Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Calcified plaque cross-sectional area in human arteries: Correlation between intravascular ultrasound and undecalcified histology

Abstract

Background

The purpose of this investigation was to quantify the amount of intralesional calcium detected by intravascular ultrasound (IVUS) compared with undecalcified histology in human arteries. This method preserves intralesional calcium and reduces sectioning artifacts, thereby providing an accurate measure of calcium plaque morphology.

Methods and results

Ten arterial segments (5 coronary, 5 iliac) were obtained at autopsy. IVUS imaging was performed with a 4.9F catheter at an automated pullback rate of 1.0 mm/s. The undecalcified arteries were dehydrated in ascending alcohol and polymerized in glycol methylmethacrylate. The arteries were cut into 200-microm sections with an Isomet low-speed saw and stained with Goldner's trichrome. The lumen cross-sectional area, the calcium plaque cross-sectional area, the calcium plaque depth, length, and angle of arc of calcified plaque were measured from the IVUS images and histologic sections. In 24 selected cross sections, there were 38 separate calcium plaques. An independent observer correctly identified 34 of 38 calcified plaques for a sensitivity of 89% and specificity of 97%. The total mean calcified plaque cross-sectional area measured from histology was 4.6 +/- 4.1 mm2 compared with 2.8 +/- 2.3 mm2 by IVUS (P =.002). Plaque depth measured by histology was 1.2 +/- 0.4 mm versus 0.7 +/- 0.2 mm by IVUS (P =.001). The length of calcium plaques measured by histology was 3.6 +/- 1.78 mm versus 3.6 +/- 1.5 mm for IVUS (r = 0.79).

Conclusions

IVUS accurately depicts circumferential calcified lesions with high sensitivity (89%) and specificity (97%). However, IVUS underestimates the total calcified plaque cross-sectional area by 39%. This is mainly because of the inability of the ultrasound to penetrate intralesional calcium, which leads to an underestimation of the depth of calcium by 45%.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View