Skip to main content
eScholarship
Open Access Publications from the University of California

UC Irvine

UC Irvine Previously Published Works bannerUC Irvine

Subunit composition of mink potassium channels

Abstract

Expression of minK protein in Xenopus oocytes induces a slowly activating, voltage-dependent, potassium-selective current. Point mutations in minK that alter current gating kinetics, ion selectivity, pharmacology, and response to protein kinase C all support the notion that minK is a structural protein for a channel-type transporter. Yet, minK has just 130 amino acids and a single transmembrane domain. Though larger cloned potassium channels form functional channels through tetrameric subunit association, the subunit composition of minK is unknown. Subunit stoichiometry was determined by coexpression of wild-type minK and a dominant lethal point mutant of minK, which reaches the plasma membrane but passes no current. The results support a model for complete minK potassium channels in which just two minK monomers are present, with other, as yet unidentified, non-minK subunits.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View