Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Control and control-oriented modeling of PEM water electrolyzers: A review

Abstract

As the most abundant element in the universe, hydrogen is a promising energy carrier for decarbonizing various economic sectors. Green hydrogen production from water electrolysis is critical to the success of this path with polymer electrolyte membrane (PEM) water electrolyzer (WE) as a key technology due to its quick dynamic response and high energy efficiency. Nevertheless, vigorous control algorithms are necessary to maximize the performance, efficiency, and useable lifetime of PEM WEs. This review attempts to collate the modeling frameworks relevant to controller design and provides a survey of various control techniques used in literature to overcome the challenges associated with the transient operation of PEM WEs. To better understand the underlying physics and the coupling between different subsystems, we first review control-oriented electrochemical, thermal, mass transport, and equivalent circuit models. We identify manipulable system variables and control knobs that can be employed for a better system operation in the next step, and finally, we discuss different controllers used in literature, including traditional control approaches, optimal control methods, and other advanced techniques such as nonlinear and neural network controllers.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View