Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

A reusable neural network pipeline for unidirectional fiber segmentation

Abstract

Fiber-reinforced ceramic-matrix composites are advanced, temperature resistant materials with applications in aerospace engineering. Their analysis involves the detection and separation of fibers, embedded in a fiber bed, from an imaged sample. Currently, this is mostly done using semi-supervised techniques. Here, we present an open, automated computational pipeline to detect fibers from a tomographically reconstructed X-ray volume. We apply our pipeline to a non-trivial dataset by Larson et al. To separate the fibers in these samples, we tested four different architectures of convolutional neural networks. When comparing our neural network approach to a semi-supervised one, we obtained Dice and Matthews coefficients reaching up to 98%, showing that these automated approaches can match human-supervised methods, in some cases separating fibers that human-curated algorithms could not find. The software written for this project is open source, released under a permissive license, and can be freely adapted and re-used in other domains.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View