Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Correction of megavoltage cone‐beam CT images of the pelvic region based on phantom measurements for dose calculation purposes

Abstract

Megavoltage cone-beam CT (MVCBCT) is an imaging technology that provides a 3D representation of the patient in treatment position. Because it is a form of x-ray tomography, MVCBCT images give information about the attenuation coefficients of the imaged tissues, and thus could be used for dose calculation. However, the cupping and missing data artifacts seen on MVCBCT images can cause inaccuracies in dose calculations. To eliminate these inaccuracies, a correction method specific to pelvis imaging and based on phantom measurements has been devised. Pelvis-shaped water phantoms of three different sizes were designed and imaged with MVCBCT. Three sets of correction factors were created from the artifacts observed in these MVCBCT images by dividing the measured CT number by the predefined CT number for water. Linear interpolation is performed between the sets of correction factors to take into account the varying size of different patients. To compensate for the missing anatomy due to the limited field of view of the MVCBCT system, the MVCBCT image is complemented with the kilovoltage CT (kVCT) image acquired for treatment planning.When the correction method is applied to an anthropomorphic pelvis phantom, the standard deviation between dose calculations performed with kVCT and MVCBCT images is 0.6%, with 98% of the dose points agreeing within +/- 3%.With uncorrected MVCBCT images this percentage falls to 75%. An example of dose calculation performed with a corrected clinicalMVCBCT image of a prostate cancer patient shows that changes in anatomy of normal tissues result in variation of the dose distribution received by these tissues.This correction method enablesMVCBCT images to be used for the verification of the daily dose distribution for patients treated in the pelvis region.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View