Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

The quality of metabolic pathway resources depends on initial enzymatic function assignments: a case for maize

Abstract

Background

As metabolic pathway resources become more commonly available, researchers have unprecedented access to information about their organism of interest. Despite efforts to ensure consistency between various resources, information content and quality can vary widely. Two maize metabolic pathway resources for the B73 inbred line, CornCyc 4.0 and MaizeCyc 2.2, are based on the same gene model set and were developed using Pathway Tools software. These resources differ in their initial enzymatic function assignments and in the extent of manual curation. We present an in-depth comparison between CornCyc and MaizeCyc to demonstrate the effect of initial computational enzymatic function assignments on the quality and content of metabolic pathway resources.

Results

These two resources are different in their content. MaizeCyc contains GO annotations for over 21,000 genes that CornCyc is missing. CornCyc contains on average 1.6 transcripts per gene, while MaizeCyc contains almost no alternate splicing. MaizeCyc also does not match CornCyc's breadth in representing the metabolic domain; MaizeCyc has fewer compounds, reactions, and pathways than CornCyc. CornCyc's computational predictions are more accurate than those in MaizeCyc when compared to experimentally determined function assignments, demonstrating the relative strength of the enzymatic function assignment pipeline used to generate CornCyc.

Conclusions

Our results show that the quality of initial enzymatic function assignments primarily determines the quality of the final metabolic pathway resource. Therefore, biologists should pay close attention to the methods and information sources used to develop a metabolic pathway resource to gauge the utility of using such functional assignments to construct hypotheses for experimental studies.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View