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TECHNICAL REPORT 1

A Conditional Random Field Model For Tracking
In Densely Packed Cell Structures - A Technical

Report
Anirban Chakraborty, and Amit K. Roy-Chowdhury, Senior Member, IEEE

Abstract—Modern live imaging technique enables us to observe
the internal part of a tissue over time by generating serial
optical images containing spatio-temporal slices of hundreds of
tightly packed cells. Automated tracking of plant and animal
cells from such time lapse live-imaging datasets of a developing
multicellular tissue is required for quantitative, high throughput
analysis of cell division, migration and cell growth. In this paper,
we present a novel cell tracking method that exploits the tight
spatial topology of neighboring cells in a multicellular field as
contextual information and combines it with physical features
of individual cells for generating reliable cell lineages. The 2D
image slices of multicellular tissues are modeled as a Conditional
Random Field and spatio-temporal cell to cell correspondences
are obtained by performing inference on this CRF using loopy
belief propagation. We present results on (3D+t) confocal image
stacks of Arabidopsis shoot meristem and show that the method
is capable of handling many visual analysis challenges associated
with such cell tracking problems, viz. poor feature quality of
individual cells, low SNR in parts of images, variable number of
cells across slices and cell division detection.

I. INTRODUCTION

In developmental biology, the causal relationship between
cell growth patterns and gene expression dynamics has been
one of the major topics of interest. A proper quantitative
analysis of the cell growth and division patterns in both the
plant and the animal tissues has remained mostly elusive so far.
Information such as rates and patterns of cell expansion and
cell division play a critical role in understanding morphogene-
sis in a tissue. The need for quantifying the cellular parameters
such as average rate of cell divisions, cell cycle lengths,
cell growth rates etc. and observing their time evolution is,
therefore, extremely important.

Towards this goal, with the advancements in microscopy and
other imaging techniques, time lapse videos are being collected
to quantify the behavior of hundreds of cells in a tissue over
multiple days. For visualizing the cells over time within a
densely packed multilayer tissue, one such in-vitro time-lapse
microscopy technique is confocal laser scanning microscopy
(CLSM) based Live Cell Imaging. With this technique, optical
cross sections of the cells in the tissue are taken over multiple
observational time points to generate spatio-temporal image
stacks. For high-throughput analysis of these large volumes
of image data, development of fully automated image analysis
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pipelines are becoming necessities, thereby giving rise to many
new automated visual analysis challenges.

Automated cell tracking with cell division detection is one
of the major components of all such pipelines (such as [1]).
The computational challenges related to a robust design of cell
tracker come from multiple sources such as variable number
of cells in the field of view (FoV), deformation of cell shapes,
complex topologies of cell clusters, low SNR in the images,
etc. In this paper, we present an automated visual tracker for
cells tightly packed in developing multilayer tissues. This calls
for developing strategies for temporal associations of the cells.
Moreover, since at every time point of observation a cell could
be imaged across multiple spatial images, the tracking method
must be capable of finding correspondences in the spatial
direction as well. Beyond these, the tracker has to be able to
detect cell divisions, detect new cells as the deeper layers of
the tissues are imaged, differentiate between cells in a close
neighborhood sharing similar physical features and generate
correct matches in presence of low SNR. These challenges are
evident in the sample CLSM image stack of a live Arabidopsis
shoot meristem, as shown in Fig. 1.

A. Related Work and Our Contributions

There has been some work on automated tracking and
segmentation of cells in time-lapse images, for both plants and
animals. One of the well-known approaches for segmenting
and tracking cells is based on evolution of active contours
[2], [3], [4], [5], [6]. However, this method is not suitable
for tracking where all the cells are in close contact with each
other and share very similar physical features, nor is there any
reported result on spatial correspondence. In fact, in spatio-
temporal image stacks where the cells are arranged in compact
multilayer structure, slice of a new cell can legitimately appear
at the exact same spatial location as that of a different cell
located in the layer just above it. This characteristic, along with
the fact that these tightly packed cells are mostly stationary
can force the active contour based tracker to generate false
spatial tracks.

The Softassign method uses the information on point lo-
cation to simultaneously solve both the problem of global
correspondence as well as the problem of affine transforma-
tion between two time instants iteratively [7], [8]. However,
these methods are more suitable for aligning global features
than finding correspondences between non-uniformly growing
individual cells. Although [8] present a sample result on SAM
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Fig. 1. A typical 4D (X-Y-Z-T) live-imaging data. A live Arabidopsis shoot meristem tissue is imaged using a confocal laser scanning microscope at multiple
time points. The plasma membranes of the cells are stained with fluorescent proteins and that is why the cell walls are the only visible parts. Each of the first
three columns of images presents Z stack of image slices, i.e the cross sections of the tissue imaged at various depths of it. When such images are collected
over time to capture the growth of the tissue along with that of individual cells in it, it forms a 4D image stack. As can be seen from the figure, there
are various challenges associated with the problem, viz. growth/deformation of the cells in the tissue, stereotypical cell shapes in the tissue and hence less
discriminative physical features (as an example, 4 cells from a close neighborhood are marked with white and yellow arrows respectively in two consecutive
time points which have very similar shapes and sizes), minor shifts between images and low SNRs in the central regions of the tissue. We have zoomed into
these low SNR regions in the 4th column of the figure. As seen, it is really difficult to even manually mark the boundaries of a number of cells in these
regions.

shoot meristem without validating against ground truth, it is
not enough to evaluate the accuracy of this method on a typical
4D confocal data.

Besides the aforementioned approaches, tracking based on
association between detections such as [9], [10] has shown
good performance on time-lapse images. In [11], the authors
proposed a cell tracking method on phase contrast time-lapse
images that performs a global association of tracklets gen-
erated by frame-by-frame detection based tracking. However,
these methods perform well when the feature quality or the
underlying motion model is reliable. We are looking at a more
challenging problem, where the features extracted from each
cell may not be reliable enough for accurate data association.
As an example, in this paper the experiments are performed

on confocal time lapse image stacks of plant shoot apical
meristem, where hundreds of cells are tightly clustered in a
multi-layered architecture and only the boundary of each cell
is visible. Thus the features extracted for each cell could only
be the shape and area, which could often be non-discriminative
between cells even from a local neighbourhood. Moreover, as
in most confocal live-imaging datasets, the cells in the deeper
central regions of the tissue have poor image quality because
of the light absorption in the tissue, thereby making the local
cell level features even less reliable for these cells. In Fig. 1,
we have tried to bring out these challenges by showing a
small spatio-temporal confocal substack of Arabidopsis SAM.
Examples of stereotype in cell shapes are shown for four cells
in a close neighborhood (marked by arrows) and the low SNR
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Fig. 2. Proposed cell tracking framework - different sequential components in the proposed method. The input to the method is a Watershed segmented and
registered 3D or 4D image stack. For temporal tracking only, the next stage is detection of possible cell division events. The tracking is done sequentially on
pairs of spatially or temporally consecutive slices. For any of such pairs, once the cell divisions are detected, we remove the parent and children cells from
the respective segmented images and build a graph on one of the images of the pair based on neighborhood structure around each cell with individual cells as
nodes in the graph. The candidate matches for each cell is found from the other image in the pair under consideration (for details, see Sec. III-A). The graph
is then represented as an CRF. The node and edge potentials are computed using methods described in Sec. III-E and Sec. III-F and finally inference on
this CRF is drawn using loopy belief propagation. The inferred state for each node (cell) gives us the correct correspondence between these pairs of images.

in the central regions of the tissue is highlighted by zooming
into these regions in the 4th column of the figure.

In such cases, for tracking and data associations in absence
of very reliable features one can use the states of objects or
points other than the target, that have strong spatio-temporal
correlations with the states of the target. These correlations
are utilized to rectify/estimate the target states in absence of
reliable measurements for the target. Such secondary infor-
mation are often termed as the ‘contextual information’ in
the visual tracking literature and have resulted in significant
improvements in tracking accuracy. For example, in [12],
feature points from the scene that are not on the target but have
strong motion correlation with the target are used to estimate
the target state under occlusion.

In [13], [14], a spatio-temporal tracking algorithm for
Arabidopsis SAM was proposed, where relative positional
information of neighbouring cells was used to generate unique
features for each cell. The best cell pair in two different image
slices across space or time is found based on the computed fea-
tures and the correspondence is grown sequentially outwards
from these ‘seed cell points’ using a local search mechanism to
find match between the rest of the cells. However, the location
of this spatial search window depends on the position of the
last tracked cell and hence this method tends to accumulate
error that can throw the tracker off for cells spatially distant
from the ‘seed’.

In this work, we propose to solve the spatio-temporal
tracking problem as a graph inference problem. To track cells
between two image slices consecutive in time or space, we
build a graph on one of the images with individual cells as
the nodes and neighboring nodes sharing an undirected edge
between them. We further define a Conditional Random Field
(CRF) on the graph, the probable states of each node being
the candidate cell correspondences from the next image. A
distance defined on the physical features extracted from a cell
and that of each of its candidate matches is used to constitute
the node potential. The spatial context is modeled on each
of the edges based on the relative location of the cell and
its neighbors by utilizing the tight spatial topology of the
cell clusters. We obtain the correspondences by maximizing

the marginal distribution computed at each node (cell). The
approximate marginals are obtained by a Loopy Belief Propa-
gation scheme. The overall tracking pipeline is shown in Fig.
2.

B. Organization

The rest of the paper is organized as follows. An overview
of the method is given in Sec. II. The mathematical and
algorithmic details of the different components of the proposed
method are provided in Sec. III. The experimental results are
presented in Sec. IV followed by concluding discussion and
future research directions in Sec. V.

II. OVERVIEW OF THE PROPOSED METHOD

As mentioned earlier, many animal and plant tissues (such
as the shoot meristem of a plant, epithelial tissues in animals)
are a collection of tightly packed small cells arranged in
clonally different layers forming a solid 3D structure. To
visualize the internal parts of these 3D structures we employ
imaging techniques such as Confocal Laser Scanning Mi-
croscopy (CLSM) that generates serial optical cross sections of
the tissue at various focal planes, thereby generating a 3D stack
of images, each containing tightly packed 2D cross sections
of 3D cells. In case of a time-lapse ‘live cell imaging’, the
same tissue is imaged at successive time points resulting in a
collection of a number of such 3D stacks. 2D segmentation
techniques (such as Watershed) are employed to segment out
individual 2D cell cross sections on each of the confocal
slices. The problem of finding correspondences between such
2D cell slices along the depth of the tissue is called ‘spatial
tracking’, analogous to the ‘temporal tracking’ problem where
such correspondences are estimated between slices of the same
cell at successive observational time points.

The 2D slices of the cells in the tissue are already registered
in one 3D stack. We can also register cell slices across time
between any two image slices (Fig. 1) of the tissue. This ability
to register cell slices across space and time, along with the fact
that the relative positions of the centroids of two neighboring
cells in the tissue does not vary substantially across both time
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and space motivate us to pose the problems of spatio-temporal
cell tracking as a graphical inference problem.

A. Graph Structure

As can be seen in Fig. 3, a graph can be built on top of every
slice image in the tissue. The nodes of the graph would be the
cells (or more precisely, the centres of the cells) and each
of the immediately neighboring cells would share a link/edge
between them. In spatial tracking, each of these cells can either
have a correspondence to one of the cell slices in the next z-
slice or they can have no correspondence - in case the cell
ends in the present image slice and not imaged in the deeper
slice. Also, in case of temporal tracking, a cell might be out
of Field-of-View (FoV) or not detected because of noise in the
image. Thus, a candidate set of cell slices from the subsequent
slice can be estimated for each cell in the image slice on
which the current graph is built and this candidate set can be
considered as the set of all possible states/labels for a certain
node in the graph. An additional state, corresponding to the
case that the cell is not imaged in the next confocal plane or
next time point needs to be included in this set. Additionally,
for temporal tracking, we first detect the cell division events
across the two images (Fig. 4) and then build the graph with
the rest of the cell slices in the first image as the nodes. The
details on how the graph is formed and the set of states/labels
for each node is ascertained are given in Sec. III-A.

B. Computation of Potential Functions

As we have mentioned earlier, the relative positions of the
centroids of the neighbouring cell slices do not vary a lot
in short time intervals or along z and hence the knowledge
of the most probable state for any cell can substantially aid
in estimating the maximum likely state for its neighbouring
cells. We consider the graph just formed as a ‘Conditional
Random Field’ (CRF) and draw inference from the joint
distribution of the states of all the nodes by maximizing a
potential function defined over all the nodes and edges (see
Sec. III-E and Sec. III-F) of the graph. The node potentials in
the CRF are computed based on the shape similarity between
a cell slice and each of its candidates along with their relative
centroid locations. The edge potentials are obtained based on
similarity between the relative positions of two neighbouring
nodes and that of their any two candidate cells’ centroids in
the successive slice or time point. The details of the edge and
node potential computations are described in Sec. III-E and
Sec. III-F.

C. Graph Inference

Once the graph is formed and the necessary potential func-
tions computed, the next step is to design an inference strategy
on this graph to estimate the maximum likely states for each
of the nodes.. We employ a ‘Loopy Belief Propagation’ (LBP)
based on the well known ‘Sum-Product’ algorithm [15] for this
purpose. In Sec. III-G, we show the iterative parallel inter-
node message updation strategy in the traditional sum-product
scheme and perform the inference.

Fig. 3. Graph Structure. (A) For tracking cells between two spatially and
temporally consecutive image slices, a graph is built on one of the images,
where the nodes of the graph are the rest of the segmented cells and two
neighbouring cells share an edge between them. For temporal tracking, the
cells undergoing division are aet aside before constructing the graph. (B) From
the next image slice, the candidate matches for each cell in A are estimated.
Again, for temporal tracking, the children cells after division are also removed
from the image and the candidate set of best ‘K’ states for each node in A is
estimated through a search in B in a spatial window around the location of
each of the nodes in A. A ‘K+1’th state is added to each of the candidate sets
corresponding to the case that the cell is not imaged or poorly imaged in B,
referred to as the ‘No Match’ state in the figure. Now the graph is expressed
as a CRF, where the node potentials are computed based on feature distances
between each node and its candidates (see Sec. III-E)and the edge potentials
are computed based on the relative locations of the neighbouring nodes in
A and the same between any two cells in B from within their respective
candidate states in B (Sec. III-F).

III. GRAPHICAL MODEL DESIGN AND INFERENCE

A. Graph Formation on 2D Segmentations
Let us define the problem to be to find correspondences

between the cells in two segmented confocal image slices IG
and IM . The Watershed segmentation of IG and IM produces
two sets of cell segments ΩG and ΩM respectively. Thus, the
set of observations is given as

O = ΩG ∪ ΩM , (1)

which comprises of 2D Watershed segmentations of both IG
and IM . However, for temporal tracking, we first detect if
some cells form IG have divided into pairs of cells in IM
following the method described in III-C and remove the parent
cells that has undergone division from ΩG and the divided
children from ΩM . The graph and the candidate states of each
node of the graph are thereafter formed using the remaining
subsets of cells VG and VM containing NG and NM cells
respectively, i.e. the remaining cells

v1G, v
2
G, · · · v

NG

G ∈ VG ⊆ ΩG

v1M , v
2
M , · · · v

NM

M ∈ VM ⊆ ΩM (2)

The graph is built on IG and the set of nodes VG is same
as the set of segmented cells. Any two nodes viG and vjG
will have an edge between them if viG and vjG are spatial
neighbours. For tightly packed cluster of cells, viG and vjG are
neighbours if they share a common boundary and thus the set
of all neighbours of a cell viG would be

N(viG) = {vjG s.t. viG and vjG share common boundary}.
(3)
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For other datasets, where the cells are generally not com-
pactly arranged, this set can be represented as

N(viG) = {vjG s.t. ||ciG − cjG||2≤ th}, (4)

where ciG and cjG are the centroids of viG and vjG respectively.
Thus, we can represent the graph gG on IG as an adjacency

matrix AG between the nodes,

AG (i, j) = 1 iff vjG ∈ N
(
viG
)
,

= 0, otherwise (5)

B. Determination of Candidate States For Every Node

For finding correspondences between cells across two seg-
mented slices IG and IM , the graph is built on the slice IG
following Sec. III-A. Each node in the graph, corresponding
to each cell slice viG represents a random variable xi that can
take a label from the set Si

G which is the set of K closest
segments in the slice IM around the point ciG, the centroid of
viG on IG. Therefore,

Si
G = {si1, si2, · · · siK} (6)

where, sik ∈ VM ∀k = 1, 2, · · ·K and

||cs
i
1

M − ciG||≤ ||c
si2
M − ciG||· · · ||c

siK
M − ciG||

≤ ||cs
i
j

M − ciG|| ∀ j ∈ {1, 2, · · ·NM}, j /∈ Si
G (7)

We can safely assume that the actual tracked cell slice in
IM would be amongst the K closest cells, as IG and IM are
already registered.

Now, we add an additional label si0 to the candidate set Si
G

that represents the case where the cell slice viG is not imaged
in the slice IM . Thus, the complete set of candidate states
becomes

Si
G = {si0, si1, · · · siK}. (8)

C. Cell Division Detection

To detect cell divisions before forming the graph gG in
temporal tracking, we first compute the candidate sets Ci

G in
IM for a segmented cell slice ωi

G ∈ ΩG following similar
method as in Eqn. 7. Next we form all possible pairs of the
candidate cells from Ci

G that share a boundary as in

Di
G =

{
(cdip, cd

i
q) s.t. cdip ∈ N(cdiq) and cdip, cd

i
q ∈ Ci

G

}
.

(9)
Now, if the cell ωi

G has divided into two children cells cdip
and cdiq , then ideally the shape of ωi

G should be very similar
to the combined shape of cdip and cdiq , taken together (i.e.
to the shape of cdip ∪ cdiq) and each of cdip and cdiq would
be approximately half the size of ωi

G. Motivated by this
physical property associated with cell division, we compute
a Modified Hausdorff Distance (MHD) metric to estimate the
shape similarity between b(ωi

G) and b(cdip∪cdiq), where b is the
set of boundary points on a shape, when the point coordinates

Fig. 4. Cell Division Detection. (A) Two segmented image slices one time
point apart. (B) The ellipses in image at T mark the parent cell that have
undergone divisions between time points T and T+1 and those at time point
T+1 mark the children cells after division.

are recomputed with respect to the shape centroid. With these,
we compute a set of distances as

d(ωi
G, D

i
G) =

1

t1
MHD(b(ωi

G), b(cdip ∪ cdiq)) +
1

t2

[∣∣∣∣∣12
−
area(cdip)

area(ωi
G)

∣∣∣∣∣ +

∣∣∣∣∣12 − area(cdiq)

area(ωi
G)

∣∣∣∣∣
]
.

(10)

If min d(ωi
G, D

i
G) ≤ 1, then it is inferred that the cell

ωi
G has divided into a pair of cells (cdip, cd

i
q) for which this

minimum is obtained. The values of the parameters t1 and t2
are learnt from a small training image set and the details of
parameter learning is described in Sec. IV-D.

Once the cell division events are detected for one or more
cells in IG, the graph gG is constructed using the methods
described in III-A and III-B after eliminating the parents
undergoing division and the divided children cells from ΩG

and ΩM respectively and forming VG and VM .

D. Conditional Random Field Modeling
Let the set of random variables associated with viG be

X = {x1, x2, · · ·xNG}, which are to be estimated given
the observation IM . These random variables correspond to the
state of each node in the graph and the support for each of
these variables is the candidate set as discussed in Sec. III-B.

Then the overall CRF is expressed as

P (X;O) = exp (−E(X;O))/Z

= exp

− ∑
c∈clq(X)

Ec(X;O)

/Z, (11)

where Z is the partition function and E is the energy function
defined on all the cliques of the graph, which can be further
split into individual nodes and edges as
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Fig. 5. Shape descriptor for individual cells. Cell 41 at time point T has cells
26, 39 and 44 as candidates for correspondence at time T+1. The correct
correspondence for 41 at T is 39 at T+1. In the left column of figure, the
correct correspondence is shown in green arrow whereas the the incorrect
ones are shown in red. Shape histogram descriptors are computed for each
cell following the method described in Sec. III-E. As expected, the histogram
for 41 at T is very similar to that of 39 at T+1 and the descriptors for the
other two candidate cells are very different.

E(X;O) =

NG∑
i=1

Ei (xi;O) +

NG∑
i=1

∑
j:vj

G∈N(vi
G)

Eij(xi, xj ;O).

(12)

Then,

P (X;O) =
1

Z

NG∏
i=1

exp (−Ei(xi;O)) ·∏
(i,j)

: vj
G∈N(vi

G)

exp (−Ei,j(xi, xj ;O))

=
1

Z

NG∏
i=1

φi(xi;O) ·∏
(i,j)

: vj
G∈N(vi

G)

ψi,j(xi, xj ;O) (13)

Here φi represents the node potential of any node viG in
gG, and ψij is the edge potential from node viG to node vjG.
To estimate the optimal states for every node, we have to
maximize P (X;O). Towards that objective, we first estimate
the approximate marginal distributions P (xi;O) at each node
using belief-propagation scheme as described later. The opti-
mal states that maximize the posterior distribution could be
then estimated by maximizing the marginals independently.

E. Computation of Observation/Node Potential:

The node potential is defined on every node of the graph,
which is the likelihood on the label taken by a node belonging
to VG, given the observation O. It is analogous to the proba-
bility distribution of any node viG being assigned to each of its
candidate states. This distribution is computed independently
for each node based on its shape similarities and proximities
in location of its centroid from each of its candidates.

For measuring similarities between cell shapes, we generate
a shape histogram descriptor for each of the cells, which is
very similar to one of the methods described in [16]. First
we recompute co-ordinates of a cell’s peripheral points by
shifting the origin to the cell’s centroid. Next, we partition
the x-y plane into 8 angular sectors centred at the origin
and compute the mean Euclidean distances of the peripheral
points falling into each of these partitions from the origin. The
set of this distances forms a 8 bin histogram descriptor for
the shape of a cell, the angular sectors being sorted counter
clockwise from x-axis. Note that, unlike the classical shape
histograms of this sort [16], we compute mean distances from
each sector instead of counting the number of points, as the
latter gives us scale invariance and may lead to a high match
score between a legitimate cell and a small region generated by
over-segmentation on noisy images. Some sample descriptors
of a cell and its candidates for correspondence are given in
Fig. 5.

Let the shape histogram associated with the cell slice viG be
hiG and that with the candidate slice sij be hjM (as sij ∈ VM ).
We computed the K-L divergence (KLD) between hiG and
hjM which gives us a distance measure between these two cell
slices and suppose it is represented as di1

(
viG, s

i
j

)
,

di1
(
viG, s

i
j

)
= KLD

(
hiG, h

j
M

)
. (14)

We also compute the distances between the centroids of
a cell slice in IG and each of its candidates in IM and the
distance is given by,

di2
(
viG, s

i
j

)
= ‖cs

i
j

M − ciG‖2 . (15)

Hence, the overall distance between a cell slice viG and

one of its candidates v
sij
M is expressed as a combination of

normalized d1 and d2 as

di
(
viG, s

i
j

)
= w

di1
λ1

+ (1− w)
di2
λ2
, 0 ≤ w ≤ 1 . (16)

The corresponding node potential for each node is

φi
(
xi = sij ;O

)
= exp

(
−di(viG, sij)

)
∀j = 1, 2 · · ·K

(17)
and

φi
(
xi = si0;O

)
= 1−max

j

{
φi
(
xi = sij ;O

)
, j = 1, 2, · · ·K

}
(18)

The normalization parameters λ1 and λ2 (in Eqn. 16) are learnt
from a training dataset. See Sec. IV-D for details on parameter
estimation.

F. Computation of Spatial Context/Edge Potential:

This potential function is defined on edges connecting pairs
of neighbouring nodes and is representative of the conditional
distribution P (xj |xi,O). The computation of the potential
function depends on the fact that if two neighbouring cells
viG and vjG are tracked to two cell slices vpM and vqM , then
the relative position of vjG with respect to viG should be very
similar to that of vqM and vpM . As a result, if viG is tracked
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to vpM then the probability that vjG corresponds to vqM gets
boosted if

cjG − ciG ≈ cqM − cpM , (19)

where ciG, c
j
G, c

p
M , c

q
M be the centroids of viG, v

j
G, v

p
M , v

q
M

respectively.
Clearly, the additional evidences for matching two cell slices

in IG and IM comes in the form of local neighbourhood
structure based contextual information.

Thus, the contextual transition potentials between any two
nodes viG and vjG taking non-zero states can be expressed as
a function of the shift between the relative positions of those
nodes

(20)
ψi,j

(
xi = sip, xj = sjq;O

)
= exp

{
−γ‖(cjG − ciG)− (c

sjq
M − c

sip
M )‖2

}
∀p, q = 1, 2, · · ·K, where sip ∈ Si

G, s
j
q ∈ S

j
G and i, j 6= 0.

Now, in both spatial and temporal tracking, there is one
more state si0 for every node i that corresponds to the case
that the particular cell is not imaged in the successive slice
(spatial or temporal). Thus, the transition potentials must also
incorporate the case where one of the cells is not tracked and
its neighbouring cell is matched to one of the cells in the next
slice or not matched to any cell and vice versa. Incorporating
these values, the complete edge potential function between any
two neighbouring nodes viG and vjG would be

ψi,j

(
xi = si0, xj = sjq;O

)
=

1

K + 1
∀q = 0, 1, · · ·K .

(21)
This corresponds to the case when viG is not matched to any
cell in IM . When both the cells viG and vjG have correspon-
dences in the subsequent spatial or temporal image IM ,

(22)
ψi,j

(
xi = sip, xj = sjq;O

)
= exp

{
−γ‖(cjG − ciG) − (c

sjq
M − c

sip
M )‖2

}
,

for p, q 6= 0.
Finally, when viG has a match in the next spatial or temporal

image slice IM , but its neighbour vjG does not, then the
corresponding edge potential entries become

ψi,j

(
xi = sip, xj = sj0;O

)
= 1−max

q

{
ψi,j

(
xi = sip, xj = sjq;O

)
, q = 1, 2, · · ·K

}
(23)

for p 6= 0.

G. Inference: Loopy Belief Propagation

The next step is to do the inference on the CRF, which
involves the computation of the marginal probability distri-
butions for the states xi of each node viG ∈ VG, given the
observations O. For computation of the marginals at each
node, we choose to use a very popular local message-passing
algorithm known as Belief Propagation (BP) [17]. Since there
are many loops or cycles in our graph, the algorithm is called a

Loopy Belief Propagation (LBP). This is an iterative algorithm
and at lth iteration, each node viG computes a message to
be sent to each of its neighbours and the message sent to
vjG ∈ N(viG), according to the popular Sum-Product algorithm
[15], is,

m
(l)
i,j(xj) = α

∑
xi

ψi,j(xi, xj ;O)φi(xi;

O)
∏

xk:vk
G∈N(vi

G)\vj
G

m
(l−1)
k,i (xi)


where α is a normalizing constant. Note that the updation
strategy employed here is parallel, i.e. all the edges in the
CRF are updated simultaneously in each iteration.

Also, at each iteration l, each node viG produces an approx-
imate marginal distribution

P (l)(xi;O) = αφi(xi;O)
∏

xj :v
j
G∈N(vi

G)

m
(l)
j,i(xi) (24)

For a tree type graph, these approximate marginal distributions
are guaranteed to converge to the true marginals, but for a
graph as ours that contains multiple loops there is no guarantee
of convergence of the LBP [18]. However, in literature, such as
[19], LBP has shown very good empirical performance and in
most of our experiments the method converged very quickly. If
the convergence is reached at iteration L, the MAP estimates
for the most likely states is computed for each marginal (i.e.
for each node) as,

x̂i = argxi
max P (L)(xi;O) (25)

and this optimum state corresponds to either the ‘no-match’
case or a specific cell in IM .

IV. EXPERIMENTAL RESULTS

A. Data Collection and Preprocessing

For the experiments performed in the present study, the
3D structure of the tissues are imaged using single-photon
confocal laser scanning microscope and we have specially
dealt with the ‘Shoot Apical Meristem’ (SAM) of the plants
that showcase all the challenges associated with any spatio-
temporal cell tracking problem in a tightly packed multilayer
tissue. The SAM of Arabidopsis Thaliana consists of approx-
imately 500 cells and they are organized into multiple cell
layers that are clonally distinct from one another. By changing
the depth of the focal plane, CLSM can provide in-focus
images from various depths of the specimen. To make the
cells visible under laser, fluorescent dyes are used. The set
of images, thus obtained at each time point, constitute a 3-D
stack, also known as the ‘Z-stack’. Each Z-stack is imaged
at a certain time interval (e.g. 3-6 hours between successive
observations) and it is comprised of a series of optical cross
sections of SAMs that are separated by approx. 1.5-2 µm. A
standard shoot apical meristematic cell has a diameter of about
5 - 6 µm and hence in most cases, a single cell is not visible in
more than 3-4 slices when the tissue is sparsely imaged at the
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Fig. 6. Results on the temporal tracking on Arabidopsis SAM live imaging dataset with time resolution of 3 hours. (A) Raw confocal image slices at 3 µm
deep into the tissue imaged every 3 hours from 3rd hour of observation to 18th hour. (B) Temporal tracking result shown by color coding the cells. The
same cells are marked with the same color. After cell division, the children cells are marked with the same color as their parent, also a red dot is put at the
center of each of the children.

aforementioned z-resolution to avoid photodynamic damage to
the cells.

Each 2D image slice in the 4D confocal image stack is
further segmented into individual cell slices. The choice of the
2D segmentation algorithm is largely data-specific. For our ex-
periments on the SAM tissues, we use an adaptive Watershed
segmentation method [20] that learns the ‘h-minima’ threshold
directly from the image data so that a uniformity in cell sizes is
maintained as a result of the segmentation. This method works
satisfactorily for SAM cells as, in general, all SAM cells on
a 2D confocal slice have similar sizes. This 2D segmentation
method is also robust to over and under-segmentation errors
to a large extent.

The image slices in one single 3D confocal stack is al-
ready registered because of minimal movement of the tissue
specimen during imaging at any given time point of observa-
tion. However, during successive observations the specimen is
moved in and out of the imaging setup which causes rotation
and shift of the imaged 3D stack from that at the previous time
point. Thus, the image slices in successive time points have
to be registered prior to the cell-tracking. The dataset-1 was
given to us preregistered and for experimental dataset-2, we
register the cell slices across time between any two confocal
images of the tissue using our ‘local graph’ based registration
technique [21]. This is a fully automated landmark based regis-
tration method that finds out correspondences between the two
image slices and utilizes these correspondences (landmarks) to
register one image to the other.

B. Tracking Results and Analysis
We have tested our proposed cell tracking method on two

4D confocal stacks of Arabidopsis SAM. The details of CLSM
imaging for generating the raw data is described in Sec. IV-A.
The first dataset contains 3D stacks of Images observed every
3 hours and in the second dataset, the 3D image-stacks are
taken every 6 hours. In both the datasets, the z-resolution in
each 3D stack is 1.5µm.

For spatial tracking across a 3D stack or to track cells in
one SAM slice observed at multiple time points, we apply
our tracker sequentially, as our tracker finds correspondences
between cells from one slice to another. Thus to generate cell
lineages between two time points ‘t’ and ‘t+4’, we run our
tracker 4 times on successive pairs of images ((t, t+1), (t+1,
t+2), (t+2, t+3), (t+3, t+4)).

1) Temporal Tracking on Dataset 1: Fig. 6 shows a
typically obtained result for temporal tracking in the Dataset 1.
Fig. 6A shows raw confocal image slices at a depth of 3 µm
from the tip of SAM through 6 consecutive time points (3rd

to 18th hours). Although the images are registered, because
of the growth of the cells in the tissue there are local shifts in
the cells’ positions, which makes the task of temporal tracking
more challenging. The segmentation and tracking results for
these slices are shown in Fig. 6B, where the slices of one cell
across different time points are marked with the same color.
We have also marked the 12 cell division events detected by
the tracker on the same images. The children cells are marked
with red dots and they share the same color with their parent
cell. The result portrays the typical high value of accuracy we
obtain through our tracker to generate temporal cell lineages.

2) Combined Spatio-Temporal Tracking On Dataset-1:
We perform spatial cell tracking across the depth of the
3D confocal image stacks and combine them with temporal
tracking of the same cells across time in Fig. 7. We sample
three consecutive spatial slices from confocal stacks at 4
different time points (at 12th, 15th, 18th and 21st hours of
observation) and the tracking result for them are shown. The
2D slices coming from the same 3D cell are correctly tracked
for all the cells across 4 different time instants and are marked
with the same color. It can be observed that slices of new cells
appear as we go deeper into the tissue and as expected, they are
not matched to any cell from the slice above. Again, because of
the growth in tissue over time, some new cells become visible
in the chosen focal planes and the tracks are initialized. In
such cases, these cell slices or tracks are initialized with a
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Fig. 7. Results showing combined spatio-temporal tracking on Arabidopsis SAM dataset 1. A number of cells are tracked across four time points of observation
(12th, 15th, 18th and 21st hours). Three image slices are sampled from the 3D stack at each time point (at 3 µm, 4.5 µm and 6 µm respectively). Cell
slices corresponding to the same cell across space and time are marked with the same color. Cell divisions are also detected and the children cells having the
same colors as their parents are marked with red dots.

new label (a random color as in this figure) and each of their
correspondences are searched in the next deeper slice and in
the next observational time points .

The complete tracking result on dataset 1 (7 slices and 12
time points) is summarized quantitatively in Table I. We split
the results in four different classes, True Positive (TP), False
Positive (FP), True Negative (TN) and False Negative (FN).
TP corresponds to the cases where two cell slices are correctly
matched either in space or time. When cell slices from two
different cells are incorrectly matched together, it falls under
FP. When the tracker fails to pick up a correct correspondence,
it is represented by FN and its opposite case is tabulated under
TN. From Table I, it can be seen that for spatial tracking,
the correctly tracked cases (TP and TN combined) is as high
as 98% whereas FP and FN cases are merely around 2%.
Similar accuracy is observed for temporal tracking too, where
the accuracy of the tracker is more than 97.5%. The tracker
can successfully detect cell divisions as out of 33 cell division
events in 36 hours, 31 events ere correctly picked up by the

TABLE I
TRACKING RESULT SUMMARY: DATASET 1

TP FP TN FN
Spatial 86% 0.25% 12.13% 1.62%

Temporal 83% 0% 14.66% 2.34%
Division (L1) 31/33 0 - 2/33

tracker and there is no False Positive.
3) Tracking With Larger Time Gaps - Dataset 2: To eval-

uate the accuracy of the tracker in the situations where the
temporal resolution is small, i.e., the 3D stacks are imaged
after large time gaps we tested the proposed tracker on a
second dataset. In this dataset (dataset 2), the imaging is done
every 6 hours (compared to 3 hours for dataset 1). With a
longer gap between observations, the deformation of the cells
in the tissue is even more visible, which results in larger
shifts between centroid locations of the same cell in successive
time points. Moreover, there are more number of cell division
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Fig. 8. Results on the temporal tracking on Arabidopsis SAM live imaging dataset where the images are collected through three days with time resolution
of 6 hours between successive observations. (A) Raw confocal image slices from L1 layer of the tissue imaged every 6 hours from 0th hour of observation
to 66th hour. (B) Temporal tracking result shown by color coding the cells. The same cells are marked with the same color. The cell division events are also
detected with perfect accuracy and are displayed on this figure the same way as Fig. 6.

events which makes the temporal tracking problem even more
challenging.

Because of the robustness of the proposed method, we
obtain highly accurate temporal tracking results on dataset-2
as seen in Fig. 8 with the same set of CRF parameters that was
used for dataset-1. We also show that our method is capable
of maintaining tracks for long durations (66 hours as shown
in the figure) and it detected all legitimate cell division events.
The results on spatial tracking are not presented here as each
3D stack is structurally and visually very similar to that of
dataset 1.

C. Comparison of the Proposed Method with the State-of-the-
Art

We have compared our proposed tracking method with the
‘local-graph’ based cell tracker [13] and also with a baseline
tracker. In order to show the improvements in tracking accu-
racy using contextual information, we designed the baseline
tracker on the same local cell shape features as used to com-
pute the node potentials in Sec. III-E and the tracker associates
cell slices across images using ‘Hungarian algorithm’. Also,
if any associated pair of cells have a feature distance larger
than a predefined threshold, the track is terminated and re-
initialized. Fig. 9A shows the tracking result by using this
baseline tracker on four spatially sampled image slices from a
3D image stack. A number of wrong associations are marked
by white arrows. Fig. 9B and Fig. 9C shows tracking results
on the same images for [13] and the proposed method respec-
tively. The baseline tracker generates many wrong associations
because the cell shapes are often very similar even in a close
neighborhood. The tracker proposed in [13] performs much
better than the baseline tracker and the errors comprise of
both false-positives and false-negatives along with a number
of switched tracks. The proposed method, however, performs
the best as the errors obtained are much fewer in numbers
than both [13] and the baseline and therefore validates that
the local contextual information indeed aids spatio-temporal

cell tracking for tightly packed multilayer tissues.

D. Learning the CRF Parameters

We use manually ground-truthed correspondences in a small
subset of the dataset-1 as our training set to learn the best
set of values for different parameters and the same set of
learnt parameter values are used for all the experimental results
shown in this paper. The parameters used in the cell division
detection method (see Sec. III-C) are learnt independently
from the CRF parameters. For each of the parameters, we first
choose a range for the parameter value and then uniformly
sample a number of values from within that range. Now, we
generate generate combined sets of parameter values using
every possible combination. Finally, on the training dataset,
the best set of parameters out of all such candidates is selected
using a 5-fold cross validation.

E. Discussion on the Limitations of the Proposed Method

The accuracy of the proposed cell tracking method depends
on spatio-temporal registration of the image slices in the
4D stack. The parameters of the tracker can be tuned in
order to account for some error in registration but for major
transformations across image slices, the tracker would not
work satisfactorily. As we have shown in our experiments,
the tracker can handle moderate deformations of the growing
cells. However, if the deformation changes both the nominal
shape of individual cells as well as the topology of their local
neighbourhood, it becomes more challenging and in some
cases leads to failure of the tracker. Likewise, this present
tracking algorithm is not designed to handle large displace-
ments or motions of individual cells, but it can still provide
good tracking accuracy as long as the local neighbourhood
structure around a cell is not jeopardized.

V. CONCLUSION AND FUTURE WORK

We have presented a method for automatically tracking in-
dividual cells in closely packed developing multilayer tissues.
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Fig. 9. Comparison of the spatial tracking results as obtained from the proposed method with the results from [13] and a baseline tracker. The results are
shown on a set of four spatially sampled image slices from a 3D image stack of Arabidopsis SAM. The tracking results are shown using similar color-coding
as in the previous figures and the locations of errors in tracking are marked by white arrows. (A) The results obtained by using the baseline tracker contain
many errors as it is designed on local cell shape features and the cell shapes even from a close neighborhood can be very stereotypical. (B) Results obtained
by using [13] are much better in accuracy but still contain a number of FP, FN and switched tracks. (C) The proposed method performs the best out of these
three with very few errors and no track switching.

We observed that cells in a close cluster in the tissue can have
very similar image features and hence we leveraged upon the
local spatial geometric structure and topology of the relative
positions of the neighbouring cells to robustly track growing
cells in the tissue in presence of imaging noise. We have also
shown how to detect cell divisions prior to temporal tracking
in order to find out the proper terminating point of individual
cell lineages. Experiments were conducted on two 4D confocal
stacks Arabidopsis SAM having different temporal resolutions
and the results indicate the high accuracy obtained through the
proposed method for both spatial and temporal tracking.

Future work would include the integration of this spatio-
temporal tracking method with our image analysis components
such as segmentation [20], registration [21] and the cell
resolution 3D reconstruction methods [22], [23] to design a
complete 4D image analysis pipeline. This pipeline could be
effective for generating cell division and cell growth statistics
in a fully automated, high-throughput manner. These statistics

can help us model the spatio-temporal interplay between cell
growth and cell division in a complex multi-layered tissue.
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