Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

E-scooter related injuries: Using natural language processing to rapidly search 36 million medical notes

Abstract

Background

Shareable e-scooters have become popular, but injuries to riders and bystanders have not been well characterized. The goal of this study was to describe e-scooter injuries and estimate the rate of injury per e-scooter trip.

Methods and findings

Retrospective review of patients presenting to 180 clinics and 2 hospitals in greater Los Angeles between January 1, 2014 and May 14, 2020. Injuries were identified using a natural language processing (NLP) algorithm not previously used to identify injuries, tallied, and described along with required healthcare resources. We combine these tallies with municipal data on scooter use to report a monthly utilization-corrected rate of e-scooter injuries. We searched 36 million clinical notes. Our NLP algorithm correctly classified 92% of notes in the testing set compared with the gold standard of investigator review. In total, we identified 1,354 people injured by e-scooters; 30% were seen in more than one clinical setting (e.g., emergency department and a follow-up outpatient visit), 29% required advanced imaging, 6% required inpatient admission, and 2 died. We estimate 115 injuries per million e-scooter trips were treated in our health system.

Conclusions

Our observed e-scooter injury rate is likely an underestimate, but is similar to that previously reported for motorcycles. However, the comparative severity of injuries is unknown. Our methodology may prove useful to study other clinical conditions not identifiable by existing diagnostic systems.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View