Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Quantitative evaluation of nonlinear methods for population structure visualization and inference.

Abstract

Population structure (also called genetic structure and population stratification) is the presence of a systematic difference in allele frequencies between subpopulations in a population as a result of nonrandom mating between individuals. It can be informative of genetic ancestry, and in the context of medical genetics, it is an important confounding variable in genome-wide association studies. Recently, many nonlinear dimensionality reduction techniques have been proposed for the population structure visualization task. However, an objective comparison of these techniques has so far been missing from the literature. In this article, we discuss the previously proposed nonlinear techniques and some of their potential weaknesses. We then propose a novel quantitative evaluation methodology for comparing these nonlinear techniques, based on populations for which pedigree is known a priori either through artificial selection or simulation. Based on this evaluation metric, we find graph-based algorithms such as t-SNE and UMAP to be superior to principal component analysis, while neural network-based methods fall behind.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View