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A Simple and Trustworthy Asymptotic t Test in
Difference-in-Differences Regressions∗

Cheng Liu
Economics and Management School

Wuhan University, China

Yixiao Sun
Department of Economics
UC San Diego, USA

Abstract

We propose an asymptotically valid t test that uses Student’s t distribution as the reference
distribution in a difference-in-differences regression. For the asymptotic variance estimation,
we adopt the clustering-by-time approach to accommodate cross-sectional dependence. This
approach often assumes the clusters to be independent across time, but we allow them to
be temporally dependent. The proposed t test is based on a special heteroscedasticity and
autocorrelation robust (HAR) variance estimator. We target the type I and type II errors and
develop a testing-oriented method to select the underlying smoothing parameter. By capturing
the estimation uncertainty of the HAR variance estimator, the t test has more accurate size
than the corresponding normal test and is just as powerful as the latter. Compared to the
nonstandard test developed in the literature, the standard t test is just as accurate but much
more convenient to use. Model-based and empirical-data-based Monte Carlo simulations show
that the t test works quite well in finite samples.

Keywords: Basis Functions, Difference-in-Differences, Fixed-smoothing Asymptotics, Het-
eroscedasticity and Autocorrelation Robust, Student’s t distribution, t test

JEL Classification Number : C12, C33

1 Introduction

The paper considers estimation and inference in a difference-in-differences (DD) regression. To
make trustworthy inferences, we have to obtain a reliable estimator of the standard error. In
the presence of both temporal and cross-sectional dependence, the basic clustered standard error
estimator is inconsistent. If one clusters the data by individual, observations may be correlated
for the same individual, but they are often required to be independent for different individuals.
See, for example, Bertrand, Duflo, and Mullainathan (2004, BDM hereafter). If one clusters the
data by time, then observations in the same time period can have arbitrary correlation, but they
are often required to be independent across time. In this paper, we consider clustering by time
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three anonymous referees, and an associate editor. Muyang Ren provides excellent research assistance. Address
correspondence to Yixiao Sun, Department of Economics, UCSD, 9500 Gilman Drive, La Jolla, CA 92093-0508,
USA.
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but allow the clusters to be temporally dependent. Our approach is in the spirit of Driscoll and
Kraay (1998), but we employ a different heteroscedasticity and autocorrelation robust (HAR)
variance estimator. In principle, we could consider clustering by individual and allow for spatial
dependence across individuals, but this requires an extra variable to indicate the direction and
strength of the spatial dependence. In fact, if such a variable is available, we can use the approach
of Kim and Sun (2013), which treats the temporal and cross-sectional dependence symmetrically.
An advantage of the clustering-by-time approach is that no additional information is needed, as
the time index provides a natural yardstick for measuring the temporal dependence.

For the DD regression, the clustering-by-time approach amounts to collapsing the panel data
into time series data. Cross-sectional dependence affects the variance of the collapsed time series
but has no effect on its temporal dependence. To estimate the asymptotic variance of the DD
estimator, we need to estimate only the long-run variance (LRV) of some collapsed time series.
There are many nonparametric LRV estimators, among which kernel LRV estimators are popular
in applied research (see, for example, Andrews (1991)). A recent study by Yu Sun (2017, hereafter
SY) adopts the kernel approach. In this paper, we consider the series approach to LRV estimation.
The most primitive version of this estimator is the simple average periodogram estimator, which
involves taking a simple average of the first few periodograms. The number of periodograms is the
smoothing parameter underlying this series LRV estimator. For a general series LRV estimator,
the number of the basis functions, K, is the smoothing parameter that characterizes the amount
of smoothing.

A main contribution of the paper is to establish the fixed-smoothing asymptotics of the
Studentized t statistic. The fixed-smoothing asymptotics is obtained under the assumption that
K is fixed as T goes to infinity. The cross-sectional sample size n can be fixed or grow with T.
We also assume that the policy change takes place in the middle of the time series so that the
number of pre-treatment periods is comparable to the number of post-treatment periods. The
asymptotic approximation so obtained captures the randomness of the nonparametric variance
estimator. It reflects the effect of the basis functions, the level of smoothing, and the effect of
the trend function if a trend is present in the DD regression. Moreover, it is more accurate than
the widely used standard normal approximation, which fails to capture these effects. The fixed-
smoothing asymptotic distribution is nonstandard. Nevertheless, it is free from any nuisance
parameter and can be simulated without too much diffi culty.

Another contribution of the paper is the design of a new set of basis functions such that the
t statistic follows the standard t distribution under the fixed-smoothing asymptotics. This is
achieved by transforming a standard set of basis functions in L2 [0, 1] . The transformation is a
type of Gram-Schmidt orthonormalization. It ensures that the asymptotic variance estimator is
equal in distribution to an average of iid chi-square variates in large samples, which is necessary
for the asymptotic t approximation theory. The asymptotic t test is very convenient to use,
as the critical values are readily available from standard statistical tables and programming
environments.

The smoothing parameter K plays a key role in determining the size and power tradeoff
of the asymptotic t test. In the literature on LRV estimation and HAR inference, Phillips
(2005) proposes to choose K by minimizing the asymptotic mean square error (MSE) of the LRV
estimator. However, the MSE-based choice of K may not be optimal for testing problems. In
hypothesis testing, the main objects of interest are the type I and type II errors. The choice of
K should then be targeted at these fundamental quantities. Following Sun (2011), we develop a
selection procedure that is optimal for the testing problem at hand. In particular, we choose K
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to minimize the type II error of the asymptotic t test while controlling its type I error.
We conduct two sets of simulation experiments. In the first set of experiments, we consider

the data that is generated from a theoretical econometric model. These experiments are de-
signed to evaluate the performance of our test relative to other tests under different simulation
configurations such as the time-series and cross-sectional sample sizes, the time series and cross-
sectional dependence, and the smoothing-parameter choices. More specifically, we compare the
performance of a fixed-smoothing test with that of the corresponding asymptotic normal test.
In all cases, a fixed-smoothing test is found to be more accurate than the corresponding asymp-
totic normal test. Power study under data-driven K-values shows that all tests have similar
power properties. In view of its accurate size, competitive power, and its convenience to use,
we recommend using the asymptotic t test, especially when cross-sectional dependence may be
present.

In the second set of experiments, we follow BDM (2004) and consider the data that is em-
pirically calibrated to the Current Population Survey (CPS). These experiments are designed to
evaluate the relative performance of our test in an empirically relevant situation. We find that
our test is competitive even relative to a most trustworthy test considered by BDM (2004). This
is encouraging, especially given that the latter test exploits additional information embedded in
our simulation design while our test does not. Our test, therefore, can lead to more trustworthy
inferences in empirical applications, even when the time series sample size is relatively small.

This paper contributes to the literature on the fixed-smoothing asymptotics in general and the
asymptotic F and t test theory in particular. The asymptotic F and t tests have been developed
in Sun (2011) for linear trend regressions, in Sun (2013) for stationary moment processes, in Sun
(2014c) for highly persistent moment processes, in Hansen (2007) for stationary panel time series,
and in Hwang and Sun (2017) for stationary data in an overidentified GMM framework. Lazarus,
Lewis, Stock, and Watson (2016) provide some practical guidance on the F and t tests for time
series regressions. See also Sun and Kim (2012, 2015) for the F limit theory for the J statistic,
and the F and t limit theory for the Wald statistic and t statistic in a spatial setting. None of
these papers considers the DD regression where the regressor of interest is a special deterministic
function and is hence nonstationary by definition. More specifically, for the treatment group,
this regressor takes the value 0 in the pre-treatment periods and switches to the value 1 in the
post-treatment periods. From a time series perspective, this resembles a deterministic mean shift,
and the process has energy concentrated at the origin. As a result, the asymptotic variance of
the DD estimator depends only on the long-run variance of the regression- error process. This is
in contrast to the stationary case when the asymptotic variance depends on the long-run variance
of the product of the regressor process and the regression-error process.

More broadly, the paper is related to the fixed-b asymptotic theory where kernel LRV esti-
mators are used. See Kiefer and Vogelsang (2002a, 2002b, 2005), Atchadé and Cattaneo (2014)
and Sun (2014a) and the references therein. A paper that is closest to this paper is the paper by
SY (2017), who considers the fixed-b asymptotic theory for DD regressions. There are a number
of theoretical and practical differences between SY (2017) and this paper. First, SY (2017) re-
quires n to be finite while we can allow n to be finite or grow with T , and even larger than T .
In practice, n is usually much larger than T . Second, the asymptotic distribution of SY’s test
statistic is a non-standard distribution while that of our recommended test statistic is a standard
t distribution. As a result, our recommended test is easier to use than SY’s test, which requires
simulations to obtain the critical values. Third, we have provided a data-driven procedure for
choosing our smoothing parameter K while SY (2017) doesn’t provide a method to choose her
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smoothing parameter b. In conclusion, our asymptotic theory accommodates more general cases,
and our test is more convenient for practical use.

The rest of the paper is organized as follows. Section 2 presents the basic setting and intro-
duces the DD estimator. Section 3 establishes the fixed-smoothing asymptotics of the t statistic,
and Section 4 develops an asymptotically valid t test. Section 5 proposes a data-driven and
testing-optimal approach to choosing the smoothing parameter K. Section 6 presents a step-by-
step summary of our testing procedure and provides some guidance on applying our t test to
multi-level data that are quite prevalent in DD regressions. Section 7 reports the simulation
evidence. The last section concludes. The appendix contains proofs and additional discussions
on the t test.

2 The Basic Setting and the DD Estimator

We consider the difference-in-differences regression

Yit = λt + τ (t)′ αi + Treati · β10 + Postt · β20 + Treati · Postt · θ10 + Z ′itθ20 + εit, (1)

for i = 1, 2, . . . , n and t = 1, 2, . . . , T, where λt is the time fixed effect and τ (t)′ αi is the individual-
specific time trend. If τ (t) = (1, t)′ and αi = (αi0, αi1)′, for example, we have τ (t)′ αi = αi0+αi1·t,
where αi0 is the individual fixed effect and αi1 is the individual-specific linear trend coeffi cient.
We assume that the first element of τ (t) is 1 so that individual fixed effects are always included.
The rest elements of τ (t) take a parametric form such as polynomials. Treati is a dummy
variable indicating the treatment or control group. Individual i belongs to the treatment group
if Treati is equal to 1; otherwise, individual i belongs to the control group. Without loss of
generality, we assume that observations are sorted along the cross-sectional dimension so that
Treati = 1 {i ≤ µn} for some µ ∈ (0, 1). Postt is a dummy variable indicating the post-treatment
periods. That is, Postt = 1 {t ≥ νT + 1} for some ν ∈ (0, 1) . For notational convenience, we
assume that µn and νT are positive integers1. Zit is a dZ × 1 vector of other covariates. The
parameter of interest is θ10, which captures the effect of the policy intervention.

To estimate θ10, we first remove the trend component τ (t)′ αi. In view of individual het-
erogeneity in the intercept and the slope coeffi cient, we detrend each time series individually.
Let

Y τ
it = Yit −

(
T∑
s=1

Yisτ (s)′
)(

T∑
s=1

τ (s) τ (s)′
)−1

τ (t) ,

Zτit = Zit −
(

T∑
s=1

Zisτ (s)′
)(

T∑
s=1

τ (s) τ (s)′
)−1

τ (t)

be the detrended variables, and define λτt , Post
τ
t , and ε

τ
it similarly. Then

Y τ
it = λτt + Postτt · β20 + Treati · Postτt · θ10 + (Zτit)

′θ20 + ετit.

Note that the group-specific effect Treati · β10 has been eliminated by detrending.

1 In an empirical application where the policy intervention takes place at t∗ + 1, we can set ν = t∗/T. We can
set µ similarly.
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Next, we remove the time fixed effect λτt using the cross-sectional fixed-effect transformation.
Let

Ỹ τ
it = Y τ

it −
1

n

n∑
j=1

Y τ
jt, (2)

and define other variables such as Z̃τit, T̃ reati, and ε̃
τ
it similarly. Then

Ỹ τ
it = T̃ reati · Postτt · θ10 + (Z̃τit)

′θ20 + ε̃τit. (3)

Note that the cross-sectional fixed-effect transformation eliminates both λτt and Post
τ
t · β20.

The above two transformations remove individual fixed effects, time fixed effects, and individual-
specific parametric trends. The order of the two transformations does not matter. We obtain
the same equation (3) if we employ cross-sectional demeaning first and then apply individual
detrending.

Let

Xit =

(
Treati · Postt

Zit

)
, X̃τ

it =

(
T̃ reati · Postτt

Z̃τit

)
, (4)

and θ0 = (θ10, θ
′
20)′ . Then the OLS estimator θ̂ of θ0 = (θ10, θ

′
20)′ is given by

θ̂ =

[
n∑
i=1

T∑
t=1

X̃τ
it(X̃

τ
it)
′

]−1 [ n∑
i=1

T∑
t=1

X̃τ
itỸ

τ
it

]
. (5)

The estimator θ̂ is numerically identical to the fixed-effects OLS estimator based on the original
equation, that is, the OLS estimator with time dummies, individual dummies, and the interactions
between individual dummies and the trend function.

Since the coeffi cients associated with Zit may not have any causal interpretation and are
often not the parameters of interest in empirical applications, we focus only on the parameter
θ10 in this paper. As an estimator of θ10, the first element θ̂1 of θ̂ is often referred to as the
difference-in-differences estimator, as it can be represented as a difference in two differences.

3 Fixed-Smoothing Asymptotics

3.1 Asymptotic Distribution of the DD Estimator

To investigate the asymptotic properties of θ̂, we make the following assumption on the trend
function.

Assumption 3.1 There exists a dτ × dτ diagonal matrix Dτ such that

τD ([Tr]) := Dτ × τ ([Tr])→ τ (r)

uniformly over r ∈ [0, 1] and

1

T

T∑
t=1

τD (t) τD (t)′ →
∫ 1

0
τ(r)τ(r)′dr as T →∞,

where
∫ 1

0 τ(r)τ(r)′dr is positive definite.
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For commonly used polynomial trend functions, Assumption 3.1 holds trivially. For example,
when τ (t) = (1, t)′ , we can choose Dτ = diag(1, 1/T ), in which case

1

T

T∑
t=1

τD (t) τD (t)′ =
1

T

(
1 0
0 1

T

)( ∑T
t=1 1

∑T
t=1 t∑T

t=1 t
∑T

t=1 t
2

)(
1 0
0 1

T

)

=

(
T−1

∑T
t=1 1 T−2

∑T
t=1 t

T−2
∑T

t=1 t T−3
∑T

t=1 t
2

)
→
∫ 1

0
τ(r)τ(r)′dr.

Given that the first element of τ (t) is a constant, the (1,1)-th element of Dτ is always 1.
Next, we decompose Zit into a sum of three terms:

Zit = λzt + αzi · τ (t) + Zit,

where λzt and αzi · τ (t) represent time fixed effects and parametric trend effects, respectively.
Note that αzi is a matrix with dimension dZ × dτ . Let

Z̄treat·,t =
1

nµ

µn∑
i=1

Zit and Z̄control·,t =
1

n(1− µ)

n∑
j=µn+1

Zjt

be the averaged time series of Z for the treatment group and the control group, respectively.
Define

Z̃it = Zit − Z̄·,t and Z̃τit = Z̃it −
(

T∑
s=1

Z̃isτ (s)′
)(

T∑
s=1

τ (s) τ (s)′
)−1

τ (t)

where Z̄·,t = n−1
∑n

i=1Zit is the overall cross-sectional average. We make the following assump-
tions on Zit.

Assumption 3.2

1

T

[Tr]∑
t=1

Z̄treat·,t · τD (t)′ =
1

T

[Tr]∑
t=1

Z̄control·,t · τD (t)′ + op(1)

uniformly over r ∈ [0, 1].

Assumption 3.3 (nT )−1∑T
t=1

∑n
i=1 Z̃τit(Z̃τit)′ →p Γ for some positive-definite matrix Γ.

Assumption 3.2 is weaker than Z̄treat·,t = Z̄control·,t for all t. It requires that, in terms of their
projections onto the trend function, the averaged time series {Z̄treat·,t } and {Z̄control·,t } do not differ
systematically across the treatment and control groups. More precisely, if for any block of the
time series spanning t = [Tr1] , [Tr1]+1, . . . , [Tr2] , the projections of {Z̄treat·,t } and {Z̄control·,t } onto
the trend function are approximately the same, then Assumption 3.2 holds. This is similar to
the “parallel paths”assumption that is often imposed in a difference-in-differences regression. To
make such an assumption more plausible in a DD regression, we may follow a standard empirical
practice and redefine the treatment and control groups. We assume that this practice has been
followed so that Assumption 3.2 holds.

Assumption 3.3 holds if
(i) T−1

∑T
t=1 Z̃itZ̃ ′it →p Γ uniformly over i = 1, 2, . . . , n;
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(ii) T−1
∑T

t=1 Z̃itτD (t)′ = op (1) uniformly over i = 1, 2, . . . , n.
Liu and Sun (2018), the working-paper version of this paper, provides suffi cient conditions

for these two conditions. In particular, it is shown that condition (i) can hold when n/T p/2 → 0
for some p ≥ 4. When p is large enough, the rate condition n/T p/2 → 0 can hold even if n is
much larger than T. Our simulation results show that our test performs quite well when n is
much larger than T .

To investigate the strength of the signal in X̃τ
it, we write

1

nT

T∑
t=1

n∑
i=1

X̃τ
it(X̃

τ
it)
′ = S :=

(
S11 S12

S21 S22

)
, (6)

where

S11 =
1

T

T∑
t=1

[Postτt ]2 · 1

n

n∑
i=1

[T̃ reati]
2,

S21 =
1

T

T∑
t=1

Postτt ·
1

n

n∑
i=1

Z̃τit · T̃ reati,

S22 =
1

T

T∑
t=1

1

n

n∑
i=1

Z̃τit(Z̃
τ
it)
′.

Let

Hν (r) = 1 (r ≥ ν)−
[∫ 1

0
1 (s ≥ ν) τ(s)′ds

] [∫ 1

0
τ(s)τ(s)′ds

]−1

τ (r)

be the projection of 1 (r ≥ ν) onto the orthogonal complement of the space spanned by the trend
function τ (r). Hν (r) is the limit of Postτ[Tr] as T →∞.

The following lemma establishes the asymptotic properties of S11, S21, and S22.

Lemma 3.1 Let Assumptions 3.1—3.3 hold. Then
(a) S11 = µ (1− µ)

∫ 1
0 H

2
ν (s) ds+O

(
T−1

)
,

(b) S21 = op (1) ,
(c) S22 = Γ + op (1) .

Given that S21 = op (1), Lemma 3.1 shows that the regressor of interest in the serially de-
trended and cross-sectionally demeaned regression is asymptotically orthogonal to other regres-
sors. The reason to include Zit in the regression is to reduce the regression error so that we can
have a more effi cient estimator. The crucial assumption that drives this result is Assumption
3.2. Without this assumption, S21 will not be op (1) .We leave the case when S21 does not vanish
asymptotically to future research.

To establish the limiting distributions of θ̂ and the asymptotic variance estimator to be defined
later, we maintain the following assumption.

Assumption 3.4 (a) 1√
T

∑[Tr]
t=1

(
1√
n

∑n
i=1 T̃ reati · εit

)
→d ΛB (r) for some Λ > 0.

(b) 1√
nT

∑T
t=1

∑n
i=1Zτit · εit = Op (1) .
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We discuss Assumption 3.4(a) only, as similar discussions apply to Assumption 3.4(b). When
n is fixed, Assumption 3.4(a) is a functional central limit theorem (FCLT) for the time series

{
∑n

i=1 T̃ reati · εit/
√
n}. When n grows with T, {

∑n
i=1 T̃ reati · εit/

√
n} should be regarded as

a triangular array, and Assumption 3.4(a) is an FCLT for a triangular array. There is a vast
literature on time series FCLT, both for cases where the underlying time series is a triangular
array and for cases where it is not. Assumption 3.4(a) is a high-level assumption. Liu and Sun
(2018) provides suffi cient conditions, among which the following condition is also necessary:

E

(nT )−1
[Tr]∑
t=1

n∑
i=1

T̃ reati · εit

 = 0 for all n and T. (7)

This condition holds if

E

T−1

[Tr]∑
t=1

(
ε̄treat·,t − ε̄control·,t

) = 0. (8)

That is, the condition holds if there is no systematic difference in the averages of ε̄treat·,t and ε̄control·,t
over t = [Tr1] , . . . , [Tr2] for any r2 > r1. This is a version of the “parallel paths”assumption in
the DD regression2.

Lemma 3.2 Let Assumptions 3.1—3.4 hold. Then

√
nT (θ̂1 − θ10)→d Λ

µ (1− µ)

∫ 1
0 Hν (r) dB (r)∫ 1

0 H
2
ν (r) dr

d
=

Λ

µ (1− µ)
√∫ 1

0 H
2
ν (r) dr

N(0, 1) (9)

where Λ is defined in Assumption 3.4(a).

Note that we obtain the
√
nT rate of convergence of θ̂1 when both T and n approach infinity,

because we have implicitly assumed weak cross-sectional dependence. For Lemma 3.2 to hold,
we need Assumption 3.4 for only r = ν and 1 and

1√
T

T∑
t=1

τD (t)
1√
n

n∑
i=1

T̃ reati · εit →d Λ

∫ 1

0
τ (r) dB (r) .

In this case, (8) needs to hold for only r = ν and 1. That is, the averages of ε̄treat·,t and ε̄control·,t
over the pre-treatment periods (and post-treatment periods) are the same in the mean sense.
This is the usual “parallel paths”assumption for identification in the absence of a deterministic
trend. We maintain the stronger Assumption 3.4 for technical convenience and for establishing
the asymptotic distribution of the asymptotic variance estimator to be defined later.

2Note that if the trend function τ (t) is present but detrending is not applied, then εit effectively contains

τ (t)′ αi as a component. In this case, a component of 1
nT

∑[Tr]
t=1

(∑n
i=1 T̃ reati · εit

)
is

(1− µ)µ · 1

T

[Tr]∑
t=1

τ (t)′
(

1

nµ

nµ∑
i=1

αi −
1

n (1− µ)

n∑
i=nµ+1

αi

)
:= (1− µ)µ · 1

T

[Tr]∑
t=1

τ (t)′ ·
(
ᾱtreat − ᾱcontrol

)
.

So, unless the average trend effects are the same across the two groups, i.e., E
(
ᾱtreat

)
= E

(
ᾱcontrol

)
, the condition

(7) will be violated and the DD estimator will be inconsistent.
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3.2 The HAR Variance Estimator and the Fixed-smoothing Asymptotics

It follows from Lemma 3.2 that the asymptotic variance of
√
nT (θ̂1 − θ10) is

Λ2 [µ (1− µ)]−1 [µ (1− µ)

∫ 1

0
H2
ν (r) dr]−1.

All the components in the asymptotic variance other than Λ2 can be estimated easily. More
specifically, µ (1− µ)

∫ 1
0 H

2
ν (r) dr can be estimated by S11 as given in (6), and µ (1− µ) can be

estimated by n−1
∑n

i=1[T̃ reati]
2. It suffi ces to estimate Λ2, the long-run variance of

∑n
i=1 T̃ reati ·

εit/
√
n, in order to make inferences about θ10.

Let

ε̂τit = Ỹ τ
it − (X̃τ

it)
′θ̂ and êt =

1√
n

n∑
i=1

T̃ reati · ε̂τit.

Then Λ2 can be estimated by

Λ̂2 =
1

T

T∑
t=1

T∑
s=1

QK

(
t

T
,
s

T

)
êtês,

where QK (·, ·) is a symmetric weighting function and K is the smoothing parameter. The above
estimator belongs to the general class of quadratic long-run variance estimators, which includes
most if not all commonly used nonparametric LRV estimators as special cases. In this paper, we
focus on the series LRV estimator with QK (r, s) given by

QK (r, s) =
1

K

K∑
k=1

Φk (r) Φk (s) ,

where {Φk (r)} are basis functions in L2[0, 1]. In the econometrics literature, the series LRV
estimator has been recently used, for example, in Phillips (2005), Müller (2007), and Sun (2011,
2013, 2014a, 2014b). Plugging the above weighting function into Λ̂2, we obtain

Λ̂2 =
1

K

K∑
k=1

Λ̂2
k for Λ̂k =

1√
T

T∑
t=1

Φk

(
t

T

)
êt.

Thus Λ̂2 is a simple average of some “direct”estimators Λ̂2
k, and K is the effective sample size.

If K is even and {Φk (r)} = {
√

2 sin (2πkr) ,
√

2 cos (2πkr) , k = 1, 2, . . . ,K/2}, then the series
LRV estimator is proportional to the spectral density estimator at the origin that takes a simple
average of the firstK/2 periodograms. The averaged periodogram estimator is a common spectral
density estimator. In the traditional asymptotic framework, Phillips (2005) has shown that the
averaged periodogram estimator is asymptotically equivalent to the kernel LRV estimator based
on the Daniell kernel. For further discussions of series LRV estimation, see Sun (2013) and the
references therein.

The asymptotic variance of θ̂1 can then be estimated by

σ̂2 = Λ̂2 ·
[

1

n

n∑
i=1

(T̃ reati)
2

]−2{
1

T

T∑
t=1

[Postτt ]2

}−1

.
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The corresponding t statistic is

T =

√
nT (θ̂1 − θ10)

σ̂
.

To establish the asymptotic distribution of T, we maintain the following assumption on the
basis functions {Φk (r)} .

Assumption 3.5 The basis functions Φk (·), k = 1, 2, . . . ,K, are piecewise monotonic and con-
tinuously differentiable.

Theorem 3.1 Let Assumptions 3.1—3.5 hold. Then
(a)

σ̂2 →d

(
Λ2 [µ (1− µ)]−2

[∫ 1

0
H2
ν (s) ds

]−1
)
·
(

1

K

K∑
k=1

[∫ 1

0
ΦHk (r) dB (r)

]2
)

jointly with (9), where

ΦHk (r) = Φk (r)− (PHΦk) ·Hν (r)−
[∫ 1

0
Φk (s) τ (s)′ ds

] [∫ 1

0
τ (s) τ (s)′ ds

]−1

τ (r) (10)

and

PHΦk =

[∫ 1

0
Φk (r)Hν (r) dr

] [∫ 1

0
H2
ν (s) ds

]−1

.

(b)

T→d T∞ :=

∫ 1
0 Hν (r) dB (r){

1
K

∑K
k=1

[∫ 1
0 ΦHk (r) dB (r)

]2
}1/2 (∫ 1

0 H
2
ν (s) ds

)1/2

d
=

N(0, 1){
1
K

∑K
k=1

[∫ 1
0 ΦHk (r) dB (r)

]2
}1/2

. (11)

The term (PHΦk)Hν (r) in ΦHk (r) reflects the effect of the estimation uncertainty in θ̂1. If
the projection of Φk (r) onto Hν (r) is zero, then this term disappears. The remaining terms in
ΦHk (r) are the L2 projection of Φk (r) onto the orthogonal complement of the space spanned by
the trend functions in τ (r) . We can also write

ΦHk (r) = Φk (r)− c̃k · 1 (r ≥ ν)− d̃′k · τ (r)

for

c̃k = PHΦk and d̃k =

[∫ 1

0
τ(s)τ(s)′ds

]−1{∫ 1

0
[Φk (s)− (PHΦk) · 1 (s ≥ ν)] τ(s)ds

}
.

So, ΦHk (r) is the L2 projection of Φk (r) onto the orthogonal complement of the space spanned
by 1 (r ≥ ν) and the trend function τ (r) .

Like the finite sample distributions, the limiting distribution of T depends on the trend
function included in the regression, the basis functions used in the asymptotic variance estimation,

10



and the number of basis functions used. This is an attractive feature of the fixed-smoothing
approximation, as it captures the effects of the trend function and the randomness of the HAR
variance estimator, which clearly affect the finite sample distribution of T.

The limiting distribution T∞ is the same regardless of whether time fixed effects or individual
fixed effects are included in the regression. Moreover, it does not depend on the relative sizes
of the two groups. These features make the limiting distribution easy to use. However, it does
depend on the length of the post-treatment periods relative to that of the pre-treatment periods.

Figure 1 plots the nonstandard critical values against the values of K. The critical values are
for a two-sided 5% test. We consider two choices of τ (t) : τ (t) = 1 and τ (t) = (1, t)′, leading to
a model without trend and a model with a linear trend, respectively. It is clear that the critical
values depend on ν, especially when K is small. They also depend on the form of the trend
function τ (t) and the number of basis functions used. In all cases, the critical value decreases
with K and approaches the standard normal critical value, i.e., 1.96, as K increases. While the
standard normal critical value stays the same regardless of the time at which the policy change
takes place, the form of the trend function, and the number of basis functions, the nonstandard
critical value is tailored to each specific case. That is why the asymptotic nonstandard test has
more accurate size than the asymptotic normal test.

2 4 6 8 10 12 14 16 18 20
K

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

w ithout trend (  = 0.5)
w ith trend (  = 0.5)
w ithout trend (  = 0.7)
w ith trend (  = 0.7)

Figure 1: Nonstandard fixed-smoothing critical values for models with and without linear trends
and for different values of ν (νT is the time when the policy change takes place)

4 Asymptotic t Theory

The limiting distribution of T in equation (11) is pivotal but nonstandard. One advantage of
using the series LRV estimator is that we have the freedom to choose the basis functions. We
hope to choose a set of basis functions such that T∞ becomes the standard t distribution.

11



Define

η0 =

∫ 1
0 Hν (r) dB (r)(∫ 1
0 H

2
ν (s) ds

)1/2
and ηk =

∫ 1

0
ΦHk (r) dB (r) , k = 1, . . . ,K,

which are all normal. Then
T∞ =

η0(
1
K

∑K
k=1 η

2
k

)1/2
. (12)

Since
∫ 1

0 Hν (r) ΦHk (r) dr = 0, we have

cov(η0, ηk) =

(∫ 1

0
H2
ν (s) ds

)−1/2 ∫ 1

0
Hν (r) ΦHk (r) dr = 0, for k = 1, 2, . . . ,K.

For normal random variables, zero covariance implies independence. So η0 and ηk are independent
for k = 1, 2, . . . ,K. If ηk ∼ iid N(0, 1) for k = 1, 2, . . . ,K, then T∞ follows the standard t
distribution with K degrees of freedom.

Some simple calculations show that for k1, k2 = 1, 2, . . . ,K,

cov(ηk1 , ηk2) =

∫ 1

0
ΦHk1 (r) · ΦHk2 (r) dr =

∫ 1

0

∫ 1

0
Φk1 (r)CHν (r, s) Φk2 (s) drds,

where

CHν (r, s) = δ (r − s)− Hν (r)Hν (s)∫ 1
0 H

2
ν (t) dt

− τ (r)′
[∫ 1

0
τ (t) τ (t)′ dt

]−1

τ (s) (13)

is the implied covariance kernel and δ (·) is the Dirac delta function such that∫ 1

0

∫ 1

0
Φk1 (r) δ (r − s) Φk2 (s) drds =

∫ 1

0
Φk1 (r) Φk2 (r) dr.

To ensure that ηk ∼ iid N(0, 1) for k = 1, 2, . . . ,K, we require that∫ 1

0

∫ 1

0
Φk1 (r)CHν (r, s) Φk2 (s) drds = 1 {k1 = k2} for k1, k2 = 1, . . . ,K. (14)

Instead of searching for the basis functions that satisfy (14), we search for their discrete
versions: the basis vectors. For each basis function Φk (r) , the corresponding basis vector is
defined as

Φk =

(
Φk

(
1

T

)
,Φk

(
2

T

)
, . . . ,Φk

(
T

T

))′
.

We focus on the basis vectors for two reasons. First, it is computationally more convenient to
obtain the basis vectors. Second, it is the basis vectors that are actually used in the variance
estimation.

We now present the discrete analogue of the conditions in (14). Let CH be the T × T matrix
whose (i, j)-th element is equal to

1{i = j}T −Hν

(
i

T

)
Hν

(
j

T

)[
1

T

T∑
t=1

H2
ν

(
t

T

)]−1

− τ ′
(
i

T

)[
1

T

T∑
`=1

τ

(
`

T

)
τ

(
`

T

)′]−1

τ

(
j

T

)
.
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By definition, CH is a positive-definite symmetric matrix. For any two vectors `1, `2 ∈ RT , we
define the inner product

〈`1, `2〉 = `′1CH`2/T
2, (15)

which makes RT a Hilbert space. The discrete analogue of (14) is

〈Φk1 ,Φk2〉 = 1 {k1 = k2} for k1, k2 = 1, . . . ,K. (16)

Note that (16) is different from the usual orthonormality in the Euclidean sense. In gen-
eral, the basis vectors {Φk} do not satisfy (16) even if they are orthonormal according to
the usual inner product in RT . However, given any set of candidate basis functions or vec-
tors {Φk, k = 1, 2, . . . ,K}, we can make them satisfy the above conditions via the Gram-Schmidt
orthogonalization.

The Gram-Schmidt orthogonalization can be achieved by using the Cholesky decomposition.
Let Φ = (Φ1, . . .,ΦK) be the T × K matrix of basis vectors. Let RH be the upper triangular
factor in the Cholesky decomposition of Φ′CHΦ/T 2 such that Φ′CHΦ/T 2 = R′HRH. Define

ΦH = ΦR−1
H := (Φ1,H, . . .,ΦK,H).

We then have

(ΦH)′CHΦH/T
2 =

(
R′H
)−1

Φ′CHΦR−1
H /T 2 =

(
R′H
)−1

R′HRHR
−1
H = IK .

That is, the columns of the matrix ΦH satisfy the conditions in (16).
As T →∞, Φ′CHΦ/T 2 converges to the variance Ση of η = (η1, . . . , ηK)′. This implies that

RH converges to the upper triangular factor of the Cholesky decomposition of Ση. As a result,
every transformed basis vector is approximately equal to a linear combination of the original
basis vectors. The implied basis functions are thus equal to linear combinations of the original
basis functions. Therefore, if Assumption 3.5 holds for the original basis functions, it also holds
for the transformed basis functions.

Using {Φk,H} as the basis vectors for construction of the asymptotic variance estimator, we
have T∞ =d tK . That is, the t statistic T constructed based on the transformed basis functions
is asymptotically distributed as the standard t distribution with K degrees of freedom.

As discussed in the Introduction, the asymptotic F and t theory is universal in that it can be
established in many different settings. Section B in the appendix provides a broad perspective
on the asymptotic t theory.

5 Testing-Optimal Choice of K

In this section, we propose a testing-optimal choice of the smoothing parameter K. The proposed
method is based on high-order approximations of the type I and type II errors of the asymptotic
t test in the previous section.

We consider the DD regression without additional covariates Zit and assume that the error
term εit is Gaussian. More general models with non-Gaussian errors or with covariates that
can vary in arbitrary ways across both the time dimension and the cross-sectional dimension
require highly technical arguments. For example, when the errors are not Gaussian, we have to
follow the most general approach to develop Edgeworth expansions for time series data. This
often requires highly technical assumptions that are diffi cult to verify. See, for example, Sun
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and Phillips (2009) for the technical assumptions and a full-fledged Edgeworth expansion. While
the asymptotic testing-optimal rule for the smoothing-parameter choice that we develop for the
special case may not be theoretically optimal for more general cases in large samples, it may still
be quite informative in finite samples. The results of our simulations lend some support to this
possibility.

In the absence of Zit, the DD estimator θ̂1 is numerically identical to the OLS estimator based
on the regression model

MτYt = Mτ · Postt ·
√
nµ (1− µ) θ10 +Mτet, (17)

where

Yt =
√
nµ (1− µ)

 1

nµ

nµ∑
i=1

Yit −
1

n(1− µ)

n∑
i=nµ+1

Yit

 =
1√
n

n∑
i=1

T̃ reati · Yit,

et =
√
nµ (1− µ)

 1

nµ

nµ∑
i=1

εit −
1

n (1− µ)

n∑
i=nµ+1

εit

 =
1√
n

n∑
i=1

T̃ reati · εit, (18)

Mτ = IT×T − τ (ττ ′)−1 τ ′, τ = (τ (1) , . . . , τ (T ))′, and IT×T is a T × T dimensional identity
matrix.

To establish the asymptotic measurements of the type I and II errors, we maintain the fol-
lowing assumption.

Assumption 5.1 (a) {et} is a stationary Gaussian process with a spectral density that is twice
continuously differentiable and bounded above and away from zero uniformly over n in a neigh-
borhood around the origin.

(b) For ΦHF (r) =
[
ΦH1 (r) , . . . ,ΦHK (r)

]′
, the smallest eigen value of

∫ 1
0 ΦHF (r) ΦHF (r)′ dr is

bounded away from zero uniformly over K.
(c) The basis functions {Φk (r)} and the trend function τ (r) are twice continuously differen-

tiable.
(d) For ΦF (r) = [Φ1 (r) , . . . ,ΦK (r)]′, Φ̇F (i) =

[
Φ̇1 (r) , . . . , Φ̇K (r)

]
, and Φ̇k (r) = dΦk (r) /dr,

the following holds: ∫ 1

0
‖ΦF (r)‖2 dr = O (K)

‖ΦF (i)‖2 = O(K), i = 0, 1∥∥∥Φ̇F (i)
∥∥∥2

= O(K3), i = 0, ν, and 1,

where ‖·‖ is the Euclidean norm.

The conditions on the spectral density in Assumption 5.1 are needed for evaluating the as-
ymptotic bias and variance of σ̂2. The other conditions in Assumption 5.1 are further restrictions
on the basis functions and trend functions. It is not hard to show that they are satisfied for
Fourier basis functions and polynomial trend functions.

Let tα/2K be the 1 − α/2 quantile of Student’s t-distribution with K degrees of freedom, and
let χα1 be the 1 − α quantile of the χ2

1 distribution. Let Gδ2(·) and G3,δ2(·) be the cdf’s of
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the noncentral χ2
1 and χ

2
3 distributions with noncentrality parameter δ

2. The following theorem
establishes high-order approximations to the type I and type II errors of the asymptotic t test
based on T.

Theorem 5.1 Let Assumptions 3.1 and 5.1 hold. Consider the asymptotics under which K →∞
such that K/T + T/K2 → 0.

(a) The type I error of the t test based on T satisfies

Pr(|T| > t
α/2
K |H0) = α− K2B̄

T 2
G′(χα1 )χα1 + o

(
1

K

)
+ o

(
K2

T 2

)
+O

(
1

T

)
. (19)

(b) Under the local alternative H1(δ2) : θ1 − θ10 = (nT )−1/2σ%, where % = ±δ with equal
probability 1/2, the type II error of the t test based on T satisfies

Pr(|T| < t
α/2
K |H1(δ2)) = Gδ2(χ

α
1 ) +

K2B̄

T 2
G′δ2(χ

α
1 )χα1

+
δ2

2K
G′3,δ2(χ

α
1 )χα1 + o

(
1

K

)
+ o

(
K2

T 2

)
+O

(
1

T

)
, (20)

where B̄ = B/Λ2,

B = −ω(2)(0)

∞∑
p=−∞

p2σ2
e,p, Λ2 =

∞∑
p=−∞

σ2
e,p, σ

2
e,p = E(etet−p),

ω(2)(0) =
1

2
lim
K→∞

1

K3

∫ 1

0
Φ̇F (s)′

[∫ 1

0
ΦHF (s)

[
ΦHF (s)

]′
ds

]−1

Φ̇F (s) ds

=
1

2
lim
K→∞

1

K3
tr

([∫ 1

0
ΦHF (s)

[
ΦHF (s)

]′
ds

]−1 ∫ 1

0
Φ̇F (s) Φ̇F (s)′ ds

)
.

The above results are similar to Theorem 5 in Sun (2011) with a scalar trend variable but
with a different B̄. Suppose we use the Fourier basis functions Φ2j−1 =

√
2 cos (2πj) and Φ2j =√

2 sin (2πj) for j = 1, . . . ,K/2. If τ (t) is a vector of polynomial trend functions, then Lemma
A.2 in the appendix shows that ω(2)(0) = π2/6. This gives rise to a B̂ that is different from what
is obtained in Sun (2011). The difference is due to the use of cosine basis functions in Sun (2011),
while we use both cosine and sine basis functions here.

Following Sun (2011), we ignore the high-order terms and approximate the type I and type
II errors by

eI = α− K2B̄

T 2
G′(χα1 )χα1 ,

eII = Gδ2(χ
α
1 ) +

K2B̄

T 2
G′δ2(χ

α
1 )χα1 +

δ2

2K
G′3,δ2(χ

α
1 )χα1 .

To obtain an optimal smoothing parameter K for testing, we propose to choose K by mini-
mizing the type II error while controlling the type I error. More specifically, we solve the following
problem:

min eII s.t. eI ≤ κα,
where κ > 1 is a tolerance parameter. We allow the type I error to be different from the nominal
type I error α, but it cannot be larger than κα. For example, when κ = 1.2 and α = 5%, the
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upper bound is 6% rather than 5%. Our approach to selecting K has a decision-theoretic basis,
as it amounts to selecting K to minimize a loss function that is a weighted average of type I
and type II errors with the weight given by the implied Lagrangian multiplier for the constraint
eI ≤ κα. See Sun, Phillips, and Jin (2011) for related ideas.

Following an argument similar to that in Sun (2011), we find that the optimal K for the
above problem is

Kopt =

{
δ2G′3,δ2(χ

α
1 )

4B̄
[
G′
δ2

(χα1 )− λoptG′(χα1 )
]}1/3

T 2/3, (21)

where

λopt =

0, if B̄ > 0
G′
δ2

(χα1 )

G′(χα1 ) + δ2
|B̄|1/2G′

3,δ2
(χα1 )[χα1 ]3/2[G′(χα1 )]1/2

4[(κ−1)α]3/2T
, if B̄ ≤ 0.

(22)

The optimal Kopt in (21) depends on the noncentrality parameters κ and δ. As in Sun (2011),
we allow κ to depend on the sample size T . For a larger T , we may require κ to be closer to 1.
We suggest choosing δ2 so that the first-order power of the asymptotic two-sided t test is 75%,
that is, choosing δ2 so that 1−Gδ2(χα1 ) = 75% for a given significance level α. We refer to Sun
(2011) for more detailed discussions on how to choose κ and δ2.

For practical implementation, we use the parametric plug-in approach to estimate the un-
known B and Λ2. Suppose we use the simple AR(1) plug-in by fitting an AR(1) model to

êt =
∑n

i=1 T̃ reati · ε̂τit/
√
n. Let ρ̂e be the estimated AR coeffi cient and σ̂2

e be the estimated error
variance. Then the plug-in estimators of Λ2 and B̄ are

Λ̂2 =
σ̂2
e

(1− ρ̂e)2 , and B̄est = −2ω(2)(0)ρ̂e

(1− ρ̂e)2 ,

and the plug-in estimator of K is

K̂opt =


(

(1−ρ̂e)2
8ω(2)(0)|ρ̂e|

)1/3
(
G′
3,δ2

(χα1 )δ2

G′
δ2

(χα1 )

)1/3

T 2/3, if B̄est > 0,(
(1−ρ̂e)2

2ω(2)(0)|ρ̂e|

)1/2 (
(κ−1)α
G′(χα1 )χα1

)1/2
T, if B̄est ≤ 0.

(23)

We recommend using the Fourier basis functions in practice, and so ω(2)(0) = π2/6.
It is clear that for |ρ̂e| ∈ (0, 1), K̂ decreases as |ρ̂e| increases. A smaller K is desired in the

presence of stronger autocorrelation. Intuitively, when the autocorrelation is high, we should use
only very few periodogram coordinates that are close to the origin. We do so in order to avoid
smoothing bias, which can be large if smoothing is taken over a wide window in the frequency
domain. For a given window size K, the larger the value of |ρe|, the larger the absolute smoothing
bias.

6 Testing Procedure and Practical Guidance

6.1 Summary of the Proposed t Test

Our asymptotic t test consists of the following steps:

1. Construct model (1) and estimate the parameter of interest.
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(a) Detrend each time series separately, and then remove the cross-sectional average from
each detrended variable as described in (2).

(b) Estimate θ10 and θ20 by running the OLS regression

Ỹ τ
it = (X̃τ

it)
′θ0 + ε̃τit,

where Ỹ τ
it and X̃

τ
it are the transformed variables given in (2) and (4), respectively.

Denote the estimates by θ̂1 and θ̂2 and the residual by ε̂τit.

2. Transform the original basis vectors.

(a) Let τ = (τ (1) , . . . , τ (T ))′ ∈ RT×dτ and Postτ = (Postτ1 , . . . , Post
τ
T )′ ∈ RT×1, where

Postτt is the detrended “Postt”dummy:

Postτt = Postt −
(

T∑
s=1

Posts · τ (s)′
)(

T∑
s=1

τ (s) τ (s)′
)−1

τ (t) .

Construct the projection matrix

CH = T
[
IT×T − Postτ ·

[
(Postτ )′ Postτ

]−1
(Postτ )′ − τ

(
τ ′τ
)−1

τ ′
]

:= T ·MPost,τ .

(24)

(b) Let Φ = (Φ1, . . . ,ΦK) ∈ RT×K be the matrix of the original basis vectors, where K
is the greatest even number less than K̂opt given by equation (23). The columns of Φ
are

Φ2j−1 =
(√

2 cos(2jπ · 1/T ),
√

2 cos(2jπ · 2/T ), . . . ,
√

2 cos(2jπ · T/T )
)′
, (25)

Φ2j =
(√

2 sin(2jπ · 1/T ),
√

2 sin(2jπ · 2/T ), . . . ,
√

2 sin(2jπ · T/T )
)′
, (26)

for j = 1, 2, . . . ,K/2.
Compute the upper triangular factor RH of the Cholesky decomposition ofΦ′CHΦ/T 2

such that Φ′CHΦ/T 2 = R′HRH.

(c) Compute the matrix

ΦH := (Φ1,H, . . . ,ΦK,H) = Φ× (RH)−1 ,

where each column of ΦH consists of a transformed basis vector.

3. Compute the variance estimator and perform the t test.

(a) Estimate the asymptotic variance of θ̂ by

σ̂2 = Λ̂2 ·
[

1

n

n∑
i=1

(T̃ reati)
2

]−2{
1

T

T∑
t=1

[Postτt ]2

}−1

,

where

Λ̂2 =
1

K

K∑
k=1

[
1√
T

T∑
t=1

Φk,H,t
1√
n

n∑
i=1

T̃ reati · ε̂τit

]2

and Φk,H,t is the t-th element of the vector Φk,H.

(b) Perform the test using T =
√
nT (θ̂1 − θ10)/σ̂ as the test statistic and Student’s t

distribution with K degrees of freedom as the reference distribution.
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6.2 Practical Guidance for Multi-level Data

In empirical applications, DD analyses are often applied to multi-level data that consist of indi-
viduals from different groups such as states and regions and each individual is observed over a
number of periods. The DD regression at the individual level is

Yig(i)t = λt + τ (t)′ αg(i) + Treatg(i) · β10 + Postt · β20

+ Treatg(i) · Postt · θ10 + Z ′ig(i)tθ20,g(i)t + εg(i)t + εig(i)t, (27)

where the new subscript g(i) indexes the group that individual i belongs to and εg(i)t is an
additional error component capturing unobserved group/time effects. The model can be rewritten
in a two-level form:

Yig(i)t = Yg(i)t + Z ′ig(i)tθ20,g(i)t + εig(i)t (28)

and
Ygt = λt + τ (t)′ αg + Treatg · β10 + Postt · β20 + Treatg · Postt · θ10 + εgt. (29)

The first equation is for the data at the individual level, and the second equation is for the
aggregate data at the group level. If we observe Ygt and formally change the index g into i, then
the aggregate model in (29) is exactly the same as the model we consider in (1). So our proposed
test can be directly applied3.

The problem is that we do not observe Ygt and have to estimate it. To this end, we can first
use the individual-level data for each (g, t) pair and run the OLS regression in (28) to obtain an
estimator θ̂20,gt of θ20,gt and then estimate Ygt by

Ŷgt =
1

Ngt

∑
i:g(i)=g

(
Yig(i)t − Z

′
ig(i)t

θ̂20,g(i)t

)
,

where Ngt is the number of individuals in the (g, t) pair. If Ngt is reasonably large in the sense
that it is much larger than the number of groups and the number of time periods, we can safely
ignore the estimation error in θ̂20,gt. In this case, we can proceed as if Ŷgt is the same as Ygt. Our
asymptotic t theory continues to hold, and we can follow the testing procedure in the previous
subsection to perform the asymptotic t test.

7 Simulation Evidence

7.1 Model-based Simulation

We consider the following data generating process

Yit = λt + τ (t)′ αi + Treati · β10 + Postt · β20 + Treati · Postt · θ10 + εit,

for i = 1, 2, . . . , n and t = 1, 2, . . . , T , where Treati = 1 {i ≤ 0.5n} and Postt = 1 {t ≥ 0.5T + 1} .
The error {εit} follows independent AR(1) processes with AR parameter ρ:

εit = ρεit−1 + eεit, t ≥ 1 and εi0 = 0.

3The only exception is that there are additional covariates Zit in (1). In principle, we can add a group and time
specific component Z′g(i)tθ20 to the multi-level model in (27). Such a component is then present in the aggregate
model in (29). Nevertheless, in empirical applications, such a component is often not included in the multi-level
model.
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While {eεit} is iid over time, there may be cross-sectional dependence. We consider the case with
n = m2 for some positive integer m. Individuals are assumed to be located on a regular m ×m
integer lattice so that we can write

eεit = eεi1,i2,t for 1 ≤ i1, i2 ≤ m,

where (i1, i2) is the location of the i-th individual. For each time period t, eεit is a spatial average
of iid innovations:

eεi1,i2,t = φ (vi1−1,i2,t + vi1,i2−1,t + vi1+1,i2,t + vi1,i2+1,t)

+ φ2 (vi1−2,i2,t + vi1,i2−2,t + vi1+2,i2,t + vi1,i2+2,t)

+ φ2 (vi1+1,i2+1,t + vi1−1,i2−1,t + vi1+1,i2−1,t + vi1−1,i2+1,t) + vi1,i2,t,

where vi1,i2,t is iid N(0, 1) across i1, i2, and t. That is, eεit ∼ SMA(2), a spatial moving average
of order 2 according to the taxicab distance.

For the trend component, we consider two common cases. In the first case, τ (t) = 1,
i.e., there is no trending function, and only individual fixed effects are included. In this case,
time series detrending reduces to demeaning. In the second case, τ (t) = (1, t)′ , i.e., there
are both individual fixed effects and linear time trends. For other model parameters, we take
ρ = −0.6,−0.3, 0, 0.3, 0.6, and 0.9 and set φ to be φ = 0 and 0.5. We set all other parame-
ters to zero, as all the tests we consider are invariant to them. The (n, T ) combinations under
consideration are

(
32, 10

)
,
(
32, 100

)
,
(
82, 10

)
,
(
82, 50

)
, (82, 100), and (82, 200).

We are interested in testing H0 : θ10 = 0 with two-sided alternatives so that each test rejects
the null when the absolute value of the t statistic is large enough. We consider two significance
levels: α = 5% and α = 10%. We consider the following tests: the nonstandard fixed-K test
based on the sine and cosine basis functions and simulated critical values, the standard (fixed-K)
t test as described in Subsection 4, and the nonstandard fixed-b test developed in SY (2017).
For the former two tests, we also consider the corresponding normal tests that employ standard
normal critical values. There are five types of tests in total.

The test statistic for the fixed-b test is

tb =

√
nT (θ̂1 − θ10)√

R′V̂bR
,

where R = (1, 0, . . . , 0) ∈ RdZ+1,

V̂b =

(
1

nT

n∑
i=1

T∑
t=1

X̃τ
it(X̃

τ
it)
′

)−1

Ω̂b

(
1

nT

n∑
i=1

T∑
t=1

X̃τ
it(X̃

τ
it)
′

)−1

,

Ω̂b =
1

T

T∑
t=1

T∑
s=1

k

(
|t− s|
bT

)(
1√
n

n∑
i=1

X̃τ
itε̂
τ
it

)(
1√
n

n∑
i=1

X̃τ
isε̂

τ
is

)
,

k (·) is a kernel function, and b ∈ (0, 1] is a smoothing parameter. We employ the same kernel
function, namely, the Bartlett kernel, as in SY (2017). Since no data-driven method for choosing
b is given in SY (2017), we consider the fixed-b test with b = 0.01, 0.5, and 1.

For the standard fixed-smoothing t test, we use the data-driven K̂opt given in (23), but we
make two adjustments. First, we use the truncated LS estimator

ρ̃e =
ρ̂e
|ρ̂e|

0.97 +

(
ρ̂e −

ρ̂e
|ρ̂e|

0.97

)
1 {|ρ̂e| ≤ 0.97}
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instead of the original estimator ρ̂e in computing K̂opt. Second, we truncate K̂opt to be between
4 and T/2, and we round it to the greatest even number less than K̂opt. Therefore, K is always
equal to 4 when T = 10. Rounding is used to speed up the computation. It has a minimal effect
on test performances and is not necessary in practical implementation. We impose the lower
bound K̂opt ≥ 4 because 4 is the smallest even degree of freedom for Student’s t distribution to
have a finite variance. We impose the lower bound to avoid extreme power loss. We set κ to
be 1.3 in our testing-oriented criterion for choosing K. The size of our proposed t test does not
change much when we consider κ = 1.1., 1.2 , . . . , 1.5.

For the nonstandard fixed-K test, we choose K to minimize the mean squared error of the
long-run variance estimator of et :=

∑n
i=1 T̃ reati · εit/

√
n. Following a common practice, we use

the simple AR(1) plug-in by fitting an AR(1) model to êt =
∑n

i=1 T̃ reati · ε̂τit/
√
n. Let ρ̂e be the

estimated AR coeffi cient and σ̂2
e be the estimated error variance. Then the plug-in estimator of

K is

K̂mse =

(9 (1− ρ̂e)6

2π4σ̂2
e ρ̂

2
e

)1/4

T 4/5

 . (30)

We refer to Phillips (2005) for the details. We also truncate K̂mse to be between 4 and T/2, and
round it to the greatest even number less than K̂mse.

Tables 1—3 report simulation results of the five different types of tests when (n, T ) = (32, 10),
(n, T ) = (82, 10), and (n, T ) = (82, 100), respectively. First, it’s clear that the standard fixed-
smoothing t test has quite accurate size in all cases when T = 100 and acceptable size when
T = 10. Second, the fixed-K tests are more accurate than the corresponding standard normal
tests in almost all cases, especially when the AR parameter is positive and T is small. In
those cases, the data-driven K values are relatively small, and the estimation uncertainty in the
asymptotic variance estimator becomes large. This is exactly the scenario where the fixed-K
approximations can be more accurate. Third, the asymptotic t test outperforms the nonstandard
fixed-K test in almost all cases. The reason is that the asymptotic t test employs the test-
optimal K that controls the type I error and minimizes the type II error asymptotically while
the nonstandard fixed-K test employs the MSE-optimal K that is not targeted at type I and
type II errors. Fourth, comparing the standard t test to the nonstandard fixed-b test, we find
that both tests under-reject when ρ is negative and over-reject when ρ are positive. However,
the standard t test performs much better than the fixed-b test when ρ ≥ 0 and T = 10. Fifth,
comparing the results when φ = 0 with those when φ = 0.5, we can see that the cross-sectional
dependence does not affect the size properties of any of the five tests: there is no big difference
between the empirical rejection probabilities in the two cases, especially when T = 100. Finally, it
appears that the effect of the linear trend interacts with the strength of the temporal dependence.
When the AR parameter is large, e.g., ρ = 0.9, it is beneficial to have a linear trend. A possible
explanation is that detrending can help reduce strong temporal dependence without introducing
too much extra variation from the trend estimation.

We also investigate the effect of the sample size on the test performances. Comparing the
results in Tables 1 and 2, we find that the null rejection probabilities remain more or less the
same for different values of n when the time series sample size stays the same. This is compatible
with the simulation result that cross-sectional dependence does not affect the size properties of
all five tests. In essence, each test involves collapsing the panel data into time series data. The
cross-sectional dependence and cross-sectional sample size do not affect the persistence of the
collapsed time series. As a result, they do not affect the size properties of all five tests. On the
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other hand, when there is substantial temporal dependence, all five tests become more accurate
as T increases as shown in Tables 2 and 3.

We simulate the size-adjusted power functions for the five tests. To save space, we do not
report the power figures here, but they are available from Liu and Sun (2018). The basic observa-
tion is that all tests have more or less the same size-adjusted power function. This, coupled with
its size accuracy and convenience to use, suggests that we use the proposed t test in empirical
applications.

7.2 Empirical-data-based Simulation

In this section, we apply our proposed tests to women’s wages constructed from the Current
Population Survey (CPS). Following BDM (2004), we extract the variables – weekly earnings
(from their fourth interview month), employment status, education, age (between 25 and 50),
and state of residence from the Merged Outgoing Rotation Group of the CPS from 1979 to 1999.
We use the sample with positive reported weekly earnings with a sample size around 540,000.

The log weekly earnings, denoted as Yist, are the outcomes of interest for individual i in state
s at year t. We employ the following linear model to study the treatment effect of a hypothetical
policy intervention:

Yist = αs + λt + Istβ + Z ′istc+ εist, (31)

where αs and λt are state and year fixed effects, Zist contains individual-level covariates, Ist is
the policy indicator with Ist = Treats × Postt, and εist is the error term.

We follow BDM (2004) to randomly generate the pseudo-sample and the intervention. We
treat the state as the sampling unit and draw an iid sample of 50 states with replacement from
the real empirical data. Individuals within the same state are either all drawn into the pseudo-
sample or none of them is drawn into the pseudo-sample. We then randomly select 25 states,
i.e., half of the states in the pseudo-sample and designate them “affected”by the intervention.
We designate the rest “unaffected”by the intervention. Finally, we randomly draw a year, say
t∗ + 1, between 1985 to 1995 as the year when the policy intervention takes place. Ist = 1 only
for the treatment states and for the years after year t∗. We perform each candidate test on the
pseudo-sample and record the outcome of each test. Repeating the whole process a number of
times, we obtain the relative rejection frequency of each test.

Our simulation design mimics the following hypothetical scenario: Hundreds of researchers
obtain a simple random sample of 50 states and each analyzes the effects of various laws in the
CPS independently. We expect 5% of the researchers to reject the null of no effect if the laws
indeed have no effect and each researcher uses an accurate 5% test.

By design, each pseudo-sample retains time series dynamics including the temporal depen-
dence and the trend effect, if any, in individual time series. For individuals in the same state,
cross-sectional dependence is also retained. To a great extent, each pseudo-sample represents
cross-sectional and time-series dependence in the CPS data. Note that there is no cross-sectional
dependence for individuals in different states. This is an empirically plausible assumption, which
could also be restrictive in other empirical applications.

Table 4 reports the rejection frequencies for seven different tests, including the tests considered
by BDM (2004) and the tests proposed here. The tests are based on different point estimators
of β (or different ways of estimating β) and different variance estimators.

The first two tests are based on individual-level data. The first test (t1), reported in Column
1, is based on the OLS estimator of β in model (31). For the standard error estimation, the
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test assumes that εist is iid across i, s, t. The test, therefore, does not account for cross-sectional
dependence, time series dependence or conditional heteroscedasticity. For this reason, the test is
expected to have a large size distortion. This is supported by the simulation result in Table 4.
The second test (t2), reported in Column 2, is based on the same OLS estimator as test t1 but
employs a cluster-robust variance estimator that allows for arbitrary correlation among errors in
the same state-year cell. This test accounts for cross-sectional dependence within each state and
conditional heteroscedasticity but not time series dependence. As expected, Table 4 shows that
the second test is still quite size distorted but less so than the first test.

The rest five tests are based on the aggregate data: we aggregate the data into state-year
cells using the same procedure discussed in Subsection 6.2. As in BDM (2004), we assume that
the effect of Zist is a constant. So we can pool all data at the individual level to estimate c, and
the estimation error in estimating c can be safely ignored. The model based on the aggregate
data is

Yst = αs + λt + βIst + εst. (32)

Let

Y τ
st = Yst −

1

T

T∑
t=1

Yst, Ỹ
τ
st = Y τ

st −
1

S

S∑
s=1

Y τ
st,

where S = 50 is the number of states. Define ετst similarly. Then

Ỹ τ
st = T̃ reats × Postτt × β + ε̃τst.

Assume that the pseudo-sample has been sorted so that the first S/2 states receive the treatment.
The DD estimator β̂DD of β satisfies

√
ST
(
β̂DD − β

)
=

[
1

ST

∑
s,t

(
T̃ reats × Postτt

)2
]−1(

1√
ST

∑
s,t

T̃ reatsPost
τ
t × ε̃τst

)
. (33)

Depending on how the standard error of the DD estimator is constructed, we obtain different
t statistics and tests. The test in Column 3 (t3) is based on the OLS standard error under the
assumption that εst is iid across s and t. Since the test ignores the autocorrelation in each time
series {εst, t = 1, 2, . . . , T} , the test does not have accurate size. Table 4 shows that the null
rejection probability is 45.5%, which is much larger than the nominal level of 5%. The test in
Column 4 (t4) assumes that each time series {εst, t = 1, 2, . . . , T} follows an independent AR(1)
process with possibly different AR parameters. Such a test can be reliable if the AR(1) model
is correctly specified. Even if the model is not correctly specified, the test based on t4 should be
more reliable than that based on t3, as the time series dependence is partially accounted for. The
simulation results in Table 4 support this observation.

The test in Column 5 (t5) computes the standard error under the assumption that εst1 and
εst2 are correlated for all t1 and t2 and the covariance between εst1 and εst2 is the same for
different states. Under this assumption, cov(εst1 , εst2) is estimated by S

−1
∑S

s=1 ε̂
τ
st1 ε̂

τ
st2 where

ε̂τst1 = Ỹ τ
st − T̃ reats × Postτt × β̂DD. The test in Column 6 (t6) is based on a different estimation

procedure. For each state, we first define and compute the time-series averages:

Ȳ 1
s =

1

t∗

t∗∑
t=1

Yst and Ȳ 2
s =

1

T − t∗
T∑

t=t∗+1

Yst.
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Then
Ȳ 2
s − Ȳ 1

s = λ̄2 − λ̄1 + Treats × β + ε̄2s − ε̄1s, s = 1, . . . , S, (34)

where λ̄j and ε̄js are defined similarly as Ȳ
j
s for j = 1, 2. The OLS estimator of β based on the

above cross-sectional regression is the DD estimator. That is, the cross-section OLS estimator is
numerically identical to β̂DD given in (33). However, the above formulation allows us to employ
the usual heteroscedasticity-robust variance estimator, which is the asymptotic variance estimator
used in Column 6. While the test in Column 5 assumes that the variances and autocovariances of
εst are the same across all s, the test in Column 6 allows them to be different across the treatment
states and the control states.

Both tests t5 and t6 allow for rich enough error correlation, although both tests assume that the
states are independent of each other, an assumption that holds in each pseudo sample. Also, the
two tests employ cross-sectional averages to estimate autocovariances, and so they are expected
to perform well when S is large. In our simulation, S = 50 may be regarded as reasonably large.
Not surprisingly, Table 4 shows that both t5 and t6 are quite accurate and that t6 is the most
trustworthy test among tests t1 —t6.

The tests in Columns 7 and 8 (t0LS and t
1
LS) are our proposed t tests with data-driven testing-

optimal K. As in our model-based simulations, we set κ to be 1.3. The difference between these
two tests lies in the trend functions used. While test t0LS assumes that no trend is included in
the DD regression, test t1LS assumes that a linear trend is included with possibly different trend
coeffi cients for different individuals. Table 4 shows that test t1LS is as accurate as test t6. This
is encouraging, as t6 takes advantage of cross-sectional independence of the states but t1LS does
not. Also, it is encouraging to know that t1LS works well when the time series are relatively short
– each time series has only 21 observations.

Table 4 shows that test t0LS is not as accurate as tests t4 — t6, although it is more accurate
than tests t1 — t3. The reason for the inaccuracy of t0LS is the trend misspecification. As we
discussed before, each pseudo-sample retains the time series trends if they are present in the
original empirical sample. Note that the dependent variable is the logarithm of weekly earnings.
It is empirically plausible that the dependent variable contains a linear trend so that the weekly
earnings increase at a constant rate for each individual, even after controlling for some individual-
level covariates. A model that is more compatible with this empirical situation is the model in
(27) where a trending component is included. Test t0LS ignores the linear trend and thus suffers
from some size distortion. This explanation is supported by our model-based simulation results
not reported here. The reason why tests t5 and t6 are not affected by trend misspecification is
that both tests ignore the time series variation and use only time series averages in constructing
the asymptotic variance estimator.

We have also considered the power of the tests. A true 0.0x log point effect is generated by
replacing yist by yist + Ist ∗ 0.0x if state s is chosen to be in the treatment group and t ≥ t∗ + 1.
The second row of Table 4 reports the results for x = 2, which corresponds to an effect of 2%.
Our proposed test t1LS is more powerful than test t6, even though the null rejection probability
of t1LS is quite close to that of t6. As we discussed above, by pushing the random trend effects
into the error term, the point estimator behind t6 is less effi cient than the point estimator behind
t1LS , which includes the random trend as part of the regression and hence reduces the size of the
error term.
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8 Conclusion

This paper develops an asymptotically valid t test in the DD regression when T is relatively large.
The t test employs standard t critical values and is thus easy to use. It is more accurate than the
normal test that employs standard normal critical values. The proposed t test has competitive
power properties. The cross-sectional sample size n can be fixed or grow with T. Simulations
show that the proposed t test works well even when n is comparable to T. Given these attractive
properties, we recommend using our proposed t test in place of the normal test in empirical
applications.

There are a few possible extensions. First, when the underlying process is persistent, we
can use prewhitening to reduce the size distortion of the proposed t test. This extension is
straightforward. Second, while the paper considers only panel data, it is easy to see that the
proposed t test would work for repeated cross-section data as well. In that case, the only change
needed would be to switch the order of detrending and averaging. Instead of first detrending each
time series and then taking an average within each group, as we do in this paper, for repeated
cross-section data we would first take an average within each group and then detrend the averaged
data for each group. Finally, we consider the case where there is only one policy change. We
do not imagine that there would be much diffi culty in allowing for multiple policy changes, with
possibly heterogeneous effects, but we leave the details to future research.
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Table 1: Empirical size of different 5% tests in DD regression with sample size n = 9, T = 10,
and data-driven choice of K.

Orthonormal series test Kernel fixed-b test
Transformed Bases Fourier Bases b-value
t N T∞ N 0.02 0.5 1

τ(t) = 1, φ = 0
ρ = −0.6 0.020 0.076 0.060 0.141 0.014 0.015 0.013
ρ = −0.3 0.027 0.099 0.068 0.151 0.042 0.033 0.031
ρ = 0 0.033 0.124 0.083 0.171 0.101 0.067 0.064
ρ = 0.3 0.048 0.170 0.117 0.220 0.195 0.120 0.113
ρ = 0.6 0.080 0.241 0.173 0.300 0.323 0.198 0.182
ρ = 0.9 0.154 0.361 0.259 0.402 0.469 0.276 0.263

τ(t) = 1, φ = 0.5
ρ = −0.6 0.022 0.089 0.069 0.149 0.019 0.017 0.017
ρ = −0.3 0.028 0.104 0.072 0.154 0.044 0.034 0.033
ρ = 0 0.034 0.124 0.085 0.171 0.099 0.068 0.064
ρ = 0.3 0.047 0.166 0.112 0.219 0.192 0.117 0.111
ρ = 0.6 0.074 0.238 0.165 0.289 0.314 0.188 0.175
ρ = 0.9 0.153 0.359 0.257 0.397 0.465 0.268 0.262

τ(t) = (1, t)′ , φ = 0
ρ = −0.6 0.023 0.106 0.104 0.264 0.079 0.037 0.040
ρ = −0.3 0.031 0.125 0.103 0.244 0.127 0.065 0.066
ρ = 0 0.039 0.133 0.103 0.239 0.171 0.083 0.084
ρ = 0.3 0.040 0.142 0.106 0.238 0.201 0.095 0.093
ρ = 0.6 0.037 0.137 0.098 0.230 0.216 0.088 0.087
ρ = 0.9 0.029 0.114 0.083 0.201 0.198 0.067 0.069

τ(t) = (1, t)′ , φ = 0.5
ρ = −0.6 0.021 0.100 0.098 0.263 0.077 0.040 0.037
ρ = −0.3 0.031 0.117 0.099 0.244 0.124 0.063 0.064
ρ = 0 0.037 0.130 0.100 0.232 0.161 0.081 0.082
ρ = 0.3 0.039 0.136 0.101 0.232 0.193 0.092 0.091
ρ = 0.6 0.037 0.135 0.099 0.225 0.213 0.089 0.087
ρ = 0.9 0.027 0.119 0.085 0.197 0.199 0.072 0.071

Note: The t test, denoted by “t”, is based on t critical values. The normal tests, denoted by
“N”, are based on standard normal critical values. The nonstandard fixed-K test, denoted by
“T∞”, is based on simulated nonstandard critical values. K is chosen to be 4 for orthonormal
series tests.
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Table 2: Empirical size of different 5% tests in DD regression with sample size n = 64, T = 10,
and data-driven choice of K.

Orthonormal series test Kernel fixed-b test
Transformed Bases Fourier Bases b-value
t N T∞ N 0.02 0.5 1

τ(t) = 1, φ = 0
ρ = −0.6 0.018 0.079 0.060 0.145 0.016 0.013 0.011
ρ = −0.3 0.024 0.101 0.068 0.151 0.044 0.032 0.033
ρ = 0 0.032 0.127 0.084 0.171 0.099 0.069 0.065
ρ = 0.3 0.048 0.169 0.115 0.220 0.193 0.122 0.115
ρ = 0.6 0.077 0.238 0.173 0.295 0.316 0.196 0.179
ρ = 0.9 0.149 0.350 0.251 0.391 0.459 0.263 0.257

τ(t) = 1, φ = 0.5
ρ = −0.6 0.021 0.083 0.066 0.144 0.017 0.015 0.015
ρ = −0.3 0.027 0.102 0.071 0.147 0.048 0.035 0.034
ρ = 0 0.036 0.124 0.086 0.172 0.104 0.064 0.062
ρ = 0.3 0.048 0.166 0.115 0.219 0.192 0.116 0.109
ρ = 0.6 0.073 0.240 0.170 0.294 0.321 0.191 0.175
ρ = 0.9 0.163 0.368 0.269 0.405 0.473 0.272 0.270

τ(t) = (1, t)′ , φ = 0
ρ = −0.6 0.027 0.108 0.103 0.268 0.080 0.043 0.042
ρ = −0.3 0.032 0.119 0.103 0.240 0.127 0.063 0.061
ρ = 0 0.037 0.130 0.100 0.233 0.166 0.079 0.080
ρ = 0.3 0.039 0.135 0.097 0.227 0.196 0.091 0.088
ρ = 0.6 0.035 0.130 0.093 0.223 0.204 0.084 0.082
ρ = 0.9 0.027 0.111 0.081 0.197 0.193 0.068 0.070

τ(t) = (1, t)′ , φ = 0.5
ρ = −0.6 0.024 0.107 0.106 0.264 0.083 0.042 0.043
ρ = −0.3 0.031 0.128 0.105 0.249 0.130 0.068 0.068
ρ = 0 0.037 0.136 0.106 0.242 0.167 0.083 0.083
ρ = 0.3 0.037 0.140 0.104 0.234 0.197 0.093 0.090
ρ = 0.6 0.034 0.136 0.096 0.227 0.210 0.087 0.087
ρ = 0.9 0.030 0.123 0.086 0.200 0.201 0.072 0.073

Note: The t test, denoted by “t”, is based on t critical values. The normal tests, denoted by
“N”, are based on standard normal critical values. The nonstandard fixed-K test, denoted by
“T∞”, is based on simulated nonstandard critical values. K is chosen to be 4 for orthonormal
series tests.
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Table 3: Empirical size of different 5% tests in DD regression with sample size n = 64, T = 100,
and data-driven choice of K.

Orthonormal series test Kernel fixed-b test
Transformed Bases Fourier Bases b-value K̄mse K̄test

t1 N1 T1∞ N1 0.02 0.5 1
τ(t) = 1, φ = 0

ρ = −0.6 0.034 0.055 0.041 0.052 0.012 0.033 0.033 37.83 26.02
ρ = −0.3 0.036 0.056 0.041 0.051 0.025 0.044 0.043 42.47 28.51
ρ = 0 0.048 0.063 0.051 0.062 0.049 0.050 0.050 48.59 43.63
ρ = 0.3 0.063 0.085 0.068 0.087 0.104 0.056 0.055 28.99 30.04
ρ = 0.6 0.054 0.105 0.075 0.114 0.222 0.072 0.071 13.57 12.34
ρ = 0.9 0.065 0.209 0.123 0.244 0.549 0.168 0.160 5.07 4.53

τ(t) = 1, φ = 0.5
ρ = −0.6 0.034 0.053 0.040 0.051 0.012 0.034 0.035 37.85 26.02
ρ = −0.3 0.036 0.055 0.039 0.050 0.026 0.044 0.043 42.52 28.58
ρ = 0 0.046 0.060 0.051 0.060 0.049 0.051 0.050 48.54 43.68
ρ = 0.3 0.061 0.083 0.066 0.083 0.101 0.059 0.057 28.95 29.98
ρ = 0.6 0.055 0.104 0.076 0.111 0.215 0.074 0.069 13.54 12.32
ρ = 0.9 0.066 0.196 0.119 0.234 0.541 0.160 0.154 5.07 4.54

τ(t) = (1, t)′ , φ = 0
ρ = −0.6 0.039 0.061 0.052 0.067 0.016 0.038 0.039 37.80 26.02
ρ = −0.3 0.040 0.060 0.045 0.058 0.031 0.049 0.050 42.27 28.36
ρ = 0 0.048 0.061 0.052 0.063 0.056 0.057 0.057 48.71 43.12
ρ = 0.3 0.061 0.082 0.066 0.087 0.106 0.064 0.063 30.10 31.30
ρ = 0.6 0.051 0.094 0.067 0.111 0.212 0.076 0.075 14.26 13.08
ρ = 0.9 0.030 0.118 0.070 0.177 0.440 0.091 0.090 5.63 4.92

τ(t) = (1, t)′ , φ = 0.5
ρ = −0.6 0.039 0.057 0.048 0.062 0.016 0.037 0.038 37.83 26.02
ρ = −0.3 0.039 0.058 0.043 0.054 0.028 0.048 0.047 42.31 28.42
ρ = 0 0.046 0.059 0.050 0.061 0.053 0.053 0.053 48.69 43.21
ρ = 0.3 0.060 0.077 0.064 0.082 0.103 0.060 0.061 30.06 31.23
ρ = 0.6 0.049 0.096 0.066 0.111 0.211 0.072 0.071 14.22 13.06
ρ = 0.9 0.034 0.124 0.070 0.185 0.440 0.098 0.098 5.63 4.90

Note: The t test, denoted by “t”, is based on t critical values. The normal tests, denoted by
“N”, are based on standard normal critical values. The nonstandard fixed-K test, denoted by
“T∞”, is based on simulated nonstandard critical values. K̄mse and K̄opt are the averages of the
MSE-optimal K and the test-optimal K developed in this paper.
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Table 4: Rejection rates of different 5% tests based on CPS data for years 1979-1999.

t1 t2 t3 t4 t5 t6 t0LS t1LS
No effect 0.665 0.400 0.455 0.215 0.070 0.055 0.290 0.055
2% effect 0.830 0.730 0.660 0.510 0.350 0.285 0.535 0.455

Note: Tests t1 and t2 are based on the individual-level data. The other tests are based on the
aggregate data with 50 pseudo-states and 21 years. Tests t0LS and t

1
LS are our proposed t tests

when the DD regression contains no trend and a linear trend, respectively.

Appendix

A Appendix of Proofs

Proof of Lemma 3.1. Part (a). We have
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→
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0
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] [∫ 1

0
τ (s) τ (s)′ ds
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(
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)
Some elementary calculation shows that

1

n

n∑
i=1

[T̃ reati]
2 =

1

n

n∑
i=1

(1 {i ≤ nµ} − µ)2 = µ (1− µ) .

Combining the above results yields Lemma 3.1(a).
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Part (b). We have
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where the last line follows from some simple calculations.

Note that

Zτit = Zit −
(

T∑
s=1

Zisτ (s)′
)(

T∑
s=1

τ (s) τ (s)′
)−1

τ (t)

= λzt + αziτ (t) + Zit

−
(

T∑
s=1

λzsτ (s)′
)(

T∑
s=1

τ (s) τ (s)′
)−1

τ (t)

−
(

T∑
s=1

αziτ (s) τ (s)′
)(

T∑
s=1

τ (s) τ (s)′
)−1

τ (t)

−
(

T∑
s=1

Zisτ (s)′
)(

T∑
s=1

τ (s) τ (s)′
)−1

τ (t) = λτzt + Zτit (A.1)

for

λτzt = λzt −
(

T∑
s=1

λzsτ (s)′
)(

T∑
s=1

τ (s) τ (s)′
)−1

τ (t) ,

Zτit = Zit −
(

T∑
s=1

Zisτ (s)′
)(

T∑
s=1

τ (s) τ (s)′
)−1

τ (t) .

We have
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where
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In the above expression for S21, the time effect λτzt has been cancelled out.
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The above holds because (T−1
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s=1 Posts · τD (s)′)A−1
ττ τD (t) is a scalar.

A similar expression can be obtained for T−1
∑T

t=1 Post
τ
t · (Z̄control·,t )τ . It then follows from

Assumption 3.2 that S21 = op (1) .
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Part (c). Using (A.1) and Assumption 3.3, we have
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Proof of Lemma 3.2. Using Lemma 3.1 and Assumption 3.4(b), we have
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as desired.

Proof of Theorem 3.1. (a) We have
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uniformly in r ∈ [0, 1].
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Under the piecewise monotonicity condition in Assumption 3.5, we have, for some finite κ, we
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where the op (1) term in the first inequality reflects the case when t and t+ 1 belong to different
partitions and “(±)j”takes “+”or “−”depending on whether Φk (t/T ) is increasing or decreasing
on the interval [IjL, IjU ]. Therefore, we have
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It then follows that I2 = op (1) . Therefore, the second term in (A.3) converges in distribution to
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Part (a) follows immediately.
(b) Using part (a), we have
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In the rest of this subsection, we prove Theorem 5.1. To highlight the estimation method
behind θ̂1, we write
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be the OLS residual, we can show that
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Hence θ̂1,GLS− θ10 is independent of both θ̂1,GLS− θ̂1,OLS and êτ . Using the definition of et given
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and σ̂2, we obtain, for any z ∈ R,

P

(√
nT (θ̂1,OLS − θ10)

σ̂
≤ z
)

= P

(√
nT (θ̂1,OLS − θ10)

σGLS

σGLS

σ̂
≤ z
)

= P

√nT (θ̂1,GLS − θ10)

σGLS
≤ zσ̂

σGLS
+

√
nT
(
θ̂1,GLS − θ̂1,OLS

)
σGLS


= EΨ

 zσ̂

σGLS
+

√
nT
(
θ̂1,GLS − θ̂1,OLS

)
σGLS


= EΨ

(
zσ̂

σGLS

)
+ E

ψ( zσ̂

σGLS

) √nT (θ̂1,GLS − θ̂1,OLS

)
σGLS

+O
(
E[
√
nT (θ̂1,GLS − θ̂1,OLS)]2

)
= EΨ

(
zσ̂

σGLS

)
+O

(
E[
√
nT (θ̂1,GLS − θ̂1,OLS)]2

)
,

where the last equation holds because σ̂ does not change and θ̂1,GLS − θ̂1,OLS changes sign when
e is replaced by −e. Similarly, we have

P

(√
nT (θ̂1,OLS − θ10)

σ̂
≥ z
)

= EΨ

(
− zσ̂

σGLS

)
+O

(
E[
√
nT (θ̂1,GLS − θ̂1,OLS)]2

)
.

Let G (·) be the cdf of the χ2
1 distribution. Then

P

(∣∣∣∣∣
√
nT (θ̂1,OLS − θ10)

σ̂

∣∣∣∣∣ ≤ z
)

= EG

(
z2σ̂2

σ2
GLS

)
+O

(
E[
√
nT (θ̂1,GLS − θ̂1,OLS)]2

)
.
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Our asymptotic expansion is based on the above approximation. Further expansions require
us to approximate the asymptotic bias and variance of σ̂2 and establish the convergence rate of
E[
√
nT (θ̂1,GLS − θ̂1,OLS)]2.

In view of (A.6), the asymptotic bias and variance of σ̂2 can be derived from those of Λ̂2,
which are given in the lemma below.

Lemma A.1 Let Assumptions 3.1 and 5.1 hold. If K →∞ such that K/T + T/K2 → 0, then
(i) E(Λ̂2 − Λ2) =

(
K
T

)2
B +O

(
1
T

)
,

(ii) var(Λ̂2) = 2Λ4

K (1 + o(1)) +O
(

1
T

)
.

Proof of Lemma A.1. We prove (i) only, as (ii) follows from standard arguments, e.g., Theorem
9 in Hannan (1970, p. 280). By definition, we have

Λ̂k =
1√
T

T∑
t=1

Φk,H,tê
τ
t

=
1√
T

Φ′k,H

[(
IT×T −Mτ · Post

(
Post′ ·Mτ · Post

)−1
Post′ ·Mτ

)
Mτe

]
=

1√
T

Φ′k,HMτe−
1√
T

Φ′k,HPost
τ ·
(
T‖Postτ‖2

)−1
(Postτ )′e

=
1√
T

Φ′k,H
CH
T
e =

1√
T

(Φ∗k)
′ e,

where CH is defined in (24),

Φ∗k =
CH
T

Φk,H = MPost,τΦR
(k),

and R(k) is the k-th column of (RH)−1 . Here we have used CH = TMPost,τ , where MPost,τ is
defined in (24).

Let Φ∗ = (Φ∗1,Φ
∗
2, . . . ,Φ

∗
K) = T−1CHΦH, where ΦH = ΦR−1

H . Then(
Φ∗√
T

)′ Φ∗√
T

= Φ′H
CH
T 2

ΦH =
(
R−1
H
)′

Φ′
CH
T 2

ΦR−1
H =

(
R−1
H
)′
R′HRHR

−1
H = IK .

Therefore, Φ∗k/
√
T is a series of orthonormal basis vectors in RT . Each column Φ∗k of the matrix

Φ∗ corresponds to the basis function Φ∗k (r) defined by

Φ∗k (r) =
K∑
j=1

[∫ 1

0
CHν (r, s) Φj (s) ds

]
R(j,k)
∞ =

K∑
j=1

ΦHj (r)R(j,k)
∞ , (A.7)

where R(j,k)
∞ is the (j, k)-th element of R−1

∞ and R∞ = limT→∞RH is the upper triangular factor
of the Cholesky decomposition of the matrix

∫ 1
0 ΦHF (r) ΦHF (r)′ dr. The second equality in (A.7)

follows from simple calculations using the definition of CHν (r, s) given in (13).
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Let ck =
∑K

j=1 c̃jR
(j,k)
∞ and dk =

∑K
j=1 d̃jR

(j,k)
∞ . Then Φ∗k (r) can be further represented as

Φ∗k (r) =
K∑
j=1

[
Φj (r)− τ (r)′ d̃j − 1 (r ≥ ν) c̃j

]
R(j,k)
∞

=

K∑
j=1

Φj (r)R(j,k)
∞ − τ (r)′ dk − 1 (r ≥ ν) ck

:= πk (r)− 1 (r ≥ ν) ck,

where πk (r) =
∑K

j=1 Φj (r)R
(j,k)
∞ − τ (r)′ dk.

Under Assumption 5.1(c), πk (r) is twice continuously differentiable. Under Assumption
5.1(b), the coeffi cients {ck} satisfy

K∑
k=1

|ck|2 =
K∑
k=1

K∑
j1=1

K∑
j2=1

c̃j1 c̃j2R
(j1,k)
∞ R(j2,k)

∞ =
K∑
j1=1

K∑
j2=1

c̃j1 c̃j2

K∑
k=1

R(j1,k)
∞ R(j2,k)

∞

= c̃′
{∫ 1

0
ΦHF (r) ΦHF (r)′ dr

}−1

c̃

= O(‖c̃‖2) = O

(
K∑
k=1

|c̃k|2
)
, (A.8)

where c̃ = (c̃1, . . . , c̃K)′ ∈ RK . But
K∑
k=1

|c̃k|2 =
K∑
k=1

|PHΦk|2 =
K∑
k=1

[∫ 1

0
Φk (r)Hν (r) dr

]2 [∫ 1

0
H2
ν (s) ds

]−2

= O (1)

K∑
k=1

(∫ 1

0
Φk (r)2 dr

)(∫ 1

0
H2
ν (s) ds

)−1

= O

(∫ 1

0

K∑
k=1

Φk (r)2 dr

)
= O

(∫ 1

0
‖ΦF (r)‖22 dr

)
, (A.9)

where the third equality follows from the Cauchy inequality. Similarly, we can show that

K∑
k=1

‖dk‖2 = O

(
K∑
k=1

||d̃k||2
)
and

K∑
k=1

||d̃k||2 = O

(∫ 1

0
‖ΦF (r)‖22 dr

)
. (A.10)

Now

EΛ̂2
k =

1

T
E
[
e′Φ∗k (Φ∗k)

′ e
]

=
1

T
E

[
T∑
t=1

T∑
s=1

Φ∗k,tΦ
∗
k,setes

]

=
1

T

T∑
t=1

T∑
s=1

Φ∗k,tΦ
∗
k,sσ

2
e,t−s =

T+1∑
p=−T+1

ωk,T (p/T )

(
1− |p|

T

)
σ2
e,p,

where

ωk,T (p/T ) =
1

T − |p|

T∑
t=1

Φ∗k,tΦ
∗
k,t−p1 {1 ≤ t− p ≤ T} .
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As a result, we have

EΛ̂2 =
T+1∑

p=−T+1

ωKT

( p
S

)(
1− |p|

T

)
σ2
e,p,

where S = TK−1 is the usual truncation lag parameter and

ωKT

( p
S

)
=

1

K

K∑
k=1

ωk,T

(
1

K

p

S

)
.

The above representation is in the same format as what we would obtain in the case of kernel
LRV estimation.

As T →∞, we have
ωk,T (ς) = ωk (ς) +O

(
1

T

)
for

ωk (ς) :=
1

1− |ς|

∫ min(1+ς,1)

max(0,ς)
Φ∗k (s) Φ∗k (s− ς) ds,

and for ς̃ = Kς,

ωKT (ς̃)→ 1

K

K∑
k=1

ωk

(
1

K
ς̃

)
.

It is easy to show that for each k = 1, . . . ,K, ωk (ς) is an even function, ωk (0) = 1, and∫ 1
0 ςωk (ς) dς <∞.
Observing that

∑∞
p=−∞ |p|

2 σ2
e,p <∞ under Assumption 5.1(a), we have

E(Λ̂2 − Λ2) =

T+1∑
p=−T+1

ωKT

( p
S

)(
1− |p|

T

)
σ2
e,p −

∞∑
p=−∞

σ2
e,p

= −
T+1∑

p=−T+1

[
1− ωKT

( p
S

)](
|p|
S

)q (
|p|
S

)q
σ2
e,p +O

(
1

T

)

= −
T+1∑

p=−T+1

[
1− 1

K

∑K
k=1 ωk,T

(
1
K
p
S

)](
|p|
S

)q (
|p|
S

)q
σ2
e,p +O

(
1

T

)

= lim
(K,S)→∞

[
1− 1

K

∑K
k=1 ωk,T

(
1
KS

)](
1
S

)q 1

Sq

T+1∑
p=−T+1

|p|q σ2
e,p (1 + o (1)) +O

(
1

T

)

= − lim
(K,S)→∞

1

K1+q

K∑
k=1

[
1− ωk

(
1
KS

)](
1
KS

)q 1

Sq

T+1∑
p=−T+1

|p|q σ2
e,p (1 + o (1)) +O

(
1

T

)

= −
(
K

T

)q
ω(q)(0)

∞∑
p=−∞

|p|q σ2
e,p (1 + o (1)) +O

(
1

T

)
,

where ω(q)(0) is defined according to

ω(q)(0) = lim
(K,S)→∞

1

K1+q

K∑
k=1

[
1− ωk

(
1
KS

)](
1
KS

)q .
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In addition, q = 1 if ω(1)(0) 6= 0, and q = 2 otherwise.
We now show that ω(1)(0) = 0. It is easy to see that

ω(1)(0) = lim
K→∞

1

K2

K∑
k=1

ω
(1)
k (0) ,

where

ω
(1)
k (0) = lim

ς→0+

1− ωk (ς)

ς
.

Denote π̇k (s) = dπk (s) /ds. Noting that

Φ∗k (s− ς) = πk (s− ς)− ck1 (s− ς ≥ ν)

= πk (s)− π̇k (s) ς − ck1 (s ≥ ν) + ck1 {ν ≤ s < ν + ς}+ o (ς)

= Φ∗k (s)− [π̇k (s) ς − ck1 {s ∈ [ν, ν + ς)}] + o (ς) ,

as ς → 0+, we have

ω
(1)
k (0) = lim

ς→0+

1− 1
1−|ς|

∫ min(1+ς,1)
max(0,ς) Φ∗k (s) Φ∗k (s− ς) ds

ς

= lim
ς→0+

1− ς −
∫ 1
ς Φ∗k (s) Φ∗k (s− ς) ds

ς

= lim
ς→0+

1− ς −
∫ 1
ς [Φ∗k (s)]2 ds

ς
+ lim
ς→0+

1

ς

∫ 1

ς
Φ∗k (s) [π̇k (s) ς − ck1 {s ∈ [ν, ν + ς)}] ds

= −1 + Φ∗k (0)2 + lim
ς→0+

1

ς

∫ 1

ς
Φ∗k (s) [π̇k (s) ς − ck1 {s ∈ [ν, ν + ς)}] ds,

where

lim
ς→0+

1

ς

∫ 1

ς
Φ∗k (s) [π̇k (s) ς − ck1 {s ∈ [ν, ν + ς)}] ds

= lim
ς→0+

∫ 1
0 Φ∗k (s) [π̇k (s) ς − ck1 {s ∈ [ν, ν + ς)}] ds

ς

− lim
ς→0+

∫ ς
0 Φ∗k (s) [π̇k (s) ς − ck1 {s ∈ [ν, ν + ς)}] ds

ς

=

∫ 1

0
Φ∗k (s) π̇k (s) ds− ckΦ∗k (ν) .

Therefore,

ω
(1)
k (0) = −1 + Φ∗k (0)2 +

∫ 1

0
[πk (s)− ck1 (s ≥ ν)] π̇k (s) ds− ckΦ∗k (ν)

= −1 + Φ∗k (0)2 +
1

2

[
πk (1)2 − πk (0)2

]
− ck (πk (1)− πk (ν))− ckΦ∗k (ν)

= −1 + Φ∗k (0)2 +
1

2

[{
[Φ∗k (1) + ck]

2 − Φ∗k (0)2
}]
− ck [Φ∗k (1)− Φ∗k (ν)]− ckΦ∗k (ν)

= −1 + Φ∗k (0)2 +
1

2

[
Φ∗k (1)2 − Φ∗k (0)2

]
+

1

2
c2
k

= −1 +
1

2

[
Φ∗k (1)2 + Φ∗k (0)2

]
+

1

2
c2
k.
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So,

ω(1)(0) =
1

2
lim
K→∞

1

K2

K∑
k=1

[
Φ∗k (1)2 + Φ∗k (0)2

]
+

1

2
lim
K→∞

1

K2

K∑
k=1

c2
k.

Using Φ∗k (r) =
∑K

j=1 ΦHj (r)R
(j,k)
∞ , we have

K∑
k=1

Φ∗k (0)2 =
K∑
k=1

K∑
j=1

ΦHj (0)R(j,k)
∞

K∑
i=1

ΦHi (0)R(i,k)
∞

=

K∑
i=1

K∑
j=1

ΦHi (0) ΦHj (0)

K∑
k=1

R(i,k)
∞ R(j,k)

∞

= ΦHF (0)′
{∫ 1

0
ΦHF (r) ΦHF (r)′ dr

}−1

ΦHF (0) .

Similarly,
K∑
k=1

Φ∗k (1)2 = ΦHF (1)′
{∫ 1

0
ΦHF (r) ΦHF (r)′ dr

}−1

ΦHF (1) .

Using (A.10) and Assumption 5.1 (d), we have

K∑
k=1

Φ∗k (0)2 = O
(∥∥ΦHF (0)

∥∥2
)

= O

(
K∑
k=1

[
Φk (0)− 1 (0 ≥ ν) c̃k − τ (0)′ d̃k

]2
)

= O

(
K∑
k=1

[
Φk (0)− τ (0)′ d̃k

]2
)

= O

(
K∑
k=1

Φk (0)2

)
+O

(
K∑
k=1

∥∥∥d̃k∥∥∥2
)

= O
(
‖ΦF (0)‖2

)
+O

(∫ 1

0
‖ΦF (r)‖2 dr

)
= O (K) .

Similarly,
K∑
k=1

Φ∗k (1)2 = O
(∥∥ΦHF (1)

∥∥2
)

= O (K) .

Therefore,

ω(1)(0) =
1

2
lim
K→∞

1

K2

K∑
k=1

c2
k ≤ O (1) · lim

K→∞

1

K2

K∑
k=1

c̃2
k

= O (1) · lim
K→∞

1

K2

∫ 1

0
‖ΦF (r)‖2 dr = 0.

We proceed to evaluate ω(2)(0). Letting ς = 1/ (KS) , we have

1− ωk
(

1
KS

)(
1
KS

)2 =
1− ωk (ς)

ς2
=

1

ς2

[
1− 1

1− ς

∫ 1

ς
Φ∗k (s) Φ∗k (s− ς) ds

]
=

1

ς2 (1− ς)

[
1− ς −

∫ 1

ς
Φ∗k (s) Φ∗k (s− ς) ds

]
.
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Using the assumption that πk (·) is twice continuously differentiable, as ς → 0+ we have

Φ∗k (s− ς) = πk (s− ς)− ck1 (s− ς ≥ ν)

= πk (s)− π̇k (s) ς +
1

2
π̈k (s) ς2 − ck1 (s ≥ ν) +ck1 {ν ≤ s < ν + ς}+ o

(
ς2
)

= Φ∗k (s)− π̇k (s) ς +
1

2
π̈k (s) ς2 + ck1 {s ∈ [ν, ν + ς)}+ o

(
ς2
)
,

where π̈k (s) = d2πk (s) /ds2. So,

1

ς2 (1− ς)

[
1− ς −

∫ 1

ς
Φ∗k (s) Φ∗k (s− ς) ds

]
=

1

ς2

[
1− ς −

∫ 1

ς
[Φ∗k (s)]2 ds+

∫ 1

ς
Φ∗k (s) π̇k (s) ςds−ck

∫ 1

0
Φ∗k (s) 1 {s ∈ [ν, ν + ς)} ds

]
(1 + o (ς))

−
∫ 1

ς
Φ∗k (s)

1

2
π̈k (s) ds (1 + o (ς)) + o (1) .

In the proof of ω(1)(0) = 0, we have effectively shown that

1

K

K∑
k=1

1− ς −
∫ 1
ς [Φ∗k (s)]2 ds+

∫ 1
ς Φ∗k (s) π̇k (s) ςds−ck

∫ 1
0 Φ∗k (s) 1 {s ∈ [ν, ν + ς)} ds

ς
= O(1),

and so

1

K3

K∑
k=1

1− ς −
∫ 1
ς [Φ∗k (s)]2 ds+

∫ 1
ς Φ∗k (s) π̇k (s) ςds−ck

∫ 1
0 Φ∗k (s) 1 {s ∈ [ν, ν + ς)} ds

ς2

= O

(
1

K2ς

)
= O

(
KS

K2

)
= O

(
S

K

)
= O

(
T

K2

)
= o (1) ,

where the last equality follows from the rate condition in the lemma. As a consequence, we have

ω(2)(0) = −1

2
lim
K→∞

1

K3

K∑
k=1

∫ 1

0
Φ∗k (s) π̈k (s) ds

= −1

2
lim
K→∞

1

K3

K∑
k=1

∫ 1

0
[πk (s)− ck1 (s ≥ ν)] π̈k (s) ds

= −1

2
lim
K→∞

1

K3

K∑
k=1

∫ 1

0
πk (s) π̈k (s) ds+

1

2
lim
K→∞

1

K3

K∑
k=1

ck [π̇k (1)− π̇k (ν)] .

Using (A.8), (A.9), and Assumption 5.1(d), we have∣∣∣∣∣
K∑
k=1

ck [π̇k (1)− π̇k (ν)]

∣∣∣∣∣ ≤
(

K∑
k=1

c2
k

)1/2( K∑
k=1

[π̇k (1)− π̇k (ν)]2
)1/2

= O(
√
K)

(
K∑
k=1

[π̇k (1)− π̇k (ν)]2
)1/2

,
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and by the same argument as in (A.8) we have

K∑
k=1

[π̇k (1)− π̇k (ν)]2 ≤ 2
K∑
k=1


 K∑
j=1

[
Φ̇j (1)− Φ̇j (ν)

]
R(j,k)
∞

2

+
{

[τ̇ (1)− τ̇ (ν)]′ dk
}2


≤ 2

K∑
k=1

 K∑
j=1

[
Φ̇j (1)− Φ̇j (ν)

]
R(j,k)
∞

2

+O

(
K∑
k=1

‖dk‖2
)

= O (1)

 K∑
j=1

[
Φ̇j (1)− Φ̇j (ν)

]2

+O

(
K∑
k=1

∥∥∥d̃k∥∥∥2
)

= O
(
K3
)

+O (K) = O
(
K3
)
,

where we have used (A.10). The above bounds imply that
∣∣∣∑K

k=1 ck [π̇k (1)− π̇k (ν)]
∣∣∣ = O

(
K2
)
.

Hence

lim
K→∞

1

K3

K∑
k=1

ck [π̇k (1)− π̇k (ν)] = 0 and ω(2)(0) = −1

2
lim
K→∞

1

K3

K∑
k=1

∫ 1

0
πk (s) π̈k (s) ds.

It now suffi ces to compute the above limit. We have∫ 1

0
πk (s) π̈k (s) ds =

∫ 1

0
πk (s) dπ̇k (s) = πk (s) π̇k (s) |10 −

∫ 1

0
[π̇k (s)]2 ds

= πk (1) π̇k (1)− πk (0) π̇k (0)−
∫ 1

0
[π̇k (s)]2 ds.

Under Assumption 5.1(d), we have∣∣∣∣∣
K∑
k=1

πk (i) π̇k (i)

∣∣∣∣∣
=

∣∣∣∣∣∣
K∑
k=1

 K∑
j1=1

Φj1 (i)R(j1,k)
∞ − τ (i)′ dk

 K∑
j2=1

Φ̇j2 (i)R(j2,k)
∞ − τ̇ (i)′ dk

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
K∑
j2=1

K∑
j1=1

Φj1 (i) Φ̇j2 (i)
K∑
k=1

R(j1,k)
∞ R(j2,k)

∞

∣∣∣∣∣∣+

∣∣∣∣∣
K∑
k=1

d′kτ (i) τ̇ (i)′ dk

∣∣∣∣∣
+

∣∣∣∣∣∣
K∑
k=1

K∑
j1=1

K∑
j2=1

Φj1 (i) τ̇ (i)′ d̃j2R
(j1,k)
∞ R(j2,k)

∞

∣∣∣∣∣∣+

∣∣∣∣∣∣
K∑
j1=1

K∑
j2=1

τ (i)′ d̃j1Φ̇j2 (i)
K∑
k=1

R(j1,k)
∞ R(j2,k)

∞

∣∣∣∣∣∣
≤ ‖ΦF (i)‖

∥∥∥Φ̇F (i)
∥∥∥+O

(
K∑
k=1

∥∥∥d̃k∥∥∥2
)

+
(
‖ΦF (i)‖+

∥∥∥Φ̇F (i)
∥∥∥)( K∑

k=1

∥∥∥d̃k∥∥∥2
)1/2

= O
(
K2
)

+O (K) + ‖ΦF (i)‖O(
√
K) +

∥∥∥Φ̇F (i)
∥∥∥O(
√
K) = O

(
K2
)
.
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It then follows that for d̃F = (d̃1, . . . , d̃K)′ we have

ω(2)(0) =
1

2
lim
K→∞

1

K3

K∑
k=1

∫ 1

0
[π̇k (s)]2 ds

=
1

2
lim
K→∞

1

K3

K∑
k=1

∫ 1

0

 K∑
j=1

Φ̇j (s)R(j,k)
∞ − τ̇ (s)′ dk

2

ds

=
1

2
lim
K→∞

1

K3

K∑
k=1

∫ 1

0

 K∑
j=1

Φ̇j (s)R(j,k)
∞

2

ds+
1

2
lim
K→∞

1

K3

K∑
k=1

d′k

[∫ 1

0
τ̇ (s) τ̇ (s)′ ds

]
dk

− lim
K→∞

1

K3

K∑
j1=1

K∑
j2=1

[∫ 1

0
d′j1 τ̇ (s) Φ̇j2 (s) ds

] K∑
k=1

R(j1,k)
∞ R(j2,k)

∞ .

But
1

2
lim
K→∞

1

K3

K∑
k=1

d′k

[∫ 1

0
τ̇ (s) τ̇ (s)′ ds

]
dk = 0,

lim
K→∞

1

K3

K∑
j1=1

K∑
j2=1

[∫ 1

0
d̃′j1 τ̇ (s) Φ̇j2 (s) ds

] K∑
k=1

R(j1,k)
∞ R(j2,k)

∞

= lim
K→∞

1

K3

∫ 1

0
Φ̇F (s)′

[∫ 1

0
ΦHF (s) ΦHF (s) ds

]−1 [
d̃F τ̇ (s)

]
ds = 0,

and so

ω(2)(0) =
1

2
lim
K→∞

1

K3

K∑
j1=1

K∑
j2=1

∫ 1

0
Φ̇j1 (s) Φ̇j2 (s) ds

∞∑
k=1

R(j1,k)
∞ R(j2,k)

∞

=
1

2
lim
K→∞

1

K3

∫ 1

0
Φ̇F (s)′

[∫ 1

0
ΦHF (s)

[
ΦHF (s)

]′
ds

]−1

Φ̇F (s) ds.

Combining the above results, we can conclude that

E(Λ̂2 − Λ2) = −
(
K

T

)2

ω(2)(0)

∞∑
p=−∞

|p|2 σ2
e,p + o

(
K2

T 2

)
+O

(
1

T

)
, (A.11)

as desired.

Lemma A.2 Suppose we use the Fourier basis functions Φ2j−1(s) =
√

2 cos (2πjs) and Φ2j(s) =√
2 sin (2πjs) for j = 1, . . . ,K/2 and τ (r) is a vector of polynomial trend functions. Then

ω(2)(0) = π2/6.

Proof of Lemma A.2. Letting m (r) :=
[
1 (r ≥ ν) , τ (r)′

]′
, we have

ΦHk (r) = Φk (r)−m (r)′ ϑk,
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where

ϑk =

[∫ 1

0
m (r)m (r)′ dr

]−1 [∫ 1

0
m (r) Φk (r) dr

]
.

Some simple calculations show that∫ 1

0
ΦHk (r) ΦHj (r) dr

=

∫ 1

0

[
Φk (r)−m (r)′ ϑk

] [
Φj (r)−m (r)′ ϑj

]
= 1 {k = j} − ϑ′j

∫ 1

0
Φk (r)m (r) dr − ϑ′k

∫ 1

0
Φj (r)m (r) dr + ϑ′k

[∫ 1

0
m (r)m (r)′ dr

]
ϑj

= 1 {k = j} − ϑ′j
[∫ 1

0
m (r)m (r)′ dr

]
ϑk = 1 {k = j} − ϑ̃′jϑ̃k,

where

ϑ̃k =

[∫ 1

0
m (r)m (r)′ dr

]1/2

ϑk =

[∫ 1

0
m (r)m (r)′ dr

]−1/2 [∫ 1

0
m (r) Φk (r) dr

]
.

Next, we evaluate
∫ 1

0 m (r) Φk (r) dr. The absolute value of the first element is of the form∣∣∣∣∫ 1

ν

√
2 cos (2πkr) dr

∣∣∣∣ =
√

2

∣∣∣∣sin (2πkν)

2πk

∣∣∣∣ ≤ C

k
or[∫ 1

ν

√
2 sin (2πkr) dr

]
=
√

2

∣∣∣∣1− cos (2πkν)

2πk

∣∣∣∣ ≤ C

k
.

The absolute value of each of the other elements is of the form∣∣∣∣∫ 1

0
τ (r)

(√
2 cos 2πkr

)
dr

∣∣∣∣ =

√
2

2πk

∣∣∣∣∫ 1

0
τ (r) d (sin 2πkr)

∣∣∣∣
=

√
2

2πk

∣∣∣∣∫ 1

0
sin (2πkr) τ̇ (r) dr

∣∣∣∣ ≤ C

k

or ∣∣∣∣∫ 1

0
τ (r)

(√
2 sin 2πkr

)
dr

∣∣∣∣ =

√
2

2πk

∣∣∣∣∫ 1

0
τ (r) d (cos 2πkr)

∣∣∣∣
=

√
2

2πk

∣∣∣∣τ (1)− τ (0)−
∫ 1

0
cos (2πkr) τ̇ (r) dr

∣∣∣∣ ≤ C

k
.

In the above, the absolute value and inequality should be understood elementwise. Therefore,∣∣∣∣[∫ 1

0
m (r) Φk (r) dr

]∣∣∣∣ ≤ C

k
(A.12)

for some constant C.
Let ϑ̃ = (ϑ̃1, . . . , ϑ̃K)′ ∈ RK×(dτ+1). Then[∫ 1

0
ΦHF (s)

[
ΦHF (s)

]′
ds

]−1

=
[
IK − ϑ̃ϑ̃′

]−1
= IK + ϑ̃(Idτ+1 − ϑ̃′ϑ̃)−1ϑ̃′ := IK + ϑ̃∗(ϑ̃

∗
)′,
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where ϑ̃∗ = ϑ̃(Idτ+1 − ϑ̃′ϑ̃)−1/2. In view of (A.12), we have (ϑ̃∗k)
′ϑ̃∗k ≤ C/k2.

It then follows that

ω(2)(0) =
1

2
lim
K→∞

1

K3
tr

{[∫ 1

0
ΦHF (s)

[
ΦHF (s)

]′
ds

]−1 ∫ 1

0
Φ̇F (s) Φ̇F (s)′ ds

}

=
1

2
lim
K→∞

1

K3
tr


[
IK + ϑ̃∗(ϑ̃

∗
)′
]


(2π)2 0 0 . . . 0

0 (2π)2 0 0

. . . . . .
. . . . . . . . .

0 0
. . . [2π (K/2)]2 0

0 . . . . . . 0 [2π (K/2)]2




= lim

K→∞

1

K3

K/2∑
j=1

(2πj)2 +
1

2
lim
K→∞

1

K3

K/2∑
j=1

[
(ϑ̃∗2j−1)′ϑ̃∗2j−1 + (ϑ̃∗2j)

′ϑ̃∗2j

]
(2πj)2

= lim
K→∞

1

K3

K/2∑
j=1

(2πj)2 =
1

6
π2.

Proof of Theorem 5.1 . Part (a). We first establish a moment bound for σ̂2/σ2
GLS. Under

Assumption 5.1(a), we have
√
nTE[(θ̂1,GLS − θ̂1,OLS)]2 = O (1/T ) , and so

σ2
GLS = Λ2 [µ (1− µ)]−2

{
1

T

T∑
t=1

[Postτt ]2

}−1

+O

(
1

T

)
. (A.13)

Using Lemma A.1, we have

E

(
σ̂2

σ2
GLS

− 1

)
= E

[
Λ̂2

Λ2

(
1 +O

(
1

T

))
− 1

]
=
E(Λ̂2 − Λ2)

Λ2
+O

(
1

T

)
=
K2

T 2

B

Λ2
+ o

(
K2

T 2

)
+O

(
1

T

)
=
K2

T 2
B̄ + o

(
K2

T 2

)
+O

(
1

T

)
and

E

(
σ̂2

σ2
GLS

− 1

)2

= E

[
Λ̂2

Λ2

(
1 +O

(
1

T

))
− 1

]2

=
2

K
(1 + o(1)) +O

(
1

T

)
.

Then, by applying (A.13) and (A.11), we have

P

(∣∣∣∣∣
√
nT (θ̂1,OLS − θ10)

σ̂

∣∣∣∣∣ ≤ z
)

= EG

(
z2σ̂2

σ2
GLS

)
+O

(
1

T

)
,

= EG(z2) +G′
(
z2
)
E

(
σ̂2

σ2
GLS

− 1

)
z2 +

1

2
G′′(z2)E

(
σ̂2

σ2
GLS

− 1

)2

z4

+ o

(
1

K

)
+ o

(
K2

T 2

)
+O

(
1

T

)
.

= G(z2) +
K2

T 2
B̄G′

(
z2
)
z2 +

1

K
G′′(z2)z4 + o

(
1

K

)
+ o

(
K2

T 2

)
+O

(
1

T

)
.
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Using this, we have

P

(∣∣∣∣∣
√
nT (θ̂1,OLS − θ10)

σ̂

∣∣∣∣∣ > t
α/2
K

)

= 1−G((t
α/2
K )2)− K2B̄

T 2
G′((t

α/2
K )2)(t

α/2
K )2

− 1

K
G′′((t

α/2
K )2)(t

α/2
K )4 + o

(
1

K

)
+ o

(
K2

T 2

)
+O

(
1

T

)
. (A.14)

On the other hand, we have

(t
α/2
K )2 = χα1 −

1

K

G′′(χα1 )

G′(χα1 )
(χα1 )2 + o

(
1

K

)
. (A.15)

See equation (14) in Sun (2011). Combining (A.14) and (A.15) yields

P

(∣∣∣∣∣
√
nT (θ̂1,OLS − θ10)

σ̂

∣∣∣∣∣ > t
α/2
K

)

= 1−G(χα1 ) +G′ (χα1 )
1

K

G′′(χα1 )

G′(χα1 )
(χα1 )2

− K2B̄

T 2
G′(χα1 )χα1 −

1

K
G′′(χα1 ) (χα1 )2 + o

(
1

K

)
+ o

(
K2

T 2

)
+O

(
1

T

)
= α− K2B̄

T 2
G′(χα1 )χα1 + o

(
1

K

)
+ o

(
K2

T 2

)
+O

(
1

T

)
.

Part (b). Under H1(δ2), we have

P

(∣∣∣∣∣
√
nT (θ̂1,OLS − θ10)

σ̂

∣∣∣∣∣ ≤ z|H1(δ2)

)
= EGδ2

(
z2σ̂2

σ2

)
+O(T−1),

= Gδ2(z
2) +

K2B̄

T 2
G′δ2

(
z2
)
z2 +

1

K
G′′δ2(z

2)z4 + o

(
1

K

)
+ o

(
K2

T 2

)
+O

(
1

T

)
.

Therefore, we have

P

(∣∣∣∣∣
√
nT (θ̂1,OLS − θ10)

σ̂

∣∣∣∣∣ ≤ tα/2K |H1(δ2)

)

= Gδ2((t
α/2
K )2) +

K2B̄

T 2
G′δ2((t

α/2
K )2)(t

α/2
K )2 +

1

K
G′′δ2((t

α/2
K )2)(t

α/2
K )4

+ o

(
1

K

)
+ o

(
K2

T 2

)
+O

(
1

T

)
= Gδ2(χ

α
1 ) +

K2B̄

T 2
G′δ2(χ

α
1 )χα1 +

δ2

2K
G′3,δ2(χ

α
1 )χα1 + o(

1

K
) + o

(
K2

T 2

)
+O

(
1

T

)
,

where we have used the result that

G′′δ2
(
χαp
)
− G′′ (χα1 )

G′ (χα1 )
G′δ2

(
χαp
)

=
δ2

2χα1
G′3,δ2 (χα1 ) ,

which follows from simple calculations. For details of the calculation, see the proof of Theorem
5 in Sun (2011).
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B Appendix: Understanding the asymptotic t test

To understand the asymptotic t theory, we abstract away nonessential details in a DD regression
and consider the time series regression

Yt = τ (t)′ α+ Postt × β + et, t = 1, 2, . . . , T (B.1)

with β as the parameter of interest, where Yt is the outcome of interest and et satisfies the FCLT
T−1/2

∑[Tr]
t=1 et →d ΛB (r) . After partialling out the trend component, the time series model

becomes Yτt = Postτt × β + eτt . The OLS estimator of β is then

β̂ =

[
T∑
t=1

(Postτt )2

]−1 T∑
t=1

(Postτt · Yτt ),

and the t statistic for testing the null β = β0 is

Tβ =

√
T (β̂ − β0)√[

T−1
∑T

t=1(Postτt )2
]−1

Λ̂2

=

√
T (β̂ − β0)√[

T−1
∑T

t=1(Postτt )2
]−1

Λ2

·

√
Λ2

Λ̂2
(B.2)

where

Λ̂2 =
1

K

K∑
k=1

[
1√
T

T∑
t=1

Φk

(
t

T

)
· êτt

]2

(B.3)

and êτt = Yτt − Postτt · β̂.
It is not diffi cult to show that the fixed-K limit distribution of Tβ is identical to what is given

in (12). Therefore, the time series regression in (B.1) and the DD regression can be regarded
as asymptotically equivalent. To develop the asymptotic t theory for Tβ, we have to use the
Gram-Schmidt orthogonalization as in the DD regression. The reason is that the basis functions
{ΦHk (r)} are not orthonormal on L2[0, 1] and so ηk is not iid, even if the original basis functions
{Φk (r)} are. In fact, for the asymptotic t theory, we do not care whether {Φk (r)} are orthonormal
per se. What we care about is whether {ΦHk (r)} are orthonormal.

There are some special cases where the Gram-Schmidt orthogonalization is not needed. The
first example is Sun (2011) who considers a linear trend regression, which is a special case of the
model in (B.1) and can be obtained by setting τ (t) = (1, t)′ and dropping the regressor Postt. It
is not hard to show that the limiting distribution of the t statistic for the linear-trend coeffi cient
can still be represented by (12), but now

ΦHk (r) = Φk (r)− τ (r)′
[∫ 1

0
τ (s) τ (s)′ ds

]−1 [∫ 1

0
Φk (s) τ (s) ds

]
.

If we employ the special cosine bases {Φk (r) :=
√

2 cos (πkr) , k = 0, 1, . . .}, then
∫ 1

0 Φk (s) τ (s) ds =

0 with τ (s) = (1, s)′ and hence ΦHk (r) = Φk (r) . So ηk =
∫ 1

0 ΦHk (r) dB (r) =
∫ 1

0 Φk (r) dB (r) .
Given that these cosine bases are orthonormal on L2[0, 1], we have ηk ∼ iid N(0, 1) for k =
1, 2, . . . ,K. Asymptotic t theory can be then developed without applying the Gram-Schmidt
orthogonalization to the special cosine bases. Such a theory in Sun (2011) takes advantage of
the nature of the regressor, i.e., the linear trend, and the special property of the carefully crafted
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cosine bases. If the regression contains other deterministic regressors such as higher-order poly-
nomial trends and the regressor Postt, an asymptotic t theory cannot be developed without
employing the Gram-Schmidt orthogonalization.

The second example is Sun (2013) who develops the asymptotic t theory in the GMM frame-
work for stationary data. To understand the asymptotic t theory there, we consider the simplest
location model, which can serve as the limit experiment of more general models. The location
model can be cast as the regression model in (B.1) with the special regressor τ (t) = 1 but without
the regressor Postt. Again the representation in (12) is still valid for the limiting distribution of
the t statistic. Simple calculations show that now

ΦHk (r) = Φk (r)−
∫ 1

0
Φk (s) ds.

If the basis functions {Φk (·)} are orthonormal on L2[0, 1] and satisfy
∫ 1

0 Φk (s) ds = 0, then
ΦHk (r) = Φk (r) and ηk =

∫ 1
0 ΦHk (r) dB (r) =

∫ 1
0 Φk (r) dB (r) ∼ iid N(0, 1). To develop the as-

ymptotic t theory, we only need to maintain that {Φk (·)} are orthonormal and satisfy
∫ 1

0 Φk (s) ds =
0. The commonly used Fourier bases meet these requirements. As in the linear trend regression,
we do not need to employ the Gram-Schmidt orthogonalization in order to develop the asymptotic
t theory.

The idea of using the Gram-Schmidt orthogonalization to develop the asymptotic t approx-
imations (and F approximations) in series HAR inference is quite general. It can be readily
extended to regressions with other types of deterministic regressors. It can also be extended to
the cases where the standard FCLT T−1/2

∑[Tr]
t=1 et →d ΛB (r) does not hold and the limiting

process may not have independent increments. For example, if et is a near unit root process with
local-to-unity parameter c, then we could have: T−1/2e[Tr] →d ΛJc (r) where Jc (r) is an OU
process whose increments are not independent of each other in general. In such cases, the as-
ymptotic t theory can still be developed, but more sophisticated orthonormalizations are needed.
See Sun (2014c) for a study in this direction.
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