Skip to main content
eScholarship
Open Access Publications from the University of California

Nonuniform update for sparse target recovery in fluorescence molecular tomography accelerated by ordered subsets.

  • Author(s): Zhu, Dianwen
  • Li, Changqing
  • et al.
Abstract

Fluorescence molecular tomography (FMT) is a promising imaging modality and has been actively studied in the past two decades since it can locate the specific tumor position three-dimensionally in small animals. However, it remains a challenging task to obtain fast, robust and accurate reconstruction of fluorescent probe distribution in small animals due to the large computational burden, the noisy measurement and the ill-posed nature of the inverse problem. In this paper we propose a nonuniform preconditioning method in combination with L (1) regularization and ordered subsets technique (NUMOS) to take care of the different updating needs at different pixels, to enhance sparsity and suppress noise, and to further boost convergence of approximate solutions for fluorescence molecular tomography. Using both simulated data and phantom experiment, we found that the proposed nonuniform updating method outperforms its popular uniform counterpart by obtaining a more localized, less noisy, more accurate image. The computational cost was greatly reduced as well. The ordered subset (OS) technique provided additional 5 times and 3 times speed enhancements for simulation and phantom experiments, respectively, without degrading image qualities. When compared with the popular L (1) algorithms such as iterative soft-thresholding algorithm (ISTA) and Fast iterative soft-thresholding algorithm (FISTA) algorithms, NUMOS also outperforms them by obtaining a better image in much shorter period of time.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View