Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Dissolving Microneedle Delivery of a Prophylactic HPV Vaccine

Abstract

Prophylactic vaccines capable of preventing human papillomavirus (HPV) infections are still inaccessible to a vast majority of the global population due to their high cost and challenges related to multiple administrations performed in a medical setting. In an effort to improve distribution and administration, we have developed dissolvable microneedles loaded with a thermally stable HPV vaccine candidate consisting of Qβ virus-like particles (VLPs) displaying a highly conserved epitope from the L2 protein of HPV (Qβ-HPV). Polymeric microneedle delivery of Qβ-HPV produces similar amounts of anti-HPV16 L2 IgG antibodies compared to traditional subcutaneous injection while delivering a much smaller amount of intradermal dose. However, a dose sparing effect was found. Furthermore, immunization yielded neutralizing antibody responses in a HPV pseudovirus assay. The vaccine candidate was confirmed to be stable at room temperature after storage for several months, potentially mitigating many of the challenges associated with cold-chain distribution. The ease of self-administration and minimal invasiveness of such microneedle patch vaccines may enable wide-scale distribution of the HPV vaccine and lead to higher patient compliance. The Qβ VLP and its delivery technology is a plug-and-play system that could serve as a universal platform with a broad range of applications. Qβ VLPs may be stockpiled for conjugation to a wide range of epitopes, which are then packaged and delivered directly to the patient via noninvasive microneedle patches. Such a system paves the way for rapid distribution and self-administration of vaccines.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View