Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Enzyme-Catalyzed Intramolecular Enantioselective Hydroalkoxylation

Abstract

Hydroalkoxylation is a powerful and efficient method of forming C-O bonds and cyclic ethers in synthetic chemistry. In studying the biosynthesis of the fungal natural product herqueinone, we identified an enzyme that can perform an intramolecular enantioselective hydroalkoxylation reaction. PhnH catalyzes the addition of a phenol to the terminal olefin of a reverse prenyl group to give a dihydrobenzofuran product. The enzyme accelerates the reaction by 3 × 105-fold compared to the uncatalyzed reaction. PhnH belongs to a superfamily of proteins with a domain of unknown function (DUF3237), of which no member has a previously verified function. The discovery of PhnH demonstrates that enzymes can be used to promote the enantioselective hydroalkoxylation reaction and form cyclic ethers.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View