. The cost is therefore expressed as follows:

f ij =
d(P,D)× rt

vT
+ d(P,D)× rd

A.2 Learned Taxi Routing

A.2.1 Simulator detail

The taxi routing problem described in Example 1 is essentially a stochastic VRPPD. It
combines multiple stochastic elements with several dynamic constraints, that are either im-
posed by selectively rewarding certain states, or not allowing those states to occur in the
first place, via the simulator. The following lists several problem dynamics, constraints, and
assumptions all off which are imposed by the low-level dynamic simulator.

C1. All pickup locations are know by all agents.

C2. Agents can only be allocated to one task at a time.

C3. An agent proceeds directly to the destination after pickup.

C4. A task can only be completed by the agent that makes the pickup.

C5. A destination Dj is revealed to all agents upon pickup at Pj.

C6. A task done by one agent is considered done over all.

C7. Once a task is done it stays done until episode completion.

A.2.2 Human reward shaping optimality
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