Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Electron scattering by magnetosonic waves in the inner magnetosphere

Abstract

We investigate the importance of electron scattering by magnetosonic waves in the Earth's inner magnetosphere. A statistical survey of the magnetosonic wave amplitude and wave frequency spectrum, as a function of geomagnetic activity, is performed using the Van Allen Probes wave measurements and is found to be generally consistent with the wave distribution obtained from previous spacecraft missions. Outside the plasmapause the statistical frequency distribution of magnetosonic waves follows the variation of the lower hybrid resonance frequency, but this trend is not observed inside the plasmasphere. Drift and bounce averaged electron diffusion rates due to magnetosonic waves are calculated using a recently developed analytical formula. The resulting timescale of electron energization during disturbed conditions (when AE∗ > 300 nT) is more than 10 days. We perform a 2-D simulation of the electron phase space density evolution due to magnetosonic wave scattering during disturbed conditions. Outside the plasmapause, the waves accelerate electrons with pitch angles between 50° and 70° and form butterfly pitch angle distributions at energies from ∼100 keV to a few MeV over a timescale of several days; whereas inside the plasmapause, the electron acceleration is very weak. Our study suggests that intense magnetosonic waves may cause the butterfly distribution of radiation belt electrons especially outside the plasmapause, but electron acceleration due to magnetosonic waves is generally not as effective as chorus wave acceleration.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View