Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Epigenetic Induction of Cancer-Testis Antigens and Endogenous Retroviruses at Single-Cell Level Enhances Immune Recognition and Response in Glioma.

Abstract

UNLABELLED: Glioblastoma (GBM) is the most common malignant primary brain tumor and remains incurable. Previous work has shown that systemic administration of Decitabine (DAC) induces sufficient expression of cancer-testis antigens (CTA) in GBM for targeting by adoptive T-cell therapy in vivo. However, the mechanisms by which DAC enhances immunogenicity in GBM remain to be elucidated. Using New York esophageal squamous cell carcinoma 1 (NY-ESO-1) as a representative inducible CTA, we demonstrate in patient tissue, immortalized glioma cells, and primary patient-derived gliomaspheres that basal CTA expression is restricted by promoter hypermethylation in gliomas. DAC treatment of glioma cells specifically inhibits DNA methylation silencing to render NY-ESO-1 and other CTA into inducible tumor antigens at single-cell resolution. Functionally, NY-ESO-1 T-cell receptor-engineered effector cell targeting of DAC-induced antigen in primary glioma cells promotes specific and polyfunctional T-cell cytokine profiles. In addition to induction of CTA, DAC concomitantly reactivates tumor-intrinsic human endogenous retroviruses, interferon response signatures, and MHC-I. Overall, we demonstrate that DAC induces targetable tumor antigen and enhances T-cell functionality against GBM, ultimately contributing to the improvement of targeted immune therapies in glioma. SIGNIFICANCE: This study dissects the tumor-intrinsic epigenetic and transcriptional mechanisms underlying enhanced T-cell functionality targeting decitabine-induced cancer-testis antigens in glioma. Our findings demonstrate concomitant induction of tumor antigens, reactivation of human endogenous retroviruses, and stimulation of interferon signaling as a mechanistic rationale to epigenetically prime human gliomas to immunotherapeutic targeting.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View