Skip to main content
eScholarship
Open Access Publications from the University of California

Elastic anisotropy of Tambo gneiss from Promontogno, Switzerland: A comparison of crystal orientation and microstructure-based modelling and experimental measurements

  • Author(s): Vasin, RN
  • Kern, H
  • Lokajíček, T
  • Svitek, T
  • Lehmann, E
  • Mannes, DC
  • Chaouche, M
  • Wenk, HR
  • et al.
Abstract

© The Authors 2017. Felsic and mafic gneisses constitute large proportions of the upper and lower continental crust. Gneisses often display high anisotropy of elastic properties associated with preferred orientations of sheet silicates. Here we study the elastic anisotropy of a sample of Tambo gneiss from Promontogno in the Central Alps. We apply optical microscopy, time-of-flight neutron diffraction, neutron and X-ray tomography to quantify mineral composition and microstructures and use them to construct self-consistent models of elastic properties. They are compared to results of ultrasonic measurements on a cube sample in a multi-anvil apparatus and on a spherical sample in an apparatus that can measure velocities in multiple directions. Both methods provide similar results. It is shown that models of microstructure-derived elastic properties provide a good match with ultrasonic experiment results at pressures above 100 MPa. At a pressure of 0.1 MPa the correspondence between the model and the experiment is worse. This may be caused by an oversimplification of the model with respect to microfractures or uncertainties in the experimental determination of S-wave velocities and elastic tensor inversion. The study provides a basis to determine anisotropic elastic properties of rocks either by ultrasonic experiments or quantitative models based on microstructures. This information can then be used for interpretation of seismic data of the crust.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View