Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Nonparametric Vector Autoregressions: Specification, Estimation, and Inference

Abstract

For over three decades, vector autoregressions have played a central role in empirical macroeconomics. These models are general, can capture sophisticated dynamic behavior, and can be extended to include features such as structural instability, time-varying parameters, dynamic factors, threshold-crossing behavior, and discrete outcomes. Building upon growing evidence that the assumption of linearity may be undesirable in modeling certain macroeconomic relationships, this article seeks to add to recent advances in VAR modeling by proposing a nonparametric dynamic model for multivariate time series. In this model, the problems of modeling and estimation are approached from a hierarchical Bayesian perspective. The article considers the issues of identification, estimation, and model comparison, enabling nonparametric VAR (or NPVAR) models to be fit efficiently by Markov chain Monte Carlo (MCMC) algorithms and compared to parametric and semiparametric alternatives by marginal likelihoods and Bayes factors. Among other benefits, the methodology allows for a more careful study of structural instability while guarding against the possibility of unaccounted nonlinearity in otherwise stable economic relationships. Extensions of the proposed nonparametric model to settings with heteroskedasticity and other important modeling features are also considered. The techniques are employed to study the postwar U.S. economy, confirming the presence of distinct volatility regimes and supporting the contention that certain nonlinear relationships in the data can remain undetected by standard models. Copyright © 2013 by Emerald Group Publishing Limited.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View