Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Cdc37/Hsp90 Protein Complex Disruption Triggers an Autophagic Clearance Cascade for TDP-43 Protein

Abstract

The RNA-binding protein, trans-active response DNA-binding protein 43 (TDP-43), is normally found in the nucleus, but in amyotrophic lateral sclerosis, frontal temporal dementia, and some cases of Alzheimer disease it is cleaved and mislocalized to the cytosol, leading to accumulation. The mechanisms contributing to this are largely unknown. Here, we show that part of the normal clearance cascade for TDP-43 involves the Cdc37/Hsp90 complex. An Hsp90 inhibitor that disrupts the Cdc37/Hsp90 complex reduced TDP-43 levels to a greater extent than a standard Hsp90 ATPase inhibitor. When Cdc37 was depleted, TDP-43 underwent proteolytic clearance that was dependent on nuclear retrotranslocation and autophagic uptake. Accumulation of the microtubule-associated protein tau prevented the clearance of cleaved TDP-43, but not its production. This caused cleaved TDP-43 to accumulate, a feature observed in the brain of persons with Alzheimer disease. Clearance of cleaved TDP-43 was also prevented by knockdown of the autophagic inducer beclin1. Thus, in cells where TDP-43 clearance is normally needed, a system that employs manipulation of the Hsp90 complex and autophagy exists. But when tau accumulation is occurring, cleaved TDP-43 can no longer be cleared, perhaps explaining the emergence of these co-pathologies.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View