Skip to main content
eScholarship
Open Access Publications from the University of California

Sequential Reconstruction Segment-Wise Feature Track and Structure Updating Based on Parallax Paths

Abstract

This paper presents a novel method for multi-view sequential scene reconstruction scenarios such as in aerial video, that exploits the constraints imposed by the path of a moving camera to allow for a new way of detecting and correcting inaccuracies in the feature tracking and structure computation processes. The main contribution of this paper is to show that for short, planar segments of a continuous camera trajectory, parallax movement corresponding to a viewed scene point should ideally form a scaled and translated version of this trajectory when projected onto a parallel plane. This creates two constraints, which differ from those of standard factorization, that allow for the detection and correction of inaccurate feature tracks and to improve scene structure. Results are shown for real and synthetic aerial video and turntable sequences, where the proposed method was shown to correct outlier tracks, detect and correct tracking drift, and allow for a novel improvement of scene structure, additionally resulting in an improved convergence for bundle adjustment optimization.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View