Skip to main content
Open Access Publications from the University of California

HYDRUS simulations of the effects of dual-drip subsurface irrigation and a physical barrier on water movement and solute transport in soils

  • Author(s): El-Nesr, MN
  • Alazba, AA
  • Šimůnek, J
  • et al.

Subsurface drip irrigation systems, compared to other irrigation systems, enhance the delivery of water and nutrients directly into the root zone. However, in light-textured soils, certain quantities of water may percolate below the root zone due to the subsurface position of drip lines and/or poor management of irrigation systems. The main objective of this paper is to evaluate three technologies to enhance a spatial distribution of water and solutes in the root zone and to limit downward leaching. The three technologies include (a) a physical barrier, (b) a dual-drip system with concurrent irrigation, and (c) a dual-drip system with sequential irrigation. To achieve this objective, we performed computer simulations using the HYDRUS (2D/3D) software for both bare and vegetated soils. The results indicate that the physical barrier is more efficient than dual-drip systems in enhancing the water distribution in the root zone while preventing downward leaching. On the other hand, the dual-drip system improves water distribution in sandy soils. Additionally, the dual-drip system with sequential irrigation, followed by the dual-drip system with concurrent irrigation, is the most efficient in limiting downward leaching of solutes. © 2013 Springer-Verlag Berlin Heidelberg.

Many UC-authored scholarly publications are freely available on this site because of the UC Academic Senate's Open Access Policy. Let us know how this access is important for you.

Main Content
Current View