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Abstract of the Dissertation

Optimal Sequential Resource Sharing and

Exchange in Multi-Agent Systems

by

Yuanzhang Xiao

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2014

Professor Mihaela van der Schaar, Chair

Central to the design of many engineering systems and social networks is to solve

the underlying resource sharing and exchange problems, in which multiple decen-

tralized agents make sequential decisions over time to optimize some long-term

performance metrics. It is challenging for the decentralized agents to make op-

timal sequential decisions because of the complicated coupling among the agents

and across time. In this dissertation, we mainly focus on three important classes of

multi-agent sequential resource sharing and exchange problems and derive optimal

solutions to them.

First, we study multi-agent resource sharing with imperfect monitoring, in

which self-interested agents have imperfect monitoring of the resource usage and

inflict strong negative externality (i.e. strong interference and congestion) among

each other. Despite of the imperfect monitoring, the strong negative external-

ity, and the self-interested agents, we propose an optimal, distributed, easy-to-

implement resource sharing policy that achieves Pareto optimal outcomes at the

equilibrium. A key feature of the optimal resource sharing policy is that it is

nonstationary, namely it makes decisions based on the history of past (imperfect)

monitoring of the resource usages. The applications of our proposed design in

wireless spectrum sharing problems enable us to improve the spectrum efficiency
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by up to 200% and achieve up to 90% energy saving, compared to state-of-the-art

(stationary) spectrum sharing policies.

Second, we study multi-agent resource sharing with decentralized information,

in which each agent has a private, independently and stochastically changing state

(whose transition may depend on the agent’s action), and the agents’ actions are

coupled through resource sharing constraints. Despite of the dentralized inform-

tion (i.e. private states), we propose distributed resource sharing policies that

achieve the social optimum, and apply the proposed policies to demand-side man-

agement in smart grids, and joint resource allocation and packet scheduling in

wireless video transmissions. The proposed policies demonstrate significant per-

formance gains over existing myopic policies that do not take into account the

state dynamics and the policies based on Lyapunov optimization that were pro-

posed for single-agent problems.

Finally, we study multi-agent resource exchange with imperfect monitoring,

in which self-interested, anonymous agents exchange services (e.g. task solving

in crowdsourcing platforms, file sharing in peer-to-peer networks, answering in

question-and-answer forums). Due to the anonymity of the agents and the lack of

fixed partners, free-riding is prevalent, and can be addressed by rating protocols.

We propose the first rating protocol that can achieve the social optimum at the

equilibrium under imperfect monitoring of the service quality. A key feature of the

optimal rating protocol is again that it is nonstationary, namely it recommends

desirable behaviors based on the history of past rating distributions of the agents.
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CHAPTER 1

Introduction

1.1 Motivation

This thesis focuses on the optimal design of multi-agent systems, in which decen-

tralized autonomous agents with conflicting objectives and coupled constraints

either share a common resource or exchange resources among each other. Exam-

ples of resource sharing systems range from classic resource sharing problems in

Electrical Engineering such as power control, medium access control, flow control,

workload and task scheduling etc., to emerging new problems such as demand-

side management in smart electric power grids and resource allocation in cloud

data centers. Examples of resource exchange systems include peer-to-peer (P2P)

networks such as BitTorrent, in which agents exchange data, and social crowd-

sourcing platforms such as Amazon Mechanical Turk, in which agents exchange

labor or services.

These seemingly-different systems share (some of) the following important

common features: the negative externalities among the agents caused by the in-

terference and congestion, the imperfect monitoring abilities of the agents (i.e.

they cannot perfectly observe the resource usage status in the system or the qual-

ity of the resources provided by the other agents), the information decentralization

among the agents (i.e. each agent may have private local information unknown

to the others) and their selfish behaviors. Because of these important features,

the optimal resource sharing/exchange policy should be nonstationary, namely
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the action should depend not only on the current state of the system, but also

on the history of past states. However, the theory of designing nonstationary

policies is still very under-developed, due to the difficulty involved in analyzing

and designing the highly-complicated nonstationary policies. Nevertheless, it is

of great importance to develop the theory of designing nonstationary policies, be-

cause of the inefficiency of stationary policies (i.e. policies in which the action

depends only on the current state and this dependence is time-invariant). In our

recent works on cognitive radio networks [2][3], social crowdsourcing and P2P sys-

tem [7], smart grids [4], we have shown that nonstationary policies significantly

outperform state-of-the-art stationary policies.

1.2 Roadmap

In this thesis, we focus on three important classes of multi-agent sequential re-

source sharing and exchange problems and derive optimal solutions to them.

1.2.1 Resource Sharing With Imperfect Monitoring

In the first part of this thesis (based on works [1][2][3]), we study multi-agent

resource sharing with imperfect monitoring, in which self-interested agents have

imperfect monitoring of the resource usage and inflict strong negative externality

(i.e. strong interference and congestion) among each other. Despite of the imper-

fect monitoring, the strong negative externality, and the self-interested agents, we

propose an optimal, distributed, easy-to-implement resource sharing policy that

achieves Pareto optimal outcomes at the equilibrium. A key feature of the opti-

mal resource sharing policy is that it is nonstationary, namely it makes decisions

based on the history of past (imperfect) monitoring of the resource usages.

Our framework can be applied to a variety of important engineering applica-

tions such as power control, flow control, and demand-side management in smart
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grids. In wireless communication networks, our proposed nonstationary spectrum

sharing policies can improve the spectrum efficiency by up to 200% [2], and re-

duce the energy consumption by up to 90% while achieving the same spectrum

efficiency [3], compared to the state-of-the-art spectrum sharingpolicies. In smart

electric power grids [4], our proposed optimal design can reduce the operational

costs of the grids by up to 60% by optimal demand-side management and optimal

usage of energy storage.

1.2.2 Resource Sharing With Decentralized Information

In the second part of this thesis (based on works [5][6]), we study multi-agent re-

source sharing with decentralized information, in which each agent has a private,

independently and stochastically changing state (whose transition may depend on

the agent’s action), and the agents’ actions are coupled through resource sharing

constraints. Despite of the dentralized informtion (i.e. private states), we pro-

pose distributed resource sharing policies that achieve the social optimum, and

apply the proposed policies to demand-side management in smart grids, and joint

resource allocation and packet scheduling in wireless video transmissions. The

proposed policies demonstrate significant performance gains over existing myopic

policies that do not take into account the state dynamics and the policies based

on Lyapunov optimization that were proposed for single-agent problems.

We apply our framework in demand side management and economic dispatch in

smart grids with energy storage. Our proposed optimal policy achieves significant

reduction in the total system operating cost, compared to the optimal myopic

demand side management and economic dispatch (up to 60% reduction), and

the foresighted demand side management and economic dispatch based on the

Lyapunov optimization framework (up to 30% reduction).
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1.2.3 Resource Exchange With Imperfect Monitoring

In the third part of this thesis (based on works [7]), we study multi-agent resource

exchange with imperfect monitoring, in which a large population of self-interested,

anonymous agents exchange services (e.g. task solving in crowdsourcing plat-

forms, file sharing in peer-to-peer networks, answering in question-and-answer

forums). In such systems, the absence of a fixed partner and the anonymity of

the agents create an incentive problem, namely the agents tend to free-ride (for

instance, in P2P systems, agents tend to download without uploading). In addi-

tion, a agent generally may not be able to perfectly monitor its partners action,

either due to the agents inaccurate assessment of its partners action (e.g., in a

crowdsourcing system, the client, who wants to translate something into a foreign

language, cannot accurately evaluate the servers translation), or due to some sys-

tem errors (e.g., in a P2P system, the client does not receive the serves data due

to network errors). Most existing resource exchange policies are designed under

the assumption of perfect monitoring, and will lead to a system collapse if moni-

toring is even slightly imperfect. A few recent works proposed stationary policies

under imperfect monitoring, which have over 50% performance loss compared to

the social optimum. In [7], we proposed the first nonstationary resource exchange

policy that can achieve the social optimum even under imperfect monitoring.
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CHAPTER 2

Resource Sharing With Imperfect Monitoring

2.1 Introduction

The problem of efficient sharing of a resource is nearly ubiquitous. Unless the

resource is a pure public good, each agent’s use of the resource imposes a nega-

tive externality on other users. Hence, self-interested, strategic agents will find

it difficult to share the resource efficiently, at least in the short run. In some

circumstances – those we focus on in this chapter – the negative externality is so

strong – competition for the resource is so destructive – that it will be impossible

for users to share the resource efficiently, at least in the short run. The purpose

of this chapter is to propose resource sharing policies that are efficient in the long

run – even when outcomes depend stochastically on actions, monitoring is very

limited and players are not very patient.

We formulate the resource sharing scenario using the framework of repeated

games with imperfect public monitoring. Within our framework, we abstract

what we see as the essential features of the resource allocation problems by two

assumptions about the stage game. The first is that for each player i there is a

unique action profile ãi that i most prefers. (In many resource sharing scenarios,

ãi would be the profile in which only player i accesses the resource.) The second is

that for every action profile a that is not in the set {ãi} of preferred action profiles

the corresponding utility profile u(a) lies below the hyperplane H spanned by the

utility profiles {u(ãi)}. (In many resource sharing scenarios, this corresponds to
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the assumption that allowing access to the resource by more than one individual

strictly lowers (weighted) social welfare.) We capture the notion that monitoring

is very limited by assuming that players do not observe the profile a of actions

but rather only some signal y ∈ Y whose distribution ρ(y|a) depends on the true

profile a, and that (profitable) single-player deviations from i’s preferred action

profile ãi can be statistically distinguished from conformity with ãi in the same

way. (But we do not assume that different deviations from ãi can be distinguished

from each other.) We emphasize the setting in which there are only two signals

– “good” and “bad” – because this setting offers the sharpest results and the

clearest intuition and, as we shall see, because two signals are often enough.

Our results are different from existing results in the repeated game theory

literature in three important aspects: we do not assume a rich signal structure

(rather, we require only two signals), we do not assume players are arbitrarily

patient (rather, we find an explicit lower bound on the requisite discount factor),

and we provide an explicit (distributed) algorithm that takes as inputs the pa-

rameters – stage game payoffs, discount factor, target payoff – and computes the

strategy – the action to be chosen by each player following each public history.

This algorithm can be carried out by each player separately and in real time –

there is no need for the designer to specify/describe the strategies to be played. A

consequence of our constructive algorithm is that the strategies we identify enjoy

a useful robustness property: generically, the equilibrium strategies are, for many

periods, locally constant in the parameters of the environment and of the problem.

2.1.1 Related Works in Repeated Game Theory Literature

As discusses before, we model the resource sharing scenarios as repeated games

with imperfect public monitoring. The literature on repeated games with imper-

fect public monitoring is quite large – much too large to survey here; we refer

instead to [8] and the references therein. However, explicit comparisons with two
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papers in this literature may be especially helpful. The first and most obvious

comparison is with [9] by Fudenberg, Levine, and Maskin (hereafter FLM) on the

Folk Theorem for repeated games with imperfect public monitoring. As do we,

FLM consider a situation in which a single stage game G with action space A

and utility function u : A → Rn is played repeatedly over an infinite horizon;

monitoring is public but imperfect, so players do not observe actions but only a

public signal of those actions. In this setting, co[u(A)] is the set of payoff profiles

that can be achieved as long run average utilities for some discount factor and

some infinite set of plays of the stage game G. Under certain assumptions, FLM

prove that any payoff vector in the interior of co[u(A)] that is strictly individually

rational can be achieved in a PPE of the infinitely repeated game. However, the

assumptions FLM maintain are very different from ours in two very important

dimensions (and some other dimensions that seem less important, at least for the

present discussion). The first is that the signal structure is rich and informative;

in particular, that the number of signals is at least one less than the number of

actions of any two players. The second is that players are arbitrarily patient: that

is, the discount factor δ is as close to 1 as we like. (More precisely: given a target

utility profile v, there is some δ(v) such that if the discount factor δ > δ(v) then

there is a PPE of the repeated game that yields the target utility profile v.) In

particular, FLM do not identify any PPE for any given discount factor δ < 1.

By contrast, we require only two signals even if action spaces are infinite and we

do not assume players are patient: all target payoffs can be achieved for some

fixed discount factor – which may be very far from 1. Moreover, because FLM

consider only payoffs in the interior of co[u(A)], they have nothing to say about

achieving efficient payoffs. Their results do imply that efficient payoffs can be

arbitrarily well approximated by payoffs that can be achieved in PPE, but only if

the corresponding discount factors are arbitrarily close to 1.

By contrast, Fudenberg, Levine, and Takahashi [21] (hereafter FLT) do show
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how (some) efficient payoffs can be achieved in PPE. Given Pareto weights λ1, . . . , λn

set Λ = sup{
∑
λiui(a) : a ∈ A} and consider the hyperplane H = {x ∈ Rn :∑

λixi = Λ}. The intersection H ∩ co[u(A)] is a part of the Pareto boundary of

co[u(A)]. As do we, FLT ask what vectors in H ∩ co[u(A)] can be achieved in

PPE of the infinitely repeated game. They identify the largest (compact convex)

set Q ⊂ H ∩ co[u(A)] with the property that every target vector v ∈ intQ (the

relative interior of Q with respect to H) can be achieved in a PPE of the infinitely

repeated game for some discount factor δ(v) < 1. However, because FLT consider

arbitrary stage games and arbitrary monitoring structures, the set Q identified by

FLT may be empty, and FLT do not provide any conditions that guarantee that

Q is not empty. Moreover, as in FLM, FLT assume that players are arbitrarily

patient, so do not identify any PPE for any given discount factor δ < 1. Having

said this, we should also point out that FLT identify the closure of the set of all

payoff vectors in the interior of H ∩ co[u(A)] that can be achieved in a PPE for

some discount factor, while we identify only some. So there is a trade-off: FLT

find more PPE payoffs but provide much less information about the ones they

find; we find fewer PPE payoffs but provide much more information about the

ones we find.

At the risk of repetition, we want to emphasize the most important features

of our results. The first is that we do not assume discount factors are arbitrarily

close to 1. The importance of this seems obvious in all environments – especially

since the discount factor encodes both the innate patience of players and the prob-

ability that the interaction continues. The second is that we impose different –

and in many ways weaker – requirements on the monitoring structure; indeed,

we require only two signals, even if action spaces are infinite. Again, the impor-

tance of this seems obvious in all environments, but especially in those in which

signals are not generated by some exogenous process but must be provided by a

designer. In the latter case it seems obvious – and in practice may be of supreme
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importance – that the designer may wish or need to choose a simple information

structure that employs a small number of signals, saving on the cost of observing

the outcome of play and on the cost of communicating to the agents. More gen-

erally, the designer may face a trade-off between the efficiency obtainable with a

finer information structure and the cost of using that information structure. Fi-

nally, because we provide a distributed algorithm for calculating equilibrium play,

neither the agents nor a designer need to work out the equilibrium strategies in

advance; all calculations can be done online, in real time.

The rest of this chapter is organized as follows. Section 2.2 presents the for-

mal model. Section 2.3 presents our main results: we first give some preliminary

results, presenting conditions under which no efficient payoffs can be achieved in

PPE for any discount factor; we then presents the main technical result (Theorem

1); we finally presents the implications for PPE (Theorems 2,3). In Section 2.4,

we apply our theoretical results to maximize the throughput in spectrum sharing

scenarios. In Section 2.5, we apply and extend our theoretical results to mini-

mize the energy consumption while fulfilling minimum throughput requirements

in spectrum sharing scenarios. Section ?? concludes this chapter. We relegate all

proofs to the Appendix.

2.2 Model

2.2.1 Stage Game

The stage game consists of

• a set N = {1, . . . , n} of players

• for each player i

– a compact set Ai of actions
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– a continuous utility function ui : A = A1 × · · · × An → R

• a compact set of public signals Y

• a measurable map a 7→ ρ(·|a) : A→ ∆(Y )

We interpret ui(a) as i’s ex ante (expected) utility when a is played and ρ(y|a)

as the probability that the signal y is observed when a is played.

2.2.2 The Repeated Game with Imperfect Public Monitoring

In the repeated game, the stage game G is played in every period t = 0, 1, 2, . . ..

In each period t, the moves are made in the following order:

• Each player i chooses its action ati.

• The public signal yt is realized and observed by all the players.

• Each player i receives its utility uti.

A public history of length t is a sequence (y0, y1, . . . , yt−1) ∈ Y t. We write H(t) for

the set of public histories of length t, HT =
⋃T
t=0H(t) for the set of public histories

of length at most T andH =
⋃∞
t=0H(t) for the set of all public histories of all finite

lengths. A private history for player i includes the public history, the actions taken

by player i, and the realized utilities observed by player i, so a private history of

length t is a a sequence (a0
i , . . . , a

t−1
i ;u∗,0i , . . . , u∗,t−1

i ; y0, . . . , yt−1) ∈ Ati ×Rt × Y t.

We write Hi(t) for the set of i’s private histories of length t, HT
i =

⋃T
t=0Hi(t) for

the set of i’s private histories of length at most T and Hi =
⋃∞
t=0Hi(t) for the set

of i’s private histories of all finite lengths.

A pure strategy for player i is a mapping from all private histories into the set

of pure actions πi : Hi → Ai. A public strategy for player i is a pure strategy

that is independent of i’s own action/utility history; equivalently, a mapping from

public histories to i’s pure actions πi : H → Ai.
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We assume all players discount future utilities using the same discount factor

δ ∈ (0, 1) and we use long-run averages, so if the stream of expected utilities is

{ut} the vector of long-run average utilities is (1− δ)
∑∞

t=0 δ
tut. A strategy profile

π : H1× . . .×Hn → A induces a probability distribution over public and private

histories and hence over ex ante utilities. We write U(π) for the vector of expected

(with respect to this distribution) long-run average ex ante utilities when players

follow the strategy profile π.

As usual a strategy profile π is an equilibrium if each player’s strategy is

optimal given the strategies of others. A strategy profile is a public equilibrium if

it is an equilibrium and each player uses a public strategy; it is a perfect public

equilibrium (PPE) if it is a public equilibrium following every public history.

2.2.3 Assumptions on the Stage Game

To this point we have described a very general setting; we now impose additional

assumptions – first on the stage game and then on the information structure –

that we exploit in our results.

Set u(A) = {u(a) ∈ Rn : a ∈ A} and let co[u(A)] be the convex hull of u(A).

For each i set

ṽii = max
a∈A

ui(a)

ãi = arg max
a∈A

ui(a)

Compactness of the action spaceA and continuity of utility functions ui guarantee

that u(A) and co[u(A)] are compact, that ṽii is well-defined and that the arg max

is not empty. For convenience, we assume that the arg max is a singleton; i.e., the

maximum utility ṽii for player i is attained at a unique strategy profile ãi.1 We

refer to ãi as i’s preferred action profile and to ṽi = u(ãi) as i’s preferred utility

profile. In the context of resource sharing, ãi will typically be the (unique) action

1This assumption could be avoided, at the expense of some technical complication.

11



profile at which agent i has optimal access to the resource and other agents have

none. For this reason, we will often say that i is active at the profile ãi and other

players are inactive. Set Ã = {ãi : i ∈ N} and Ṽ = {ṽi : i ∈ N} and write

V = co (Ṽ ) for the convex hull of Ṽ . Note that co(u(A)) is the convex hull of the

set of vectors that can be achieved – for some discount factor – as long-run average

ex ante utilities of repeated plays of the game G (not necessarily equilibrium plays

of course) and that V is the convex hull of the set of vectors that can be achieved

– for some discount factor – as long-run average ex ante utilities of repeated plays

of the game G in which only actions in Ã are used. We refer to co[u(A)] as the

set of feasible payoffs and to V as the set of efficient payoffs.2

We abstract the motivating class of resource allocation problems by imposing

conditions on the set of preferred utility profiles, which abstract the idea that

there are strong negative externalities.

Assumption 1 The affine span of Ṽ is a hyperplane H and all ex ante utility

vectors of the game other than the those in Ṽ lie below H. That is, there are

weights λ1, . . . , λn > 0 such that
∑
λjuj(ã

i) = 1 for each i and
∑
λjuj(a) < 1

for each a ∈ A,a /∈ Ã.3

2.2.4 Assumptions on the Monitoring Structure

As noted in the Introduction, we focus on the case in which there are only two

signals.

Assumption 2 The set Y contains precisely two signals and ρ(y|a) > 0 for every

y ∈ Y and a ∈ A. (The monitoring structure has full support.)

We assume that profitable deviations from the profiles ãi exist and be statis-

2The latter is a slight abuse of terminology: because V is the intersection of the set of
feasible payoffs with a bounding hyperplane, every payoff vector in V is Pareto efficient and
yields maximal weighted social welfare and other feasible payoffs yield lower weighted social
welfare – but other feasible payoffs might also be Pareto efficient.

3That the sum is 1 is just a normalization.
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tically detected in a particularly simple way.

Assumption 3 For each i ∈ N and each j 6= i there is an action aj ∈ Aj such

that uj(aj, ã
i
−j) > uj(ã

i). Moreover, there is a labeling Y = {yig, yib} with the

property that for all j 6= i,

aj ∈ Aj, uj(aj, ãi−j) > uj(ã
i)⇒ ρ(yig|aj, ãi−j) < ρ(yig|, ãi).

That is, given that other players are following ãi, any strictly profitable devi-

ation by player j strictly reduces the probability that the “good” signal yig is

observed (equivalently: strictly increases the probability that the “bad” signal yib

is observed).

The import of Assumption 3 is that all profitable single player deviations from

ãi alter the signal distribution in the same direction although perhaps not to

the same extent. We allow for the possibility that non-profitable deviations may

not be detectable in the same way – perhaps not detectable at all – and for the

possibility that which signal is “good” and which is “bad” depend on the identity

of the active player i.

2.3 Main Results

In this section, we find conditions – on the discount factor among other things –

that enable us to construct PPE that achieve payoffs in V (efficient payoffs). We

also propose simple distributed algorithms to construct PPE. We end this section

by presenting the robustness property of the constructed PPE.

2.3.1 Ruling out Some Efficient PPE Payoffs

We first show that under certain conditions, certain efficient payoffs cannot be

achieved in PPE no matter what the discount factor is. To this end, we iden-

tify two measures of benefits from deviation. (These same measures will play a
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prominent role in the next Section as well.) Given i, j ∈ N with i 6= j set:

α(i, j) = sup

{
uj(aj, ã

i
−j)− uj(ãi)

ρ(yib|aj, ãi−j)− ρ(yib|ãi)
:

aj ∈ Aj, uj(aj, ãi−j) > uj(ã
i)

}
(2.1)

β(i, j) = inf

{
uj(aj, ã

i
−j)− uj(ãi)

ρ(yib|aj, ãi−j)− ρ(yib|ãi)
:

aj ∈ Aj, uj(aj, ãi−j) < uj(ã
i), ρ(yib|aj, ãi−j) < ρ(yib|ãi)

}
(2.2)

(We follow the usual convention that the supremum of the empty set is −∞ and

the infimum of the empty set is +∞.)

Note that uj(aj, ã
i
−j)−uj(ãi) is the gain or loss to player j from deviating from

i’s preferred action profile ãi and ρ(yib|aj, ãi−j)−ρ(yib|ãi) is the increase or decrease

in the probability that the bad signal occurs (equivalently, the decrease or increase

in the probability that the good signal occurs) following the same deviation. In

the definition of α(i, j) we consider only deviations that are strictly profitable;

by Assumption 4, such deviations exist and strictly increase the probability that

the bad signal occurs, so α(i, j) is strictly positive. In the definition of β(i, j) we

consider only deviations that are strictly unprofitable and strictly decrease the

probability that the bad signal occurs, so β(i, j) is the infimum of strictly positive

numbers and so is necessarily +∞ or finite and non-negative.4

To understand the significance of these numbers, think about how player j

could gain by deviating from ãi. Most obviously, j could gain by deviating to

an action that increases its current payoff. By assumption, such a deviation will

increase the probability of a bad signal; assuming that a bad signal leads to a lower

continuation utility, whether such a deviation will be profitable will depend on the

4Note that if we strengthened Assumption 4 so that any deviation – profitable or not –
increased the probability of a bad signal (as is the case in Examples 1-3 and would be the
case in most resource allocation scenarios), then β(i, j) would be the infimum of the empty set
whence β(i, j) = +∞.
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current gain and on the change in probability; α(i, j) represents a measure of net

profitability from such deviations. However, player j could also gain by deviating

to an action that decreases its current payoff but also decreases the probability of

a bad signal, and hence leads to a higher continuation utility. β(i, j) represents a

measure of net profitability from such deviations.

Because Ṽ lies in the supporting hyperplane H and the utilities for action

profiles not in Ã lie strictly below H, in order that the strategy profile π achieves

an efficient payoff it is necessary and sufficient that π use only preferred action

profiles: U(π) ∈ V if and only if π(h) ∈ Ã for every public history h (indepen-

dently of the discount factor δ). For PPE strategies we can say a lot more. The

first Proposition is almost obvious; the second and third seem far from obvious.

(All proofs are in the Appendix.)

Proposition 1 In order that ṽi be achievable in a PPE equilibrium (for any dis-

count factor δ) it is necessary and sufficient that uj(aj, ã
i
−j) ≤ uj(ã

i) for every

j 6= i and every aj ∈ Aj.

Proposition 2 If π is an efficient PPE (for any discount factor δ) and i is active

following some history (i.e., π(h) = ãi for some h) then

α(i, j) ≤ β(i, j) (2.3)

for every j ∈ N, j 6= i.

Proposition 3 If π is an efficient PPE (for any discount factor δ) and i is active

following some history (i.e., π(h) = ãi for some h) then for every ai ∈ Ai

ṽii − ui(ai, ãi−i) ≥
1

λi

∑
j 6=i

λj α(i, j)
[
ρ(yib|ai, ãi−i)− ρ(yib|ãi)

]
(2.4)

The import of Propositions 2 and 3 is that if any of these inequalities fail

then certain efficient payoff vectors can never be achieved in PPE, no matter
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what the discount factor is. In the next Sections, we show how these inequalities

and other conditions yield necessary and sufficient conditions that certain sets be

self-generating and hence yield sufficient conditions for efficient PPE.

Proposition 2 might seem quite mysterious: α is a measure of the current gain

to deviation and β is a measure of the future gain to deviation; there seems no

obvious reason why PPE should necessitate any particular relationship between

α and β. As the proof will show, however, the assumption of two signals and the

efficiency of payoffs in V imply that α is bounded above and β is bounded below

by the same quantity, which is a weighted difference of continuation values – a

quantity that does have an obvious connection to PPE.

2.3.2 Characterizing Efficient Equilibrium Payoffs

In order to find efficient PPE payoffs we use the technique developed in [14] by

Abreu, Pearce, and Stacchetti (hereafter APS) and look for self-generating sets of

efficient payoffs.

Fix a subset W ⊂ co[u(A)] and a target payoff v ∈ co[u(A)]. Recall from APS

that v can be decomposed with respect to W (for a given discount factor δ < 1) if

there exist an action profile a ∈ A and continuation payoffs γ : Y → W such that

• v is the (weighted) average of current and continuation payoffs when players

follow a

v = (1− δ)u(a) + δ
∑
y∈Y

ρ(y|a)γ(y)

• continuation payoffs provide no incentive to deviate: for each j and each

aj ∈ Aj

vj ≥ (1− δ)uj(aj,a−j) + δ
∑
y∈Y

ρ(y|aj,a−j)γj(y)

Write B(W, δ) for the set of target payoffs v ∈ co[u(A)] that can be decomposed

with respect to W for the discount factor δ. Recall that W is self-generating if

16



W ⊂ B(W, δ); i.e., every target vector in W can be decomposed with respect to

W .

Because V lies in the hyperplane H, if v ∈ V and it is possible to decompose

v ∈ V with respect to any set and for any discount factor, then the associated

action profile a must lie in Ã and the continuation payoffs must lie in V . Because

we are interested in efficient payoffs we can therefore restrict our search for self-

generating sets to subsets W ⊂ V . In order to understand which sets W ⊂ V can

be self-generating, we need to understand how players might profitably gain from

deviating from the current recommended action profile. Because we are interested

in subsets W ⊂ V , the current recommended action profile will always be ãi for

some i, so we need to ask how a player j might profitably gain from deviating

from ãi. For player j 6= i, a profitable deviation might occur in one of two ways:

j might gain by choosing an action aj 6= ãij that increases j’s current payoff or by

choosing an action aj 6= ãij that alters the signal distribution in such a way as to

increase j’s future payoff. Because ãi yields i its best current payoff, a profitable

deviation by i might occur only by choosing an action that that alters the signal

distribution in such a way as to increase i’s future payoff. In all cases, the issue

will be the net of the current gain/loss against the future loss/gain.

We focus attention on sets of the form

Vµ = {v ∈ V : vi ≥ µi for each i}

where µ ∈ Rn; we assume without further comment that Vµ 6= ∅. For lack of a

better term, we say that Vµ is regular if for each i ∈ N there is a vector v̂i ∈ Vµ

such that v̂ij = µj for each j 6= i. Whether or not Vµ is regular depends both on

the shape of V and on the magnitude of µ: see Figures 2.1, 2.2, 2.3 for instance.

A few simple facts are useful to note:

• If ṽij = 0 for all i, j ∈ N with i 6= j (as is the case in many resource sharing

scenarios such as Examples 2, 3) then Vµ is regular for every µ ≥ 0.
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Figure 2.1: µ = (0, 1/4, 0); Vµ is regular

• If Vµ 6= ∅ and Vµ is a subset of the interior of V (relative to the hyperplane

H) then Vµ is regular.

• If v lies in the interior of V (relative to the hyperplane H) and µ = v− ε · 1

for ε > 0 sufficiently small, then v ∈ Vµ and Vµ is regular.

• If Vµ is not a singleton then it must contain a point of the interior of V

(relative to the hyperplane H).

If Vµ is a singleton, it can only be a self-generating set (and hence achievable in

a PPE) if Vµ = ṽi for i; because we have already characterized this possibility in

Proposition 1, we focus on the non-degenerate case in which Vµ is not a singleton

and hence contains a point of the interior of V . Note that a point in the interior

of V can only be achieved by a repeated game strategy in which all players are

active following some history.

The following result provides necessary and sufficient conditions on µ, the

payoff structure, the information structure and the discount factor that a regular

Vµ be a self-generating set.

Theorem 1 Fix µ; assume that Vµ is regular and not an extreme point of V .

In order that Vµ be a self-generating set, it is necessary and sufficient that the

following conditions be satisfied:
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Figure 2.2: µ = (1/2, 1/2, 1/2); Vµ is regular

Figure 2.3: µ = (1/4, 0, 0); Vµ is not regular
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Condition 1 for all i, j ∈ N with i 6= j:

α(i, j) ≤ β(i, j) (2.5)

Condition 2 for all i ∈ N and all ai ∈ Ai:

ṽii − ui(ai, ãi−i) ≥
1

λi

∑
j 6=i

λj α(i, j)
[
ρ(yib|ai, ãi−i)− ρ(yib|ãi)

]
(2.6)

Condition 3 for all i ∈ N :

µi ≥ max
j 6=i

(
ṽji + α(j, i)[1− ρ(yjb |ã

j)]
)

(2.7)

Condition 4 the discount factor δ satisfies:

δ ≥ δµ ,

1 +

1−
∑
i

λiµi

∑
i

[
λiṽii +

∑
j 6=i

λj α(i, j) ρ(yib|ãi)

]
− 1


−1

(2.8)

One way to contrast our approach with that of FLM (and FLT) is to think

about the constraints that need to be satisfied to decompose a given target payoff

v with respect to a given set Vµ. By definition we must find a current action

profile a and continuation payoffs γ. The achievability condition (that v is the

weighted combination of the utility of the current action profile and the expected

continuation values) yields a family of linear equalities. The incentive compatibil-

ity conditions (that players must be deterred from deviating from a) yield a family

of linear inequalities. In the context of FLM, satisfying all these linear inequal-

ities simultaneously requires a large and rich collection of signals so that many

different continuation payoffs can be assigned to different deviations. Because we

have only two signals, we are only able to choose two continuation payoffs but still

must satisfy the same family of inequalities – so our task is much more difficult.

It is this difficulty that leads to the Conditions in Theorem 1.
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Note that δµ is decreasing in µ. Since Condition 3 puts an absolute lower

bound on µ and Condition 4 puts an absolute lower bound on δµ this means that

(subject to the regularity constraint) there is a µ∗ such that Vµ∗ is the largest

self-generating set (of this form) and δµ∗ is the smallest discount factor (for which

any set of this form can be self-generating). This may seem puzzling – increasing

the discount factor beyond a point makes no difference – but remember that we

are providing a characterization of self-generating sets and not of PPE payoffs.

However, as we shall see in Theorem 4, for the two-player case, we do obtain a

complete characterization of (efficient) PPE payoffs and we demonstrate the same

phenomenon.

2.3.3 Constructing Efficient Perfect Public Equilibria

Because every payoff in a self-generating set can be achieved in a PPE, Theorem

1 immediately provides sufficient conditions achieving (some) given target payoffs

in perfect public equilibrium. In fact, we can provide an explicit algorithm for

computing PPE strategies. A consequence of this algorithm is that (at least when

action spaces are finite), the constructed PPE enjoys an interesting and potentially

useful robustness property.

Given the various parameters of the environment (game payoffs, information

structure, discount factor) and of the problem (lower bound, target vector), the

algorithm takes as input in period t the current continuation vector v(t) and

computes, for each player j, an indicator dj(v(t)) defined as follows:

dj(v(t)) =
λj[vj(t)− µj]

λj[ṽ
j
j − vj(t)] +

∑
k 6=j λk α(j, k)ρ(yjb |ãj)

(Note that each player can compute every dj from the current continuation vec-

tor v(t) and the various parameters.) Having computed dj(v(t)) for each j, the

algorithm finds the player i∗ whose indicator is greatest. (In case of ties, we arbi-

trarily choose the player with the largest index.) The current action profile is i∗’s
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preferred action profile ãi
∗
. The algorithm then uses the labeling Y = {yi∗g , yi

∗

b }

to compute continuation values for each signal in Y .

Theorem 2 If the conditions in Theorem 1 are satisfied, then every payoff v ∈ Vµ

can be achieved in a PPE. For v ∈ Vµ, a PPE strategy profile that achieves v can

be computed by the algorithm in Table 4.6.

2.3.4 Robustness

A consequence of our constructive algorithm is that, for generic values of the

parameters of the environment and of the problem and for as many periods as

we specify, the strategies we identify are locally constant in these parameters.

To make this precise, we assume for this subsection that action spaces Ai are

finite. The parameters of the model are the utility mapping U : A→ Rn and the

probabilities ρ(·|·) : Y ×A→ [0, 1]. Because the probabilities must sum to 1 and

we require full support, the parameter space of the model is

Ω = (Rn × [0, 1])A

The parameters of the problem are the discount factor δ, the constraint vector

µ and the target profile v∗; because the target profile lies in a hyperplane, the

parameter space for the particular problem is

Θ = (0, 1)× Rn × Rn−1

Let Ξ ⊂ Ω×Θ be the subset of parameters that satisfy the Conditions of Theorem

1. For ξ ∈ Ξ, the algorithm generates an strategy profile

πξ : H → A

For T ≥ 0 we write πTξ for the restriction of πξ to the set HT of histories of length

at most T .
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Table 2.1: The algorithm used by each player.

Input: The current continuation payoff v(t) ∈ Vµ

For each j

Calculate the indicator dj(v(t))

Find the player i with largest indicator (if a tie, choose largest i)

i = maxj {arg maxj∈N dj(v(t))}

Player i is active; chooses action ãii

Players j 6= i are inactive; choose action ãij

Update v(t+ 1) as follows:

if yt = yig then

vi(t+ 1) = ṽii + (1/δ)(vi(t)− ṽii)− (1/δ − 1)(1/λi)
∑

j 6=i λjα(i, j)ρ(yib|ãi)

vj(t+ 1) = ṽij + (1/δ)(vj(t)− ṽij) + (1/δ − 1)α(i, j)ρ(yib|ãi)

for all j 6= i

if yt = yib then

vi(t+ 1) = ṽii + (1/δ)(vi(t)− ṽii) + (1/δ − 1)(1/λi)
∑

j 6=i λjα(i, j)ρ(yig|ãi)

vj(t+ 1) = ṽij + (1/δ)(vj(t)− ṽij)− (1/δ − 1)α(i, j)ρ(yig|ãi)

for all j 6= i
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Theorem 3 For each T ≥ 0 there is a subset ΞT ⊂ Ξ that is closed and has

measure 0 with the property that the mapping ξ → πTξ : Ξ → HT is locally

constant on the complement of ΞT .

In words: if ξ, ξ′ are close together and neither lies in the proscribed small

set of parameters ΞT , then the strategies πξ,πξ′ coincide for at least the first T

periods.

2.3.5 Two Players

Theorem 1 provides a complete characterization of self-generating sets that have

a special form. If there are only two players then maximal self-generating sets –

the set of all PPE – have this form and so it is possible to provide a complete

characterization of PPE. We focus on what seems to be the most striking finding:

either there are no efficient PPE outcomes at all (for any discount factor δ < 1)

or there is a discount factor δ∗ < 1 with the property that any target payoff in

V that can be achieved as a PPE for some δ can already be achieved for every

δ ≥ δ∗.

Theorem 4 Assume N = 2 (two players). Either

• no target profile in V can be supported in a PPE for any δ < 1 or

• there exist µ∗1, µ
∗
2 and a discount factor δ∗ < 1 such that if δ is any discount

factor with δ∗ ≤ δ < 1 then the set of payoff vectors that can be supported

in a PPE when the discount factor is δ is precisely

E = {v ∈ V : vi ≥ µ∗i for i = 1, 2}

The proof yields the following explicit expressions for µ∗1, µ
∗
2 and δ∗:

µ∗1 = ṽ2
1 + α(2, 1)[1− ρ(y2

b |ã2)], µ∗2 = ṽ1
2 + α(1, 2)[1− ρ(y1

b |ã1)],
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δ∗ =

1 +
1− λ1µ

∗
1 − λ2µ

∗
2∑

i

[λiṽii + λ−i α(i,−i) ρ(yib|ãi)]− 1

−1

.

2.4 Applications to Throughput-Maximizing Spectrum Shar-

ing

2.4.1 Motivation

Cognitive radios have increased in popularity in recent years, because they have

the potential to significantly improve the spectrum efficiency. Specifically, cog-

nitive radios enable the secondary users (SUs), who initially have no rights to

use the spectrum, to share the spectrum with primary users (PUs), who are li-

censed to use the spectrum, as long as the PUs’ quality of service (QoS), such as

the throughput, is not affected by the SUs [25]. A common approach to guaran-

tee PUs’ QoS requirements is to impose interference temperature (IT) constraints

[25]-[27][29]–[37]; that is, the SUs cannot generate an interference level higher than

the interference temperature limit set by the PUs. One of the major challenges in

designing cognitive radio systems is to construct a spectrum sharing policy that

achieves high spectrum efficiency while maintaining the IT constraints set by PUs.

The spectrum sharing policy, which specifies the SUs’ transmit power levels, is

essential to improve spectrum efficiency and protect the PUs’ QoS.

Since SUs can use the spectrum as long as they do not degrade the PUs’ QoS,

they coexist and interact with each other in the system for long periods of time.

It is then natural to model the interaction among the SUs as a repeated game.

Moreover, due to strong multi-user interference and the imperfect estimation of

the interference temperature, we model the interaction as a repeated game with

strong negative externality and imperfect monitoring defined in Section 2.2. A

repeated-game strategy prescribes what action to take given past observations,

and therefore, can be considered as a spectrum sharing policy. If a repeated game
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strategy constitutes an equilibrium, then no user can gain from deviation at any

occasion. Hence, an equilibrium strategy is a deviation-proof spectrum sharing

policy.

Based on the results in Section 2.3, we propose a design framework for con-

structing efficient deviation-proof spectrum sharing policies. Our design frame-

work first characterizes the set of Pareto optimal operating points achievable by

deviation-proof policies, and then for any operating point in this set, constructs

a deviation-proof policy to achieve it. The proposed policy can be easily im-

plemented in a distributed manner. Moreover, the proposed spectrum sharing

policies exhibit the following key advantages over state-of-the-art policies:

• The proposed spectrum sharing policies allow the users to choose time-

varying power levels (e.g. the users can transmit in a time-division multiple-

access (TDMA) fashion). Under strong multi-user interference, this is much

more efficient than most existing policies which require the SUs to transmit

at constant power levels.

• The proposed policies achieve Pareto optimal operating points, even when

the SUs are impatient, namely they discount future payoffs, and their dis-

count factor are strictly smaller than one.

• Under the proposed policies, the requirement on the users’ monitoring abil-

ity is significantly relaxed compared to existing works based on repeated

games, which require either perfect monitoring of all the users’ individual

transmit power levels [39]–[42] or sufficiently good monitoring to distinguish

sufficiently many IT levels [9]. Specifically, their monitoring ability can be

limited in that they only need to distinguish two IT levels regardless of the

number of power levels each user can choose from, and their monitoring

can be imperfect due to the erroneous measurements of the interference
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temperature.5

• The proposed policies are deviation-proof, namely self-interested users annot

improve their QoS by deviating from the policy, and hence find it in their

self-interests to follow the proposed policies.

2.4.2 Related Works

In general, the optimal spectrum sharing policy should allow SUs to transmit at

different power levels temporally even when the environment (e.g. the number

of SUs, the channel gains) remains unchanged. However, most existing spectrum

sharing policies require the SUs to transmit at constant power levels over the time

horizon in which they interact6 [26]–[38]. These policies with constant power levels

are inefficient in many spectrum sharing scenarios where the interference among

the SUs is strong. Under strong multi-user interference, increasing one user’s

power level significantly degrades the other users’ QoS. Hence, when the cross

channel gains are large, the feasible QoS region is nonconvex [43]. In this case

of nonconvex feasible QoS region, a spectrum sharing policy with constant power

levels is inferior to a policy with time-varying power levels in which the users

transmit in a time-division multiple-access (TDMA) fashion, because the latter

can achieve the Pareto boundary of the convex hull of the nonconvex feasible QoS

region.

The spectrum sharing policy in a repeated game framework was studied in

[39]–[42], under the assumption of perfect monitoring, namely the assumption

that each SU can perfectly monitor the individual transmit power levels of all the

other SUs. In the policies in [39]–[42], when a deviation from the prescribed policy

5As will be described later, there is an entity that regulates the interference temperature in
the system, who measures the interference temperature imperfectly and feedbacks to the users
a binary signal indicating whether the constraints are violated.

6Although some spectrum sharing policies go through a transient period of adjusting the
power levels before the convergence to the optimal power levels, the users maintain constant
power levels after the convergence.
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by any user is detected, a perpetual punishment phase [39] or a punishment phase

of certain duration [40][42] will be triggered. In the punishment phase, all the

users transmit at the maximum power levels to create strong interference to each

other, resulting in low QoS of all the users as a punishment. Due to the threat of

this punishment, all the users will follow the policy in their self-interests. However,

since the monitoring can never be perfect, the punishment phase, in which all the

users receive low throughput, will be triggered even if no one deviates. Thus, the

users’ repeated-game payoffs, averaged over all the stage-game payoffs, cannot

be Pareto optimal because of the low payoffs received in the punishment phases.

Hence, the policies in [39]–[42] must have performance loss in practice where the

monitoring is always imperfect.

We illustrate the performance gain of the proposed policies over the existing

policies in Fig. 2.4. We show the best operating points achievable by different

classes of policies in a spectrum sharing system with two SUs. Due to the strong

multi-user interference, the best operating points achievable by policies with con-

stant power levels [26]–[38] (the dashed curve) are Pareto dominated by the best

operating points achieved by policies with time-varying power levels (the straight

line). The proposed policy, which are deviation-proof, can achieve a portion of

the Pareto optimal operating points (the thick line). Under imperfect monitoring,

the policies designed under the assumption of perfect monitoring [39]–[42] (the

solid curve) have large performance loss compared to the proposed policy.

Finally, we summarize the comparison of our work with the existing works in

dynamic spectrum sharing in Table 4.1. We distinguish our work from existing

works in the following categories: the power levels prescribed by the spectrum

sharing policy are constant or time-varying, whether the policy can be imple-

mented in a distributed fashion or not, whether the policy is deviation-proof or

not, and what are the requirements on the SUs’ monitoring ability. The “moni-

toring” category is only discussed within the works based on repeated games.

28



SU 2's QoS

Nash equilibrium

SU 1's QoS

Policies w
ith tim

e-

varying pow
er levels

Policies with constant 
power levels

D
eviation-proof policies w

ith 

tim
e-varying pow

er levels and 

im
perfect m

onitoring 

(proposed)

Policies with time-
varying power levels 

and perfect monitoring

Figure 2.4: An illustration of the best operating points achievable by different

policies in a two-SU spectrum sharing system.

Table 2.2: Comparison With Related Works In Dynamic Spectrum Sharing.

Power levels Distributed Deviation-proof Monitoring

[26][27] Constant No No N/A

[28]–[35] Constant Yes No N/A

[36]–[38] Constant Yes Yes N/A

[39]–[42] Time-varying Yes Yes Perfect

Proposed Time-varying Yes Yes Imperfect
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2.4.3 Model and Problem Formulation

2.4.3.1 Stage Game

We consider a system with one primary user and N secondary users (see Fig 3.1

for an illustrating example of a system with two secondary users). The set of SUs

is denoted by N , {1, 2, . . . , n}. Each SU has a transmitter and a receiver. The

channel gain from SU i’s transmitter to SU j’s receiver is gij. Each SU i chooses

a power level ai from a compact set Ai. We assume that 0 ∈ Ai, namely SU i

can choose not to transmit. We write SU i’s maximum transmit power as Amax
i .

The set of joint power profiles is denoted by A =
∏

i∈N Ai, and the joint power

profile of all the SUs is denoted by a = (a1, . . . , an) ∈ A. Let a−i be the power

profile of all the SUs other than SU i. Each SU i’s instantaneous payoff (QoS) is

a function of the joint power profile, namely ui : A → R+. Each SU i’s payoff

ui(a) is decreasing in the other SUs’ power levels aj, ∀j 6= i. Note that we do not

assume that ui(a) is increasing in ai.
7 But we do assume that ui(a) = 0 if ai = 0,

because a SU’s payoff should be zero when it does not transmit. One example of

many possible payoff functions is the SU’s throughput:

ui(a) = log2

(
1 +

aigii∑
j∈N ,j 6=i ajgji + σi

)
, (2.9)

where σi is the noise power at SU i’s receiver.

2.4.3.2 Imperfect Monitoring

As in [32]–[35], there is a local spectrum server (LSS) serving as a mediating entity

among the SUs. The LSS has a receiver to measure the interference temperature

and a transmitter to broadcast signals, but it cannot control the actions of the

autonomous SUs. The LSS could be a device deployed by the PU or simply the

7In some scenarios with energy efficiency considerations, the payoff is defined as the ratio of
throughput to transmit power, which may not monotonically increase with the transmit power.
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Figure 2.5: An example system model with two secondary users. The solid line

represents a link for data transmission, and the dashed line indicate a link for

control signals. The channel gains for the corresponding data link are written

in the figure. The primary user (PU) specifies the interference temperature (IT)

limit to the local spectrum server (LSS). The LSS sets the intermediate IT limit to

the secondary users and send distress signals if the estimated interference power

exceeds the IT limit.
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PU itself, if the PU manages by itself the spectrum leased to the SUs. Even when

the PU is the LSS, it is beneficial to consider the LSS as a separate logical entity

that performs the functionality of spectrum management. The LSS could also

be a device deployed by some regulatory agency such as Federal Communications

Commission (FCC), who uses it for spectrum management in that local geographic

area. In both cases, the LSS aims to improve the spectrum efficiency (e.g. the

sum throughput of all the SUs) and the fairness, while ensuring that the IT limit

set by the PU is not violated. Note that the PU may also want to maximize the

spectrum efficiency to maximize its revenue obtained from spectrum leasing, since

its revenue may be proportional to the sum throughput of the SUs.

The LSS measures the interference temperature at its receiver imperfectly.

The measurement can be written as
∑

i∈N aigi0 + ε, where gi0 is the channel gain

from SU i’s transmitter to the LSS’s receiver, and ε is the additive measurement

error. We assume that the measurement error has zero mean and a probability

distribution function fε known to the LSS. We assume as in most existing works

(e.g. [26]–[36]) that the IT limit Ī set by the PU is known perfectly by the LSS.

Although the LSS aims to keep the interference temperature below the IT limit

Ī, it will set a lower intermediate IT limit I ≤ Ī to be conservative because of

measurement errors. Hence, the IT constraint imposed by the LSS is

∑
i∈N aigi0 ≤ I. (2.10)

Even if the actual interference temperature
∑

i∈N aigi0 does not exceed the

intermediate IT limit I, the erroneous measurement
∑

i∈N aigi0+ε may still exceed

the IT limit Ī set by the PU. In this case, the LSS will broadcast a distress signal

to all the SUs. Given the joint power profile a, this false alarm probability is

Γ(a) = Pr
(∑

i∈N aigi0 + ε > Ī |
∑

i∈N aigi0 ≤ I
)
, (2.11)

where Pr(A) is the probability that the event A happens. We can see that a larger

intermediate IT limit I enables the SUs to transmit at higher power levels, but
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results in a larger false alarm probability and a higher frequency of sending distress

signals. Hence, there is an interesting tradeoff between the spectrum efficiency

and the cost of sending distress signals.

We denote the set of events of whether the IT limit Ī is violated by Y =

{y0, y1}. The (measurement) outcome y is determined by

y =

 y0, if
∑

i∈N aigi0 + ε > Ī

y1, otherwise
. (2.12)

We write the conditional probability distribution of the outcome y given the joint

power profile a as ρ(y|a), which can be calculated as

ρ(y1|a) =

∫
x≤Ī−

∑
i∈N aigi0

fε(x) dx,

ρ(y0|a) = 1− ρ(y1|a). (2.13)

At the end of time slot t, the LSS sends a distress signal if the outcome yt = y0.

Note that the LSS does not send signals when the outcome is y1, and the SUs

know that the outcome is y1 by default when they do not receive the distress

signal.

2.4.3.3 Spectrum Sharing Policies

The system is time slotted at t = 0, 1, . . .. We assume that the users are syn-

chronized as in [26]–[38]. At the beginning of time slot t, each SU i chooses its

power level ati, and receives a payoff ui(a
t). The LSS obtains the measurement∑

i∈N a
t
igi0+εt, where εt is the realization of the error ε at time slot t, and compare

the measurement with the IT limit Ī. At the end of time slot t, the LSS sends a

distress signal if the outcome yt = y0. Note that the LSS does not send signals

when the outcome is y1, and the SUs know that the outcome is y1 by default when

they do not receive the distress signal.

Note that in repeated games with perfect monitoring [39]–[42], the outcome

available to each SU at time slot t is precisely the joint power profile chosen by
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the SUs, i.e. yt = at. We say the monitoring is imperfect if yt 6= at. In a general

repeated game with imperfect monitoring, in order to achieve Pareto optimality,

the set of outcomes Y should have a large cardinality, namely |Y | ≥ |Ai|+ |Aj|−1

for all i ∈ N and all j 6= i [9]. In contrast, our proposed policy can achieve Pareto

optimality even when |Y | = 2 regardless of the cardinality of the SU’s action set

Ai.

At each time slot t, each SU i determines its transmit power ati based on its

history, which is a collection of all the past power levels it has chosen and all

the past measurement outcomes. Formally, the history of SU i up to time slot

t ≥ 1 is hti = {a0
i , y

0; . . . ; at−1
i , yt−1} ∈ (Ai × Y )t, and that at time slot 0 is

h0
i = ∅. The history of SU i contains private information about SU i’s power

levels that is unknown to the other SUs; in contrast, we define the public history

as ht = {y0; . . . ; yt−1} ∈ Y t for t ≥ 1 and h0 = ∅. The public history ht only

contains the measurement outcomes that are known to all the SUs.

We focus on public strategies, in which each SU’s decision depends on the

public history only. Hence, each SU i’s strategy πi is a mapping from the set

of all possible public histories to its action set, namely πi : t∞t=0Y
t → Ai. The

spectrum sharing policy is the joint strategy profile of all the SUs, defined as

π = (π1, . . . , πN).

The SUs are selfish and maximize their own long-term discounted payoffs.

Assuming, as in [39]–[?], the same discount factor δ ∈ [0, 1) for all the SUs, each

SU i’s (long-term discounted) payoff can be written as

Ui(π) = (1− δ)

ui(a0) +
∞∑
t=1

δt ·
∑

yt−1∈Y

ρ(yt−1|at−1)ui(a
t)

 ,
where a0 is determined by a0 = π(∅), and at for t ≥ 1 is determined by at =

π(ht) = π(ht−1; yt−1). The discount factor represents the “patience” of the SUs;

a larger discount factor indicates that a SU is more patient. The discount factor

is determined by the delay sensitivity of the SUs’ applications.
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We define the deviation-proof policy as the perfect public equilibrium (PPE) of

the game. The PPE prescribes a strategy profile π from which no SU has incentive

to deviate after any given history at any time slot, and thus can be considered as a

deviation-proof policy. It is normally more strict than Nash equilibrium, because

it requires that the SUs have no incentive to deviate at any given history, while

Nash equilibrium only guarantees this at the histories that possibly arise from the

equilibrium strategy. We can also consider PPE in repeated games with imperfect

monitoring as the counterpart of subgame perfect equilibrium defined in repeated

games with perfect monitoring [8].

Before the definition of PPE, we introduce the concept of continuation strat-

egy: SU i’s continuation strategy induced by any history ht ∈ Y t, denoted πi|ht ,

is defined by πi|ht(hτ ) = πi(h
thτ ),∀hτ ∈ Y τ , where hthτ is the concatenation of

the history ht followed by the history hτ . By convention, we denote π|ht and

π−i|ht the continuation strategy profile induced by ht of all the SUs and that of

all the SUs other than SU i, respectively. Then the PPE is defined as follows [8,

Definition 7.1.2]

Definition 1 (Perfect Public Equilibrium) A strategy profile π is a perfect

public equilibrium if for any public history ht ∈ Y t, the induced continuation

strategy π|ht is a Nash equilibrium of the continuation game, namely for all i ∈ N ,

Ui(π|ht) ≥ Ui(π
′
i|ht ,π−i|ht), for all π′i. (2.14)

We define the equilibrium payoff as a vector of payoffs v = (U1(π), . . . , UN(π))

achieved at the equilibrium.

2.4.3.4 Problem Formulation

The primary user or the regulatory agency aims to maximize an objective function

defined on the SUs’ payoffs, W (U1(π), . . . , UN(π)). This definition of the objective
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function is general enough to include the objective functions deployed in many

existing works, such as [26]–[48][39][40]. An example of the objective function

is the weighted sum payoff
∑N

i=1 wiUi, where {wi}Ni=1 are the weights satisfying

wi ∈ [0, 1],∀i and
∑N

i=1 wi = 1. The PU (respectively, the regulatory agency)

maximizes the objective function for the revenue (the spectrum efficiency), while

maintaining the IT constraint (2.10). To reduce the cost of sending distress signals,

a constraint on the false alarm probability is also imposed as Γ(a) ≤ Γ̄, where Γ̄

is the maximum false alarm probability allowed. At the maximum of the welfare

function, some SUs may have extremely low payoffs. To avoid this, a minimum

payoff guarantee γi ≥ 0 is imposed for each SU i. To sum up, we can formally

define the policy design problem as follows

max
π

W (U1(π), . . . , UN(π)) (2.15)

s.t. π is public perfect equilibrium,∑
i∈N

πi(h
t) · gi0 ≤ I, ∀t, ∀ht ∈ Y t,

Γ(π(ht)) ≤ Γ̄, ∀t, ∀ht ∈ Y t,

Ui(π) ≥ γi, ∀i ∈ N .

2.4.4 Link to The General Model in Section 2.2

The repeated game model for the spectrum sharing scenario with strong multi-

user interference is a special case of the general repeated game model proposed in

Section 2.2.

First, each SU i’s preferred power profile, written as ãi = (ãi1, . . . , ã
i
n), is the

joint power profile that maximizes SU i’s payoff subject to the IT constraint,

namely

ãi = arg max
a∈A

ui(a), subject to
∑

i∈n aigi0 ≤ I. (2.16)

Since ui is decreasing in aj,∀j 6= i, we have ãij = 0, ∀j 6= i. For notational
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simplicity, we define the maximum payoff achievable by SU i as v̄i , ui(ã
i).

We can check easily that Assumptions 2-3 in Section 2.2 are satisfied.

Assumption 1 in Section 2.2 is satisfied when the multi-user interference is

strong, which is the scenario that we are most interested in. We are interested

in the scenario with strong multi-user interference, because when the multi-user

interference is weak, power control becomes less important. We say a spectrum

sharing scenario has strong multi-user interference if the following property is

satisfied.

Definition 2 (Strong Multi-user Interference) A spectrum sharing scenario

has strong multi-user interference, if the set of feasible payoffs V = conv{u(a) =

(u1(a), . . . , un(a)) : a ∈ A,
∑

i∈n aigi0 ≤ I}, where conv(X) is the convex hull of

X, has N + 1 extremal points8: (0, . . . , 0) ∈ RN , u(ã1), . . . , u(ãN).

This definition characterizes the strong interference among the SUs: the increase

of one SU’s payoff comes at such an expense of the other SUs’ payoffs that the

set of feasible payoffs without time sharing is nonconvex. A spectrum sharing

scenario satisfies this property when the cross channel gains among users are

large [43]. In the extreme case of strong multi-user interference, simultaneous

transmissions from different SUs result in packet loss, as captured in the collision

model [44]. According to this definition, the set of feasible payoffs can be written

as V = conv{(0, . . . , 0), u(ã1), . . . , u(ãn)}. Moreover, its Pareto boundary is B =

{v ∈ V :
∑n

i=1 vi/v̄i = 1, vi ≥ 0,∀i} as part of a hyperplane, which can be

achieved only by SUs transmitting in a TDMA fashion.

Since Assumptions 1-3 in Section 2.2 are satisfied, we can apply the results in

Section 2.3 to characterize the Pareto optimal equilibrium payoffs and construct

Pareto optimal spectrum sharing policies. We illustrate the design framework in

8The extremal points of a convex set are those that are not convex combinations of other
points in the set.
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SU 2's payoff

SU 1's payoff

Step 1: Quantify the set of 
Pareto optimal equilibrium 
payoffs

Step 2: Determine the 
optimal equilibrium payoff

Step 3: Construct the optimal 
spectrum sharing policy

Figure 2.6: The procedure of solving the design problem.

Fig. 2.6. Details are omitted due to space limitation; interesting readers can refer

to [2].

2.4.5 Simulation Results

We demonstrate the performance gain of our spectrum sharing policy over ex-

isting policies, and validate our theoretical analysis through numerical results.

Throughout this section, we use the following system parameters by default un-

less we change some of them explicitly. The noise powers at all the SUs’ receivers

are normalized as 0 dB. The maximum transmit powers of all the SUs are 10

dB, ∀i. For simplicity, we assume that the direct channel gains have the same

distribution gii ∼ CN (0, 1),∀i, and the cross channel gains have the same distri-

bution gij ∼ CN (0, β),∀i 6= j, where β is defined as the cross interference level.

The channel gain from each SU to the LSS also satisfies gi0 ∼ CN (0, 1),∀i. The

IT limit set by the PU is Ī = 10 dB. The measurement error ε is Gaussian dis-

tributed with zeros mean and variance 0.1. The maximum false alarm probability

is Γ̄ = 10%. The SUs’ payoffs are their throughput as in (2.9). The welfare func-

tion is the average payoff, i.e. W =
∑N

i=1
1
N
Ui. The minimum payoff guarantee is

10% of the maximum achievable payoff, i.e. γi = 0.1 · v̄i,∀i.
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Figure 2.7: Performance comparison of the proposed policy and the optimal policy

with constant power levels (‘stationary’ in the legend) under different numbers of

users and different cross interference levels. A zero average throughput indicates

that there exists no feasible policy that satisfies all the constraints in the policy

design problem.

2.4.5.1 Performance Evaluation

We first compare the performance of the proposed policy with that of the optimal

policy with constant power levels. The optimal policy with constant power levels

(or “the optimal stationary policy”) is the solution to the modified version of the

design problem (2.15). First, we add an additional constraint that the power pro-

file is constant, namely π(ht) = a? for all t ≥ 0 and for all ht ∈ Y t. Second, we

drop the incentive constraint that π is PPE from (2.15). Hence, the performance

of the optimal stationary policy is the best that can be achieved by existing sta-

tionary policies [28]–[35], and is an upper bound for the deviation-proof stationary

policies [36]–[38].

In Fig. 2.7, we compare the performance of the proposed policy and that of

the optimal stationary policy under different cross interference levels and differ-
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ent numbers of SUs. As expected, the proposed policy outperforms the optimal

stationary policy in medium to high cross interference levels (approximately when

β ≥ 1). In the cases of high cross interference levels (β ≥ 2) and many users

(N = 5), the stationary policy fails to meet the minimum payoff guarantees due

to strong interference (indicated by zero average throughput in the figure). On

the other hand, the desirable feature of the proposed policy is that the average

throughput does not decrease with the increase of the cross interference level,

because SUs transmit in a TDMA fashion. For the same reason, the average

throughput does not change with the number of SUs.

Note that the proposed policy is infeasible (zero average throughput) when

the cross interference level is very small. This is because it cannot be deviation-

proof in this scenario. When the interference level is very small, SU j can deviate

from ãi and receives a high reward uj(aj, ã
i
−j) because the interference from SU

i, ãiigij, is small. Hence, the benefit of deviation bij is large, and the deviation

is inevitable. This observation leads to an efficient way for the LSS to check the

cross interference level without knowing the channel gains. If the proposed policy

is infeasible, the LSS knows that the cross interference level is low, and can switch

to stationary policies.

2.4.5.2 Comparison with “punish-forgive” policies proposed under per-

fect monitoring

We also compare the proposed policy with existing policies designed under the

assumption of perfect monitoring [39]–[42]. Specifically, we consider the “punish-

forgive” policy in [39]–[42], which requires SUs to switch to the punishment phase

of L time slots once a deviation is detected. In the punishment phase, all the

SUs transmit at the maximum power levels to create high interference to the
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Figure 2.8: Performance comparison of the proposed policy and the punish-forgive

policy with the optimal punishment length under different error variances and

different false alarm probabilities.

deviator9. A special case of the punish-forgive policy when the punishment length

L = ∞ [39] is the celebrated “grim-trigger” strategy in game theory literature

[8]. As discussed before, the punish-forgive policy works well if the SUs can

perfectly monitor the individual power levels of all the SUs, because in this case,

the punishment serves as a threat and will never be carried out in the equilibrium.

However, when the SUs have imperfect monitoring ability, the punishment will be

carried out with some positive probability, which decreases all the SUs’ average

payoffs.

Fig. 2.8 shows that the proposed policy outperforms the punish-forgive policies

under different variances of measurement errors and different false alarm probabil-

ities. For each combination of the error variance and the false alarm probability,

we choose the punish-forgive policy with the optimal punishment length. The per-

formance of punish-forgive polices degrades with the increase of the error variance

9Note that all the SUs transmitting at the maximum power levels. For the punish-forgive
policy [39]–[42], we allow the violation of the IT constraint in the punishment phase. Note that
the IT constraint is never violated in the proposed policy.
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and the false alarm probability, because of the increasing probability of mistakenly

triggered punishments. Some interesting observation on how the performance of

the proposed policy changes with the error variance and the false alarm probability

is explained in details in the following subsections.

2.4.5.3 Impacts of Variances of Measurement Errors

Fig. 2.9 shows that with the increase of the variance of measurement errors, the

average throughput decreases, and the SUs’ patience (the discount factor) required

to achieve Pareto optimal equilibrium payoffs increases. First, when the error

variance increases, the intermediate IT limit I must decrease to maintain the

constraint on the false alarm probability. The decrease of I leads to the decrease of

SUs’ maximum transmit power levels allowed, which results in the decrease of the

average throughput. Another impact of the increase in the error variance is that

ρ(y0|aj, ãi−j) =
∫
x>Ī−ajgj0−ãiigi0

fε(x)dx increases, which leads to the increase of

benefit of deviation bij. Hence, the minimum discount factor δ increases according

to Theorem 1.

2.4.5.4 Impacts of Constraints on The False Alarm Probability

Fig. 2.10 shows that with the increase of the false alarm probability limit Γ̄, both

the average throughput and the users’ patience (the discount factor) required to

achieve Pareto optimal equilibrium payoffs increase. First, with an increased false

alarm probability limit, the intermediate IT limit I can increase, which leads to

an increase of the SUs’ maximum transmit power levels and thus an increase of

the users’ throughput. Meanwhile, since

ρ(y0|ãi)− ρ(y0|pj, ãi−j) = −
∫ Ī−I

Ī−I−gj0aj
fε(x)dx

increases when I increases, the benefit of deviation bij increases. This leads to an

increase of the minimum discount factor.
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Figure 2.9: The impact of the variance of the measurement error on the perfor-

mance of the proposed policy and the minimum discount factor required under

which the proposed policy is deviation-proof.
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the proposed policy and the minimum discount factor required under which the

proposed policy is deviation-proof.
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This observation indicates an interesting design tradeoff. On one hand, a

smaller false alarm probability can reduce the overhead of sending distress sig-

nals, and can also relax the requirement on SUs’ patience. On the other hand, a

larger false alarm probability can increase the average throughput, such that the

spectrum efficiency or the revenue can increase. Our theoretical results charac-

terize such a tradeoff, which can be used to choose the optimal intermediate IT

limit I.

2.5 Applications and Extensions to Energy-Efficient Spec-

trum Sharing

2.5.1 Motivation

In this section, we develop a novel design framework for energy-efficient spectrum

sharing among autonomous users who aim to minimize their energy consumptions

subject to minimum throughput requirements. This problem is much more chal-

lenging than the throughput maximization problem studied in Section 2.4. This

is because in the energy minimization problem, the users are coupled through

the minimum throughput constraints, but not through the payoffs (i.e. energy

expenditure). However, we can utilize and extend the ideas described before this

section to solve the energy minimization problem.

We briefly discuss the difficulty in energy minimization problem and its differ-

ences from the throughput maximization problem. In the throughput maximiza-

tion problem, we aim to design TDMA spectrum sharing policies that maximize

the users’ total throughput without considering energy efficiency. Under this de-

sign objective, each user will transmit at the maximum power level in its slot, as

long as the interference temperature constraint is not violated. Hence, what we

optimized was only the transmission schedule of the users. In energy minimiza-
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tion, since we aim to minimize the energy consumption subject to the minimum

throughput requirements, we need to optimize both the transmission schedule and

the users’ transmit power levels, which makes the design problem more challeng-

ing.

We explain the differences in the design frameworks in details. Both design

frameworks include three steps: characterization of the set of feasible operating

points, selection of the optimal operating point, and the distributed implementa-

tion of the policy. The fundamental difference is in the first step, which is the most

important step in the design. In the throughput maximization problem, since each

user transmits at the maximum power level in its slot, we know that the set of

feasible operating points lies in the hyperplane determined by each user’s max-

imum achievable throughput. Hence, we only need to determine which portion

of this particular hyperplane is achievable. On the contrary, in the energy mini-

mization problem, since the users may not transmit at the maximum power levels

in their slots, the feasible operating points lie in a collection of hyperplanes, each

of which goes through the vector of minimum throughput requirements. Hence,

it is more difficult to characterize the set of feasible operating points in the en-

ergy minimization problem. Due to the more complicated characterization of the

feasible operating points, the selection of the optimal operating point (the second

step) also becomes a more complicated optimization problem in the energy min-

imization problem (although we can prove that it can be converted to a convex

optimization problem under reasonable assumptions). In summary, in the energy

minimization problem, the first two steps in the design framework are fundamen-

tally different from those in the throughput maximization problem, and are more

challenging.

Both design frameworks have similar third steps: given the optimal operating

point obtained in the second step, each user runs a simple and intuitive algorithm

that achieves the optimal operating point in a decentralized manner. However, in
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Table 2.3: Comparisons against stationary policies.
Energy Feedback User Deviation

-efficient (Overhead) number -proof

[27][28][48]–[50] No Error-free, unquantized Fixed No

[36][38] No Error-free, unquantized (Large) Fixed Yes

[51]–[59] Yes Error-free, unquantized (Large) Fixed Yes

[35][60] Yes Error-free, unquantized (Large) Varying Yes

[39]–[41] No Error-free, unquantized (Large) Fixed Yes

Proposed Yes Erroneous, binary (One-bit) Varying Yes

this section, we further take the advantage of the simplicity and intuition of the

algorithm, and extend it to the scenario in which PUs/SUs enter and leave the

network. This makes the design framework in this section more robust to the user

dynamics compared to the framework in Section 2.4.

2.5.2 Related Works

2.5.2.1 Stationary Spectrum Sharing Policies

Most existing works propose stationary spectrum sharing policies. We compare

against them in Table 2.3. Note that throughout this section, the feedback is

the information on interference and noise power levels sent from a user’s receiver

to its transmitter. The proposed nonstationary polices significantly outperform

stationary policies in terms of spectrum and energy efficiencies. In addition, most

existing policies require error-free and unquantized feedback, which incurs a large

overhead.

2.5.2.2 Nonstationary Spectrum Sharing Policies

There have been some works that develop nonstationary policies using repeated

games [42], Markov decision processes (MDPs) [61], and multi-art bandit [62]–[64].

We summarize the major differences between the existing nonstationary policies

and our proposed policy in Table 2.4.
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Table 2.4: Comparisons against nonstationary policies.
[42] [61] [62]–[64] Proposed

Energy
No No No Yes

-efficient

Power
Yes No No Yes

control

Users Heterogenous Homogenous Homogenous Heterogenous

Feedback Error-free Erroneous Error-free Erroneous

(Overhead) unquantized binary binary binary

(Large) (One-bit) (One-bit) (One-bit)

User
Fixed Fixed Fixed Varying

number

Deviation-
Yes No No Yes

proof

2.5.3 Model and Problem Formulation

2.5.3.1 Model

The model is very similar to the spectrum sharing model in Section 2.4, with a

few important differences.

First, we allow the existence of multiple PUs, instead of a single PU as in

Section 2.4. Specifically, we consider a cognitive radio network that consists of m

primary users and n secondary users transmitting in a single frequency channel.

The set of PUs and that of SUs are denoted by M , {1, 2, . . . ,m} and N ,

{m+ 1,m+ 2, . . . ,m+ n}, respectively.

Second, we include the PUs’ power control problem in the design framework,

in order to improve the energy efficiency of the PUs. Specifically, we model the

PUs’ actions as their transmit power levels ai ∈ Ai for i ∈ N . In contrast,

in Section 2.4, we abstracted the PU as an interference temperature constraint

and did not optimize its power control problem. The optimization of PUs’ power

control is extremely important when there are multiple PUs, because multiple PUs

may cause large interference to each other if their power control is not optimized.

Finally, we consider a different design problem, namely the energy minimiza-
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tion problem. Before writing down the design problem, we define the users’ long-

term discounted average energy consumption as

Pi(π) = Eh0,h1,...

{
(1− δ)

∞∑
t=0

δt · πi(ht))

}
.

The energy efficiency criterion can be represented by a function defined on all the

users’ average energy consumptions, E(P1(π), . . . , Pm+n(π)). Note, importantly,

that the energy efficiency criterion can also reflect the priority of the PUs over the

SUs. For example, the energy efficiency criterion can be the weighted sum of all

the users’ energy consumptions, i.e. E(P1(π), . . . , Pm+n(π)) =
∑

i∈M∪N wi ·Pi(π)

with wi ≥ 0 and
∑

i∈M∪N wi = 1. Each user i’s weight wi indicates the importance

of this user. We can set higher weights for PUs and lower weights for SUs.

Then the energy minimization problem can be formalized as follows:

min
π

E(P1(π), . . . , Pm+n(π)) (2.17)

s.t. Ui(π) ≥ Umin
i , ∀i ∈M ∪N,

where Umin
i is the minimum throughput requirement of user i.

As we have discussed before, it is much more challenging to sovle the energy

minimization problem than the throughput maximization problem. We have also

derived convergence results under dynamic entry and exit of users. Due to space

limitation, we refer interested readers to [3] for more details.

2.5.4 Simulation Results

We demonstrate the performance gain of our spectrum sharing policy over ex-

isting policies, and validate our theoretical analysis through numerical results.

Throughout this section, we use the following system parameters by default un-

less we change some of them explicitly. The noise powers at all the users’ receivers

are 0.05 W. For simplicity, we assume that the direct channel gains have the same
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distribution gii ∼ CN (0, 1),∀i, and the cross channel gains have the same distri-

bution gij ∼ CN (0, 0.25),∀i 6= j. The users have the same minimum throughput

requirement of 1 bits/s/Hz. The discount factor is 0.95. The interference tem-

perature threshold is θ = 1 W. The measurement error ε is Gaussian distributed

with zeros mean and variance 0.1. The energy efficiency criterion is the average

energy consumption across users.

2.5.4.1 Comparisons Against Existing Policies

First, assuming that the population is fixed, we compare the proposed policy

against the optimal stationary policy in [54]–[35], and the optimal round-robin

policy with cycle length L = M + N (i.e. each user gets one slot in a cycle).

We compare the energy efficiency of the policies as the number of users increase

in Fig. 2.11. Each data point plotted is the average of 1000 channel realizations.

First, we can see that the stationary policy becomes infeasible when the number

of users is more than 4. In contrast, the round-robin and proposed policies re-

main feasible when the number of users increases. Second, the proposed policy

achieves significant energy saving compared to the round-robin policy, especially

when the number of users is large. Specifically, it achieves 50% and 90% energy

saving compared to the round-robin policy when the number of users is 11 and

15, respectively. These are exactly the deployment scenarios where improvements

in spectrum and energy efficiency are much needed.

2.5.4.2 Adapting to Users Entering and Leaving the Network

We demonstrate how the proposed policy can seamlessly adapt to the entry and

exit of PUs/SUs. We consider a network with 10 PUs and 2 SUs initially. The PUs’

minimum throughput requirements range from 0.2 bits/s/Hz to 0.38 bits/s/Hz

with 0.02 bits/s/Hz increments, namely PU n has a minimum throughput re-
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Figure 2.11: Energy efficiency of the stationary, round-robin, and proposed policies

under different numbers of users.
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Figure 2.12: Dynamics of average energy consumption with users entering and

leaving the network. At t = 0, there are 10 PUs and 2 SUs. SU 2 leaves at

t = 100. SU 3 enters at t = 150. PU 11 enters at t = 200. SUs 4–8 enter at

t = 250. We only show PUs 1, 5, 9, 11 (solid lines) and SUs 1, 2, 3, 4 (dashed

lines) in the figure.

quirement of 0.2 + (n − 1) ∗ 0.02 bits/s/Hz. The SUs’ have the same minimum

throughput requirement of 0.1 bits/s/Hz. We show the dynamics of average en-

ergy consumptions and throughput of several PUs and all the SUs in Fig. 2.12

and Fig. 2.13, respectively.

In the first 100 time slots, we can see that all the users quickly achieve the

minimum throughput requirements at around t = 50. PUs have different energy

consumptions because of their different minimum throughput requirements. The

two SUs converge to the same average energy consumption and average through-
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Figure 2.13: Dynamics of average throughput under the same dynamics of the

entry and exit of users as in Fig. 2.12.

put. There are SUs leaving (t = 100) and entering (t = 150, 250), and a PU

entering (t = 200). We can see that during the entire process, the PUs/SUs

that are initially in the system maintain the same throughput and energy con-

sumption. The new PU (PU 11) has a higher energy consumption, because of

its higher minimum throughput requirement (0.4 bits/s/Hz), and because of the

limited transmission opportunities left for it. SU 3, however, does not need a

higher energy consumption because it occupies the time slots originally assigned

to SU 2, who left the network at t = 100. But SU 4 does need a higher energy

consumption, because there are more SUs and less transmission opportunities in

the network after t = 250.

2.6 Conclusion

In this chapter, we studied a large class of repeated games with imperfect monitor-

ing, in which the players have strong negative externality among each other and

have very limited (i.e. binary) and imperfect monitoring. Our theoretical results

diverge from much of the familiar literature on repeated games with imperfect

public monitoring. We obtain stronger conclusions about efficient PPE (bounds

on the discount factor, explicitly constructive strategies).
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We applied our theoretical framework to throughput maximization problems

in spectrum sharing, and extend our framework to energy minimization problems.

In both settings, our proposed framework significantly outperform the state-of-

the-art spectrum sharing policies.

2.7 Appendix

The proof of Proposition 1 is immediate and omitted.

Proof of Proposition 2 Fix an active player i and an inactive player j. Set

A(i, j) =
{
aj ∈ Aj : uj(aj, ã

i
−j) > uj(ã

i)
}

B(i, j) =
{
aj ∈ Aj : uj(aj, ã

i
−j) < uj(ã

i), ρ(yib|aj, ãi−j) < ρ(yib|ãi)
}

If either of A(i, j) or B(i, j) is empty then α(i, j) ≤ β(i, j) by default, so assume

in what follows that neither of A(i, j), B(i, j) is empty.

Fix a discount factor δ ∈ (0, 1) and let π be PPE that achieves an efficient

payoff. Assume that i is active following some history: π(h) = ãi for some h.

Because π achieves an efficient payoff, we can decompose the payoff v following

h as the weighted sum of the current payoff from ãi and the continuation payoff

assuming that players follow π; because π is a PPE, the incentive compatibility

condition for all players j must obtain. Hence for all aj ∈ Aj we have

vj = (1− δ)uj(ãi) + δ
∑
y∈Y

ρ(y|ãi)γj(y)

≥ (1− δ)uj(aj, ãi−j) + δ
∑
y∈Y

ρ(y|aj, ãi−j)γj(y).

Substituting probabilities for the good and bad signals yields

vj = (1− δ)uj(ãi) + δ
[
ρ(yig|ãi)γj(yig) + ρ(yib|ãi)γj(yib)

]
(2.18)

≥ (1− δ)uj(aj, ãi−j) + δ
[
ρ(yig|aj, ãi−j)γj(yig) + ρ(yib|aj, ãi−j)γj(yib)

]
.
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Rearranging yields[
ρ(yib|aj, ãi−j)− ρ(yib|ãi)

][
γj(y

i
g)− γj(yib)

][ δ

1− δ

]
≥
[
uj(aj, ã

i
−j)− uj(ãi)

]
.

Now suppose j 6= i is an inactive player. If aj ∈ A(i, j) then ρ(yib|aj, ãi−j) −

ρ(yib|ãi) > 0 (by Assumption 4) so[
γj(y

i
g)− γj(yib)

][ δ

1− δ

]
≥

uj(aj, ã
i
−j)− uj(ãi)

ρ(yib|aj, ãi−j)− ρ(yib|ãi)
. (2.19)

If aj ∈ B(i, j) then ρ(yib|aj, ãi−j)− ρ(yib|ãi) < 0 (by definition) so[
γj(y

i
g)− γj(yib)

][ δ

1− δ

]
≤

uj(aj, ã
i
−j)− uj(ãi)

ρ(yib|aj, ãi−j)− ρ(yib|ãi)
. (2.20)

Taking the sup over aj ∈ A(i, j) in (2.19) and the inf over aj ∈ B(i, j) in (2.20)

yields α(i, j) ≤ β(i, j) as desired. �

Proof of Proposition 3 As above, we assume i is active following the his-

tory h and that v is the payoff following h. Fix ai ∈ Ai. By definition, ui(ã
i) >

ui(ai, ã
i
−i). With respect to probabilities, there are two possibilities. If ρ(yib|ai, ãi−i) ≤

ρ(yib|ãi) then we immediately have

ṽii − ui(ai, ãi−i) ≥
1

λi

∑
j 6=i

λjα(i, j)[ρ(yib|ai, ãi−i)− ρ(yib|ãi)],

because the left-hand side is positive and the right-hand side is non-positive (α(i, j)

is positive due to Assumption 4). If ρ(yib|ai, ãi−i) > ρ(yib|ãi) we proceed as follows.

We begin with (2.18) but now we apply it to the active user i, so that for all

ai ∈ Ai we have

vi = (1− δ)ui(ãi) + δ
[
ρ(yig|ãi)γi(yig) + ρ(yib|ãi)γi(yib)

]
≥ (1− δ)ui(ai, ãi−i) + δ

[
(ρ(yig|ai, ãi−i)γi(yig) + ρ(yib|ai, ãi−i)γi(yib)

]
.

Rearranging yields

γi(y
i
g)− γi(yib) ≥

[
1− δ
δ

] [
ui(ai, ã

i
−i)− ui(ãi)

ρ(yib|ai, ãi−i)− ρ(yib|ãi)

]
.
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Because continuation payoffs are in V , which lies in the hyperplane H, the con-

tinuation payoffs for the active user can be expressed in terms of the continuation

payoffs for the inactive users as

γi(y) =
1

λi

[
1−

∑
j 6=i

λjγj(y)

]
.

Hence

γi(y
i
g)− γi(yib) = − 1

λi

∑
j 6=i

λj[γj(y
i
g)− γj(yib)].

Applying the incentive compatibility constraints for the inactive users implies that

for each aj ∈ A(i, j) we have

γj(y
i
g)− γj(yib) ≥

[
1− δ
δ

] [
uj(aj, ã

i
−j)− uj(ãi)

ρ(yib|aj, ãi−j)− ρ(yib|ãi)

]
.

In particular

γj(y
i
g)− γj(yib) ≥

[
1− δ
δ

]
α(i, j),

and hence

γi(y
i
g)− γi(yib) ≤ −

1

λi

[
1− δ
δ

][∑
j 6=i

λjα(i, j)

]
.

Putting these all together, canceling the factor [1 − δ]/δ and remembering that

we are in the case ρ(yib|ai, ãi−i) > ρ(yib|ãi) yields

ṽii − ui(ai, ãi−i) ≥
1

λi

∑
j 6=i

λjα(i, j)[ρ(yib|ai, ãi−i)− ρ(yib|ãi)]

which is the desired result. �

Proof of Theorem 1 Assume that Vµ is regular and not an extreme point, and

is a self-generating set; we verify Conditions 1-4 in turn.

Since Vµ is regular, for each i ∈ N there is a payoff profile v̂i ∈ Vµ with the

property that v̂ij = µj for each j 6= i. Necessarily, v̂i is the unique such point and

v̂i = arg max{vi : v ∈ Vµ}. Because V lies in the hyperplane H we have

v̂ij =


µj if j 6= i

1
λi

(
1−

∑
k 6=i λkµk

)
if j = i

.
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Because Vµ is self-generating, we can decompose v̂i:

v̂i = (1− δ)u(ãk) + δ
∑
y

ρ(y|ãk)γ(y) (2.21)

for some ãk. If k 6= i then (because Vµ 6= {ṽk}) we must have µk < ṽkk which

implies that γk(y) < µk for some y; since continuation payoffs must lie in Vµ this is

a contradiction. Hence in the decomposition (2.21) we must have ãk = ãi. In other

words, each player i must be active, in order to decompose v̂i. So Propositions 2

and 3 yield Conditions 1 and 2.

It is convenient to first establish the following inequality on µj on the way to

establishing the bounds in Condition 3.

µj > max
i 6=j

ṽij for all j ∈ N

To see this, suppose to the contrary that there exists a i, j such that µj ≤ ṽij.

Consider i’s preferred payoff profile v̂i in Vµ. Because decomposing v̂i requires

that we use ãi, it follows that

µj = (1− δ) · ṽij + δ ·
∑
y

ρ(y|ãi)γj(y)

If µj < ṽij then
∑

y∈Y ρ(y|ãi)γi(y) < µj and so γj(y) < µj for some y. This con-

tradicts that fact that γ(y) ∈ Vµ. If µj = ṽij, we must have
∑

y ρ(y|ãi)γj(y) = µj.

Since γj(y) ≥ µj for all y, we must have γj(y
i
g) = γj(y

i
b) = µj. By assump-

tion, player j has a currently profitable deviation aj so that uj(aj, ã
i
−j) > uj(ã

i),

which implies that the continuation payoff γj(y
i
g) = γj(y

i
b) = µj cannot satisfy the

incentive compatibility constraints. Hence, we must have µj > ṽij as asserted.

With all this in hand we derive Condition 3. To do this, we suppose i is active

and examine the decomposition of the inactive player j’s payoff in greater detail.

Because µj > ṽij and vj ≥ µj for every v ∈ Vµ we certainly have vj > ṽij. We can
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write j’s incentive compatibility condition as

vj = (1− δ) · ṽij + δ ·
∑
y∈Y

ρ(y|ãi) · γj(y) (2.22)

≥ (1− δ) · uj(aj, ãi−j) + δ ·
∑
y∈Y

ρ(y|aj, ãi−j) · γj(y).

From the equality constraint in (2.22), we can solve for the discount factor δ as

δ =
vj − ṽij∑

y∈Y γj(y)ρ(y|ãi)− ṽij

(Note that the denominator can never be zero and the above equation is well

defined, because vj > ṽij implies that
∑

y∈Y γj(y)ρ(y|ãi) > ṽij.) We can then

eliminate the discount factor δ in the inequality of (2.22). Since vj > ṽij, we

can obtain equivalent inequalities, depending on whether aj is a profitable or

unprofitable current deviation:

• If uj(aj, ã
i
−j) > ṽij then

vj ≤
∑
y∈Y

γj(y)

[(
1−

vj − ṽij
uj(aj, ãi−j)− ṽij

)
ρ(y|ãi)

+
vj − ṽij

uj(aj, ãi−j)− ṽij
ρ(y|aj, ãi−j)

]
(2.23)

• If uj(aj, ã
i
−j) < ṽij then

vj ≥
∑
y∈Y

γj(y)

[(
1−

vj − ṽij
uj(aj, ãi−j)− ṽij

)
ρ(y|ãi)

+
vj − ṽij

uj(aj, ãi−j)− ṽij
ρ(y|aj, ãi−j)

]
(2.24)

For notational convenience, write the coefficient of γj(y
i
g) in the above inequal-
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ities as

cij(aj, ã
i
−j) ,

(
1−

vj − ṽij
uj(aj, ãi−j)− ṽij

)
ρ(yig|ãi)

+

(
vj − ṽij

uj(aj, ãi−j)− ṽij

)
ρ(yig|aj, ãi−j)

= ρ(yig|ãi) + (vj − ṽij)
(
ρ(yig|aj, ãi−j)− ρ(yig|ãi)

uj(aj, ãi−j)− ṽij

)
= ρ(yig|ãi)− (vj − ṽij)

(
ρ(yib|aj, ãi−j)− ρ(yib|ãi)

uj(aj, ãi−j)− ṽij

)
According to (2.23), if uj(aj, ã

i
−j) > ṽij then

cij(aj, ã
i
−j) · γj(yig) +

[
1− cij(aj, ãi−j)

]
γj(y

i
b) ≤ vj (2.25)

Since γj(y
i
g) > γj(y

i
b), this is true if and only if

κ+
ij · γj(yig) + (1− κ+

ij) · γj(yib) ≤ vj, (2.26)

where κ+
ij , sup{cij(aj, ãi−j) : aj ∈ Aj : uj(aj, ã

i
−j) > ṽij}. (Fulfilling the in-

equalities (2.25) for all aj such that uj(aj, ã
i
−j) > uj(ã

i) is equivalent to fulfilling

the single inequality (2.26). If (2.26) is satisfied, then the inequalities (2.25) are

satisfied for all aj such that uj(aj, ã
i
−j) > uj(ã

i) because γj(y
i
g) > γj(y

i
b) and

κ+
ij ≥ cij(aj, ã

i
−j) for all aj such that uj(aj, ã

i
−j) > uj(ã

i). Conversely, if the

inequalities (2.25) are satisfied for all aj such that uj(aj, ã
i
−j) > uj(ã

i) and (2.26)

were violated, so that κ+
ij ·γj(yig)+(1−κ+

ij)·γj(yib) > vj, then we can find a κ′ij < κ+
ij

such that κ′ij · γj(yig) + (1−κ′ij) · γj(yib) > vj. Based on the definition of the supre-

mum, there exists at least a a′j such that uj(a
′
j, ã

i
−j) > uj(ã

i) and cij(a
′
j, ã

i
−j) > c′ij,

which means that cij(a
′
j, ã

i
−j) · γj(yig) + (1 − cij(a

′
j, ã

i
−j)) · γj(yib) > vj. This

contradicts the fact that the inequalities (2.26) are fulfilled for all aj such that

uj(aj, ã
i
−j) > uj(ã

i).)

Similarly, according to (2.24), for all aj such that uj(aj, ã
i
−j) < ṽij, we must

have

cij(aj, ã
i
−j)γj(y

i
g) + [1− cij(aj, ãi−j)]γj(yib) ≥ vj.
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Since γj(y
i
g) > γj(y

i
b), the above requirement is fulfilled if and only if

κ−ij · γj(yig) + (1− κ−ij) · γj(yib) ≥ vj,

where κ−ij , inf
{
cij(aj, ã

i
−j) : aj ∈ Aj, uj(aj, ãi−j) < ṽij

}
. Hence, the decomposi-

tion (2.22) for user j 6= i can be simplified as:

ρ(yig|ãi) · γj(yig) + [1− ρ(yig|ãi)]γj(yib) = ṽij +
vj − ṽij
δ

κ+
ij γj(y

i
g) + (1− κ+

ij) · γj(yib) ≤ vj

κ−ij γj(y
i
g) + (1− κ−ij) · γj(yib) ≥ vj (2.27)

Keep in mind that the various continuation values γ and the expressions κ+
ij, κ

−
ij

depend on vj; where necessary we write the dependence explicitly. Note that there

could be many γj(y
i
g) and γj(y

i
b) that satisfy (2.27). For a given discount factor

δ, we call all the continuation payoffs that satisfy (2.27) feasible – but whether

particular continuation values lie in Vµ depends on the discount factor.

We assert that κ+
ij(µj) ≤ 0 for all i ∈ N and for all j 6= i. To see this, we look

again at player i’s preferred payoff profile v̂i in Vµ, which is necessarily decomposed

by ãi. We look at the following constraint for player j 6= i in (2.27):

κ+
ij γj(y

i
g) + (1− κ+

ij) γj(y
i
b) ≤ µj.

Suppose that κ+
ij(µj) > 0. Since player j has a currently profitable deviation from

ãi, we must set γj(y
i
g) > γj(y

i
b). Then to satisfy the above inequality, we must have

γj(y
i
b) < µj. In other words, when κ+

ij(µj) > 0, all the feasible continuation payoffs

of player j must be outside Vµ. This contradicts the fact that Vµ is self-generating

so the assertion follows.
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The definition of κ+
ij(µj) and the fact that κ+

ij(µj) ≤ 0 entail that

κ+
ij(µj) = ρ(yig|ãi)− (µj − ṽij) inf

aj∈A(i,j)

[
ρ(yib|aj, ãi−j)− ρ(yib|ãi)

uj(aj, ãi−j)− ṽij

]

= ρ(yig|ãi)− (µj − ṽij)

 1

supaj∈A(i,j)

(
uj(aj ,ãi−j)−ṽij

ρ(yib|aj ,ã
i
−j)−ρ(yib|ãi)

)


= ρ(yig|ãi)− (µj − ṽij)
[

1

α(i, j)

]
≤ 0

This provides a lower bound on µj:

µj ≥ ṽij + α(i, j)ρ(yig|ãi) = ṽij + α(i, j)[1− ρ(yib|ãi)]

This bound must hold for every i ∈ N and every j 6= i. Hence, we have

µj ≥ max
i 6=j

(
ṽij + α(i, j)[1− ρ(yib|ãi)]

)
which is Condition 3.

Now we derive Condition 4 (the necessary condition on the discount factor).

The minimum discount factor δµ required for Vµ to be a self-generating set solves

the optimization problem

δµ = max
v∈Vµ

δ subject to v ∈ B(Vµ; δ)

where B(Vµ; δ) is the set of payoff profiles that can be decomposed on Vµ under

discount factor δ. Since B(Vµ; δ) = ∪i∈NB(Vµ; δ, ãi), the above optimization

problem can be reformulated as

δµ = max
v∈Vµ

min
i∈N

δ subject to v ∈ B(Vµ; δ, ãi). (2.28)

To solve the optimization problem (2.28), we explicitly express the constraint

v ∈ B(Vµ; δ, ãi) using the results derived above.

Some intuition may be useful. Suppose that i is active and j is an inactive

player. Recall that player j’s feasible γj(y
i
g) and γj(y

i
b) must satisfy (2.27). There
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Decomposition equality

IC constraint
(currently profitable deviation)

IC constraint
(currently unprofitable deviation)

Feasible 
continuation 
payoffs

Figure 2.14: Illustrations of the feasible continuation payoffs when κ+
ij ≤ 0.

γ̄j = 1
λj

(
1−

∑
k 6=j λkµk

)
.

are many γj(y
i
g) and γj(y

i
b) that satisfy (2.27). In Fig. 2.14, we show the feasible

continuation payoffs that satisfy (2.27) when κ+
ij(vj) ≤ 0. We can see that all the

continuation payoffs on the heavy line segment are feasible. The line segment is on

the line that represents the decomposition equality ρ(yig|ãi)·γj(yig)+(1−ρ(yig|ãi))·

γj(y
i
b) = ṽij +

vj−ṽij
δ

, and is bounded by the IC constraint on currently profitable

deviations κ+
ij · γj(yig) + (1− κ+

ij) · γj(yib) ≤ vj and the IC constraint on currently

unprofitable deviations κ−ij · γj(yig) + (1− κ−ij) · γj(yib) ≥ vj. Among all the feasible

continuation payoffs, denoted γ′(y), we choose the one, denoted γ∗(y), such that

for all j 6= i, γ∗j (y
i
g) and γ∗j (y

i
b) make the IC constraint on currently profitable

deviations in (2.27) binding. This is because under the same discount factor δ, if

there is any feasible continuation payoff γ′(y) in the self-generating set, the one

that makes the IC constraint on currently profitable deviations binding is also in

the self-generating set. The reason is that, as can be seen from Fig. 2.14, the

continuation payoff γ∗j (y) that makes the IC constraint binding has the smallest

γ∗j (y
i
g) = min γ′j(y

i
g) and the largest γ∗j (y

i
b) = max γ′j(y

i
b). Formally we establish

the following Lemma.
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Lemma 1 Fix a payoff profile v and a discount factor δ. Suppose that v is de-

composed by ãi. If there are any feasible continuation payoffs γ′(yig) ∈ Vµ and

γ′(yib) ∈ Vµ that satisfy (2.27) for all j 6= i, there there exist feasible continua-

tion payoffs γ∗(yig) ∈ Vµ and γ∗(yib) ∈ Vµ such that the IC constraint on currently

profitable deviations in (2.27) is binding for all j 6= i.

Proof 1 Given feasible continuation payoffs γ′(yig) ∈ Vµ and γ′(yib) ∈ Vµ, we

construct γ∗(yig) ∈ Vµ and γ∗(yib) ∈ Vµ that are feasible and make the IC constraint

on currently profitable deviations in (2.27) binding for all j 6= i.

Specifically, we set γ∗j (y
i
g) and γ∗j (y

i
b) such that the IC constraint on currently

profitable deviations in (2.27) is binding. Such γ∗j (y
i
g) and γ∗j (y

i
b) have the following

property: γ∗j (y
i
g) ≤ γ′j(y

i
g) and γ∗j (y

i
b) ≥ γ′j(y

i
b) for all γ′j(y

i
g) and γ′j(y

i
b) that satisfy

(2.27). We prove this property by contradiction. Suppose that there exist γ′j(y
i
g)

and γ′j(y
i
b) that satisfy (2.27) and γ′j(y

i
g) = γ∗j (y

i
g)−∆ with ∆ > 0. Based on the

decomposition equality, we have

γ′j(y
i
b) = γ∗j (y

i
b) +

(
ρ(yig|ãi)

1− ρ(yig|ãi)

)
∆

We can see that the IC constraint on currently profitable deviations is violated:

κ+
ij γ
′
j(y

i
g) + (1− κ+

ij) γ
′
j(y

i
b)

= κ+
ij γ
∗
j (y

i
g) + (1− κ+

ij) γ
∗
j (y

i
b) +

[
−κ+

ij ∆ + (1− κ+
ij)

(
ρ(yig|ãi)

1− ρ(yig|ãi)

)
∆

]
= vj + (1− κ+

ij)

[
ρ(yig|ãi)

1− ρ(yig|ãi)
−

κ+
ij

1− κ+
ij

]
∆

> vj

where the last inequality results from κ+
ij ≤ 0. Hence, we have γ∗j (y

i
g) ≤ γ′j(y

i
g) and

γ∗j (y
i
b) ≥ γ′j(y

i
b) for all γ′j(y

i
g) and γ′j(y

i
b) that satisfy (2.27).

Next, we prove that if γ′(y) ∈ Vµ, then γ∗(y) ∈ Vµ. To prove γ∗(y) ∈ Vµ, we

need to show that γ∗j (y
i
g) ≥ µj and γ∗j (y

i
b) ≥ µj for all j ∈ N . For j 6= i, we have
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γ∗j (y
i
g) ≥ γ∗j (y

i
b) ≥ γ′j(y

i
b) ≥ µj. For i, we have

γ∗i (y
i
g) =

1

λi

(
1−

∑
j 6=i

λjγ
∗
j (y

i
g)

)
≥ 1

λi

(
1−

∑
j 6=i

λjγ
′
j(y

i
g)

)
= γ′i(y

i
g) ≥ µi

This proves the lemma.

Using this Lemma, we can calculate the continuation payoffs of the inactive

player j 6= i:

γj(y
i
g) =

(
1
δ
(1− κ+

ij)− [1− ρ(yig|ãi)]
)
vj − (1

δ
− 1)(1− κ+

ij)ṽ
i
j

ρ(yig|ãi)− κ+
ij

=
vj
δ
−
(

1− δ
δ

)
ṽij +

(
1− δ
δ

)
[1− ρ(yig|ãi)]α(i, j),

γj(y
i
b) =

[
ρ(yig|ãi)− 1

δ
κ+
ij

]
vj + (1

δ
− 1)κ+

ij ṽ
i
j

ρ(yig|ãi)− κ+
ij

=
vj
δ
−
(

1− δ
δ

)
ṽij −

(
1− δ
δ

)
ρ(yig|ãi)α(i, j).

The active player’s continuation payoffs can be determined based on the inac-

tive players’ continuation payoffs since γ(y) ∈ V . We calculate the active player

i’s continuation payoffs as

γi(y
i
g) =

vi
δ
−
(

1− δ
δ

)
ṽii −

(
1− δ
δ

)
[1− ρ(yig|ãi)]

1

λi

∑
j 6=i

λjα(i, j),

γi(y
i
b) =

vi
δ
−
(

1− δ
δ

)
ṽii +

(
1− δ
δ

)
ρ(yig|ãi)

1

λi

∑
j 6=i

λjα(i, j)

Hence, the constraint v ∈ B(Vµ; δ, ãi) on discount factor δ is equivalent to

γ(y) ∈ Vµ for all y ∈ Y ⇔ γi(y) ≥ µi for all i ∈ N, y ∈ Y

Since κ+
ij(µj) ≤ 0, we have γj(y) ≥ vj for all y ∈ Y , which means that γj(y) ≥ µj

for all y ∈ Y . Hence, we only need the discount factor to have the property that

γi(y) ≥ µi for all y ∈ Y . Since γi(y
i
g) < γi(y

i
b), we need γi(y

i
g) ≥ µi, which leads

to

δ ≥ 1

1 + λi(vi − µi)/
[
λi(ṽii − vi) +

∑
j 6=i λj · (1− ρ(yig|ãi))α(i, j)

] .
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Hence, the optimization problem (2.28) is equivalent to

δµ = max
v∈Vµ

min
i∈N

xi(v) (2.29)

where

xi(v) ,
1

1 + λi(vi − µi)/
(
λi(ṽii − vi) +

∑
j 6=i λj[1− ρ(yig|ãi)]α(i, j)

)
Since xi(v) is decreasing in vi, the payoff v∗ that maximizes mini∈N xi(v) must

satisfy xi(v
∗) = xj(v

∗) for all i and j. Now we find the payoff v∗ such that

xi(v
∗) = xj(v

∗) for all i and j.

Define

z ,
λi(v

∗
i − µi)

λi(ṽii − v∗i ) +
∑
j 6=i

λj[1− ρ(yig|ãi)]α(i, j)

Then we have

λi(1 + z)v∗i = λi(µi + zṽii)− z
∑
j 6=i

λj[1− ρ(yig|ãi)]α(i, j)

from which it follows that

z =

1−
∑
i

λiµi

∑
i

(
λiṽii +

∑
j 6=i

λj[1− ρ(yig|ãi)]α(i, j)

)
− 1

Hence, the minimum discount factor is δ(µ) = 1
1+z

; substituting the definition

of z yields Condition 4. This completes the proof that these Conditions 1-4 are

necessary for Vµ to be a self-generating set.

It remains to show that these necessary Conditions are also sufficient, which

is accomplished in the proof of Theorem 2. This completes the proof of Theorem

1. �

Proof of Theorem 2 In view of the results of APS, it suffices to show that

under Conditions 1-4 of Theorem 1, the algorithm yields a decomposition of each

target vector v(t) ∈ Vµ.
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For convenience, we summarize how we decompose any v(t) ∈ Vµ based on the

algorithm as follows. We first find the active player i according to

i = max
j

{
arg max

j∈N
dj(v(t))

}
,

where

dj(v(t)) =
λj[vj(t)− µj]

λj[ṽ
j
j − vj(t)] +

∑
k 6=j λk α(j, k)ρ(yjb |ãj)

.

Then in the algorithm we update v(t + 1) based on the signal yt. Essen-

tially, we are assigning the continuation payoff vectors γ(y) following the signals.

Specifically, the continuation payoff vectors are assigned as follows:

γi(y
i
g) = ṽii + (1/δ)(vi(t)− ṽii)− (1/δ − 1)(1/λi)

∑
j 6=i

λjα(i, j)ρ(yib|ãi),

γj(y
i
g) = ṽij + (1/δ)(vj(t)− ṽij) + (1/δ − 1)α(i, j)ρ(yib|ãi),∀j 6= i,

and

γi(y
i
b) = ṽii + (1/δ)(vi(t)− ṽii) + (1/δ − 1)(1/λi)

∑
j 6=i

λjα(i, j)ρ(yig|ãi),

γj(y
i
b) = ṽij + (1/δ)(vj(t)− ṽij)− (1/δ − 1)α(i, j)ρ(yig|ãi), ∀j 6= i.

We need to verify that under Conditions 1-4 of Theorem 1, the above contin-

uation payoff vectors γ(yig) and γ(yib) satisfy 1) the decomposition equalities, 2)

the incentive compatibility constraints, and 3) that γ(yig) ∈ Vµ and γ(yib) ∈ Vµ.

It is straightforward to check that the decomposition equalities are satisfied.

The incentive compatibility constraints for the inactive players j reduce to Con-

dition 1, and those for the active player i reduce to Condition 2.

We proceed to verify that γ(yig) ∈ Vµ and γ(yib) ∈ Vµ. It is straightforward

to verify that γ(yig) ∈ V and γ(yib) ∈ V . We only need to show γj(y
i
g) ≥ µj and

γj(y
i
b) ≥ µj for all j ∈ N . Since α(i, j) > 0, we can observe that γj(y

i
g) > γj(y

i
b)

for all j 6= i and γi(y
i
g) < γi(y

i
b). Hence, it suffices to show γj(y

i
b) ≥ µj for all j 6= i

and γi(y
i
g) ≥ µi.
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For any inactive player j, we have

γj(y
i
b) ≥ µj

⇔ ṽij + (1/δ)(vj(t)− ṽij)− (1/δ − 1)α(i, j)ρ(yig|ãi) ≥ µj

⇔ (1/δ)vj(t)− µj ≥ (1/δ − 1)ṽij + (1/δ − 1)α(i, j)ρ(yig|ãi)

⇐ (1/δ)µj − µj ≥ (1/δ − 1)ṽij + (1/δ − 1)α(i, j)ρ(yig|ãi)

⇔ µj ≥ ṽij + α(i, j)ρ(yig|ãi)

⇐ Condition 3 of Theorem 1.

For the active player i, we have

γi(y
i
g) ≥ µi

⇔ ṽii + (1/δ)(vi(t)− ṽii)− (1/δ − 1)(1/λi)
∑
j 6=i

λjα(i, j)ρ(yib|ãi) ≥ µi

⇔ (1/δ)

[
vi(t)− ṽii − (1/λi)

∑
j 6=i

λjα(i, j)ρ(yib|ãi)

]
≥ µi − ṽii − (1/λi)

∑
j 6=i

λjα(i, j)ρ(yib|ãi)

⇔ δ ≥
ṽii − vi(t) + (1/λi)

∑
j 6=i λjα(i, j)ρ(yib|ãi)

ṽii − µi + (1/λi)
∑

j 6=i λjα(i, j)ρ(yib|ãi)

⇔ δ ≥ 1

1 + λi(vi(t)− µi)/
[
λi(ṽii − vi(t)) +

∑
j 6=i λjα(i, j)ρ(yib|ãi)

]
⇐ δµ ≥

1

1 + λi(vi(t)− µi)/
[
λi(ṽii − vi(t)) +

∑
j 6=i λjα(i, j)ρ(yib|ãi)

]
⇔ δµ ≥

1

1 + di(v(t))
.

According to the proof of Theorem 1, the above δµ in Condition 4 of Theorem 1

is calcualted by solving the optimization problem (2.29), which is equivalent to

δµ = max
v∈Vµ

min
j∈N

1

1 + dj(v)
.

From the above, we have δµ ≥ minj∈N
1

1+dj(v)
for any v ∈ Vµ. Under the given

v(t), the active player i is chosen such that di(v(t)) is the largest (i.e. 1
1+di(v(t))

is the smallest). Hence, we have δµ ≥ minj∈N
1

1+dj(v(t))
= 1

1+di(v(t))
. This yields

γi(y
i
g) ≥ µi. �
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Proof of Theorem 3 Given a parameter ξ, the algorithm uses the target

vector as the continuation value to compute N indicators; let Ξ(0) be the set of

parameters for which no two of these indicators are equal. For each parameter

in Ξ(0), the algorithm computes continuation values following the good signal

and the bad signal and then uses each of these continuation values to compute

N indicators; let Ξ(1) ⊂ Ξ(0) be the set of parameters for which no two of these

indicators are equal. Proceeding by induction, we define a decreasing sequence

of sets Ξ(0) ⊃ Ξ(1) ⊃ · · · ⊃ Ξ(T ); let ΞT be the complement of Ξ(T ). Notice

that the indicators are continuous functions of the parameters so the ordering of

the indicators is locally constant provided no two indicators are equal. Hence

for each ξ ∈ Ξ(T ) = Ξ \ Ξ(T ) then there is a small open neighborhood Z of

ξ so that if ξ′ ∈ Z then the strategies πξ′ ,πξ generate the same ordering of

indicators in each of the first T periods. In particular, πξ′(h) = πξ(h) for each

history h ∈ HT ; that is, ξ → πTξ is locally constant on the complement of ΞT .

It remains only to show that ΞT is closed and has measure 0. In fact, ΞT is a

finite union of lower-dimensional submanifolds; this is a consequence of general

facts about semi-algebraic sets and the observation that all the indicators are

continuous semi-algebraic functions of the parameters, no two of which coincide

on any open set. See [23], [24]. �

Proof of Theorem 4 Propositions 2, 3 show that Conditions 1, 2 are necessary

conditions for the existence of an efficient PPE for any discount factor. Suppose

therefore that Conditions 1,2 are satisfied. It is easily checked that the following

definitions of µ∗1, µ
∗
2 guarantee that Condition 3 of Theorem 1 are satisfied:

µ∗1 = ṽ2
1 + α(2, 1)[1− ρ(y2

b |ã2)], µ∗2 = ṽ1
2 + α(1, 2)[1− ρ(y1

b |ã1)].

Finally, if

δ ≥ δ∗ ,

1 +
1− λ1µ

∗
1 − λ2µ

∗
2∑

i

[λiṽii + λ−i α(i,−i) ρ(yib|ãi)]− 1

−1

,
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then Condition 4 of Theorem 1 is also satisfied. It follows from Theorem 1 that

for each δ ≥ δ∗, Vµ∗ is a self-generating set, so every target vector in Vµ∗ can be

achieved in a PPE. Hence E(δ) ⊃ Vµ∗ for every δ ∈ [δ∗, 1). To see that Vµ∗ = E(δ)

for every δ ∈ [δ∗, 1), simply note that for each δ the set E(δ) is closed and convex,

hence an interval, hence of the form Vµ for some µ. However, Condition 3 of

Theorem 1 guarantees that µ ≥ µ∗ which completes the proof. �
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CHAPTER 3

Resource Sharing With Decentralized

Information

3.1 Introduction

Power systems are currently undergoing drastic changes on both the supply and

the demand side. On the supply side, renewable energy (e.g. wind energy, solar

energy) is increasingly used to reduce the environmental damage caused by con-

ventional energy generation; however, this often introduces high fluctuations in

the amount of energy generated. To cope with these fluctuations (uncertainty) in

energy generation, energy storage is increasingly used as an important solution

[70]. In this chapter, we determine the optimal economic dispatch strategies and

the optimal demand side management (DSM) strategies in the presence of energy

storage.

Specifically, we consider a power system consisting of several energy genera-

tors on the supply side, an independent system operator (ISO) that operates the

system, and multiple aggregators and their customers on the demand side. On

the supply side, the ISO receives energy purchase requests from the aggregators as

well as reports of (parameterized) energy generation cost functions from the gen-

erators and, based on these, dispatches the energy generators and determines the

unit energy prices. On the demand side, the aggregators are located in different

geographical areas (i.e. nodes/buses of the power network) and provide energy

for their customers (e.g. households, office buildings) in the neighborhood. In the
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literature, the term “DSM” has been broadly used for different decision problems

on the demand side. For example, some papers (see [65]–[68] for representative

papers) focus on the interaction between one aggregator and its customers, and

refer to DSM as determining the power consumption schedules of the users. Some

papers [69]–[77] focus on how multiple aggregators [69]–[72] or a single aggrega-

tor [73]–[77] purchase(s) energy from the ISO based on the energy consumption

requests from their customers. Our work pertains to the second category.

The key feature that sets apart our work from most existing works [69]–[72]

is that all the decision makers in the system are foresighted. Each aggregator

seeks to minimize its long-term cost, consisting of its operational cost of energy

storage and its payment for energy purchase. In contrast, in most existing works

[69]–[72], the aggregators are myopic and seek to minimize their short-term (e.g.

one-day or even hourly) cost. In the presence of energy storage, foresighted DSM

strategies can achieve much lower costs than myopic DSM strategies because the

current decisions of the aggregators will affect their future costs. For example,

an aggregator can purchase more energy from the ISO than that requested from

its customers, and store the unused energy in the energy storage for future use,

if it anticipates that the future energy price will be high. Hence, the current

purchase from the aggregators will affect how much they will purchase in the

future. In this case, it is optimal for the entities to make foresighted decisions,

taking into account the impact of their current decisions on the future. Since

the aggregators deploy foresighted DSM strategies, it is also optimal for the ISO

to make foresighted economic dispatch, in order to minimize the long-term total

cost of the system, consisting of the long-term cost of energy generation and the

aggregators’ long-term operational cost. Note that although some works [73]–[77]

assume that the aggregator has energy storage and is foresighted, they study the

decision problem of a single aggregator and do not consider the economic dispatch

problem of the ISO. When there are multiple aggregators in the system (which is
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the case in practice), this approach neglects the impact of aggregators’ decisions

on each other, which leads to suboptimal solutions in terms of minimizing the

total cost of the system.

When the ISO and multiple aggregators make foresighted decisions, it is diffi-

cult to obtain the optimal foresighted strategies for two reasons. First, the infor-

mation is decentralized. The total cost depends on the generation cost functions

(e.g. the speed of wind for wind energy generation, the amount of sunshine for

solar energy generation, and so on), the status of the transmission lines (e.g. the

flow capacity of the transmission lines), the amount of electricity in the energy

storage, and the demand from the customers, all of which change over time due

to supply and demand uncertainty. However, no entity knows all the above infor-

mation: the ISO knows only the generation cost functions and the status of the

transmission lines, and each aggregator knows only the status of its own energy

storage and the demand of its own customers. Hence, the DSM strategy needs

to be decentralized, such that each entity can make decisions solely based on its

locally-available information1. Second, the aggregators are coupled in a manner

that is unknown to them and changing over time. Specifically, each aggregator’s

purchase affects the prices2, and thus the payments of the other aggregators. How-

ever, the price is determined by the ISO based on the generation cost functions

and the status of the transmission lines, neither of which is known to any aggre-

gator. Hence, each aggregator does not know how its purchase will influence the

price, which makes it difficult for the aggregator to make the optimal decision.

To overcome the challenges due to information decentralization and compli-

1Even if the aggregators are willing to share all their private information with the ISO such
that the ISO can make centralized decisions, the resulting centralized decision problem becomes
intractable quickly as the size of the power network grows (e.g. for the IEEE 118-bus system).
For large power networks, it is not only desirable, but also necessary to have an decentralized
solution in which each entity is able to solve one subproblem after decomposing the intractable
centralized problem.

2In our model, an aggregator is responsible for all the customers on a node/bus of the power
network. Hence, its purchase is significant enough to influence the locational marginal prices
(LMPs).
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cated coupling, we propose a decentralized DSM strategy based on conjectured

prices. Specifically, each aggregator makes decisions based on its conjectured price,

and its local information about the status of its energy storage and the demand

from its customers. In other words, each aggregator summarizes all the informa-

tion that is not available to it into its conjectured price. Note, however, that the

price is determined based on the generation cost functions and the status of the

transmission lines, which is only known to the ISO. Hence, the aggregators’ con-

jectured prices are determined by the ISO. We propose a simple online algorithm

for the ISO to update the conjectured prices based on its local information, and

prove that by using the algorithm, the ISO obtains the optimal conjectured prices

under which the aggregators’ (foresighted) best responses minimize the total cost

of the system.

In addition, we consider the scenario in which the entities do not know their

state transition probabilities a priori. For example, the aggregators may not know

how their customers’ demands change, and the ISO may not know how the status

of the transmission lines evolves. We propose an online learning algorithm for

the entities to learn and converge to the optimal DSM strategy. The proposed

online learning algorithm utilizes the concept of post-decision states [84][85] and

exploits the independence of the state dynamics in the system, which results in

a faster learning speed and a better run-time performance compared to conven-

tional learning algorithms such as Q-learning [86]. Simulations demonstrate that

the learning algorithm can learn the optimal policy, and can adapt to the nonsta-

tionary dynamics of the system.

In summary, the major contributions of our work are as follows:

• We rigorously formalize the long-term interaction among the ISO and multi-

ple aggregators with energy storage as a multi-user Markov decision process

(MU-MDP).
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• We propose the optimal decentralized foresighted demand-side management

with energy storage, which minimizes the total system cost. Simulations

demonstrate that our proposed solution can reduce the total system cost

by 60% and 30%, compared to the state-of-the-art myopic solutions and

foresighted solutions based on Lyapunov optimization, respectively.

• To the best of our knowledge, our proposed theoretical framework is the

first one that optimally solve the MU-MDP (in terms of minimizing the

total cost) we formulate.

• We propose an learning algorithm that allows the entities to reach the opti-

mal solution even without statistical knowledge of the system dynamics, and

track the optimal solution even when the underlying transition probabilities

of system dynamics are time-varying (i.e. when the system dynamics are

not Markovian).

The rest of this chapter is organized as follows. We provide a more detailed

literature review in Section 4.2. We introduce the system model in Section 4.3,

and then formulate the design problem in Section 3.4. We describe the proposed

optimal decentralized DSM strategy in Section 3.5. Through simulations, we

validate our theoretical results and demonstrate the performance gains of the

proposed strategy in Section 4.6. Finally, we conclude the chapter in Section 4.7.

3.2 Related Works

3.2.1 Related Works on Demand-Side Management

In Table 4.1, we categorize existing works on DSM in power systems in terms

of the assumption on demand/supply uncertain and whether energy storage is

adopted when designing the DSM strategy. In short, there exists no work that

designs foresighted DSM strategies for multiple aggregators who seek to minimize
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Table 3.1: Comparisons With Related Works on Demand-Side Management.
Energy Time

Foresighted
# of Supply Demand

storage horizon Aggregators uncertainty Uncertainty

[65][66][69] No 1 day No Multiple No No

[67] No 1 day No Multiple Yes No

[68] No 1 day No Multiple No Yes

[70] Yes 1 day No Multiple No No

[71][72] Yes 1 day No Multiple Yes Yes

[73][74] Yes Infinite Yes Single No Yes

[75]–[77] Yes Infinite Yes Single Yes Yes

Proposed Yes Infinite Yes Multiple Yes Yes

their long-term costs (i.e. the average cost in a time horizon much longer than

one day).

Some works [65]–[72] proposed myopic DSM strategies for multiple aggrega-

tors who seek to minimize their costs within one day. With energy storage, the

foresighted strategies which minimize the long-term cost can greatly outperform

the myopic strategies. For example, in a myopic strategy, the aggregator may

tend to purchase as little power as possible as long as the demand is fulfilled, in

order to minimize the current operational cost of its energy storage. However,

the optimal strategy should take into consideration the future price, and balance

the trade-off between the current operational cost and the future saving in energy

purchase.

Other works [73]–[77] proposed foresighted DSM strategies for a single aggre-

gator who seeks to minimize their costs in an infinite time horizon. In practice,

the power system has many aggregators. With multiple aggregators, it is ineffi-

cient for each aggregator to simply adopt the optimal foresighted strategy designed

under the assumption of a single aggregator. As we will show in the simulation,

with multiple aggregators, the total cost achieved by such a simple adaptation

of the optimal single-aggregator strategy is much higher (up to 30%) than the

proposed optimal solution. This is because the single-aggregator strategy aims at
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Table 3.2: Comparisons With Related Mathematical Frameworks.

MDP
MU-MDP Lyapunov Stochastic Stochastic

This work
[78][79] Optimization [73]–[77] Control [80] Games [81]

# of
Single Multiple Single Multiple Multiple Multiple

decision makers

Decentralized
N/A Yes N/A Yes No Yes

information

Coupling
N/A Weak N/A Strong Strong Strong

among users

Optimal Yes Yes Yes No Yes Yes

Constructive Yes Yes Yes Yes No Yes

achieving individual minimum cost, instead of the total cost. Due to the coupling

among the aggregators, the outcome in which individual costs are minimized may

be very different from the outcome in which the total cost is minimized.

We will provide a more technical comparison with the existing works in Ta-

ble 3.6, after we described the proposed framework.

3.2.2 Related Theoretical Frameworks

Decision making in a dynamically changing environment has been studied and

formulated as Markov decision processes (MDPs). Most MDP-based works have

been dedicated to solving single-user decision problems. There have been few

works [78][79] on multi-user MDPs (MU-MDPs). The works on MU-MDPs [78][79]

focus on weakly coupled MU-MDPs, where the term “weakly coupled” is coined

by [78] to denote the assumption that one user’s action does not directly affect

the others’ current payoffs. The users are coupled only through some linking con-

straints on their actions (for example, the sum of their actions, e.g. the sum data

rate, should not exceed some threshold, e.g. the available bandwidth). However,

once a user chooses its own action, its current payoff and its state transition are

determined and do not depend on the other users’ actions. In contrast, in this

work, the users are strongly coupled, namely one user’s action directly affect the
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others’ current payoffs. For example, one aggregator’s energy purchase affects the

unit price of energy, which has impact on the other aggregators’ payments. There

are few works in stochastic control that model the users’ interaction as strongly

coupled [80]. However, the main focus of [80] is to prove the existence of a Nash

equilibrium (NE) strategy. There is no performance analysis/guarantee of the

proposed NE strategy.

The interaction among users with strong coupling is modeled as a stochastic

game [81] in the game theory literature. However, in standard stochastic games,

the state of the system is known to all the players. Hence, we cannot model the

interaction of entities in our work as a stochastic game, because different entities

have different private states unknown to the others. In addition, the results in

[81] are not constructive. They focus on what payoff profiles are achievable, but

not how to achieve those payoff profiles (i.e. their methods are not constructive).

In contrast, we propose an algorithm to compute the optimal strategy profile.

In Table 4.2, we compare our work with existing theoretical frameworks. Note

that we will provide a more technical comparison with the Lyapunov optimization

and MU-MDP frameworks in Table 3.6, after we described the proposed frame-

work.

3.3 System Model

3.3.1 The System Setup

We consider a smart grid with one ISO indexed by 0, G generators indexed by

g = 1, 2, . . . , G, I aggregators indexed by i = 1, 2, . . . , I, and L transmission

lines (see Fig. 3.1 for an illustration). The ISO schedules the energy generation

of generators and determines the unit prices of energy for the aggregators. The

generators provide the ISO with the information of their energy generation cost
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Generator 1 Generator g

Aggregator 1 Aggregator i

PMU on line l
ISO

Storage Storage

Figure 3.1: The system model of the smart grid. The information flow to the ISO

is denoted by red dashed lines, the information flow to the aggregators is denoted

by black dotted lines, and the information flow sent from the ISO is denoted by

blue dash-dot lines.

functions, based on which the ISO can minimize the total cost of the system.

Since the ISO determines how much energy each generator should produce, we

do not model generators as decision makers in the system; instead, we abstract

them by their energy generation cost functions. Each aggregator, equipped with

energy storage, provides energy for its customers (e.g. residential households,

commercial buildings), and determines how much energy to buy from the ISO.

In summary, the decision makers (or the entities) in the system are the ISO and

the I aggregators. We denote the set of aggregators by I = {1, . . . , I}. In the

following, we refer to the ISO or an aggregator generally as entity i ∈ {0} ∪ I,

with entity 0 being the ISO and entity i ∈ I being aggregator i.

As discussed before, different entities possess different local information. Specif-

ically, the ISO receives reports of the energy generation cost functions, denoted

by ε = (ε1, . . . , εG), from the generators, and measures the status of the trans-

mission lines such as the phases or capacities, denoted by ξ = (ξ1, . . . , ξL), by

using the phasor measurement units (PMUs). We summarize the energy gener-
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Table 3.3: Each entity’s knowledge, and the corresponding results.

Knowledge Solutions

ISO: realizations and transition probabilities of s0
Sec. 3.5.2

Aggregator i: realizations and transition probabilities of si

ISO: only realizations of s0
Sec. 3.5.3

Aggregator i: only realizations of si

ation cost functions and the status of the transmission lines into the ISO’s state

s0 = (ε, ξ) ∈ S0, which is unknown to the aggregators3. Each aggregator re-

ceives energy consumption requests from its customers, and manages its energy

storage. We summarize the aggregate demand di from aggregator i’s customers

and the amount ei of energy in aggregator i’s storage into aggregator i’s state

si = (di, ei) ∈ Si, which is only known to aggregator i. We assume that all the

sets S0, . . . , SI of states are finite. We highlight which information is available to

which entity in Table 3.3.

The ISO’s action is how much energy each generator should produce, denoted

by a0 ∈ A0(s0) ⊂ RG
+, where A0(s0) is the action set under state s0. Each

aggregator i’s action is how much energy to purchase from the ISO, denoted by

ai ∈ Ai(si) ⊂ R+, where Ai(si) is the action set under state si. We denote the

joint action profile of the aggregators as a = (a1, . . . , aN), and the joint action

profile of all the aggregators other than i as a−i. We allow the action set to be

dependent on the current state, in order to impose constraints on each entity’s

behavior. For example, we require that the aggregator must fulfill its customers’

demand. Hence, given aggregator i’s state si = (di, ei), we have

Ai(si) = {ai : di ≤ ai + ei ≤ Ei} ,

where Ei is the maximum capacity of aggregator i’s storage. We could also

3Note that the status of the transmission lines are the phase and capacity. Such information,
and sometimes even the topology of the network of transmission lines, is critical energy infras-
tructure information (CEII) and is unknown to the aggregators. Note also that an aggregator
may know the congestion on the bus in which it is located. However, the congestion is not the
state of the ISO.
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t+1

The ISO

observes its state:

The ISO

dispatches the generators

(i.e. chooses       ),

and determines the prices

t+1

Aggregator i 

makes payments

ISO Aggregator i

tt

Aggregator i 

observes its state:

Aggregator i 

makes decisions on 

energy purchase

Figure 3.2: Illustration of the interaction between the ISO and aggregator i (i.e.

their decision making and information exchange) in one period.

impose constraints on the charging/discharging rates of the storage. The ag-

gregator charges the storage when ai > di and discharges the storage when

ai < di. Hence, the maximum charging/discharging rate constraint can be written

as −rdischargei ≤ ai − di ≤ rchargei , where rdischargei and rchargei are the maximum

discharging and charging rates, respectively.

We divide time into periods t = 0, 1, 2, . . ., where the duration of a period

is determined by how fast the demand or supply changes or how frequently the

energy trading decisions are made. In each period t, the entities act as follows

(see Fig. 3.2 for illustration):

• The ISO observes its state s0.

• Each aggregator i observes its state si.

• Each aggregator i chooses its action ai, namely how much energy to purchase

from the ISO, and tells its amount ai of energy purchase to the ISO.

• Based on its state s0 and the aggregators’ action profile a, the ISO de-
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termines the price4 yi(s0,a) ∈ Yi of electricity at each aggregator i, and

announces it to each aggregator i. The ISO also determines its action a0,

namely how much energy each generator should produce.

• Each aggregator i pays yi(s0,a) · ai to the ISO.5

The instantaneous cost of each entity depends on its current state and its

current action. Each aggregator i’s total cost consists of two parts: the operational

cost and the payment. Each aggregator i’s operational cost ci : Si × Ai → R is a

convex increasing function of its action ai. An example operational cost function

of an aggregator can be

ci(si, ai) = mi(ei, ai − di),

where mi(ei, ai) is the maintenance cost of the energy storage that is convex

[70]. It may depend on both the amount of energy in the storage and the charg-

ing/discharging rate ai−di. Then we write each aggregator i’s total cost, which is

the cost aggregator i aims to minimize, as the sum of the operational cost and the

payment, namely c̄i = ci+yi(s0, ai,a−i) ·ai. Note that each aggregator’s payments

depends on the others’ actions through the price. Although each aggregator i ob-

serves its realized price yi, it does not know how its action ai influences the price

yi, because the price depends on the others’ actions a−i and the ISO’s state s0,

neither of which is known to aggregagtor i.

The energy generation cost of generator g is denoted cg(εg, a0,g), which is

assumed to be convex increasing in the energy production level a0,g. An example

cost function can be

cg(εg, a0,g) = (q0,g + q1,g · a0,g + q2,g · a2
0,g) + qr,g · (a0,g − a−0,g)2,

4We do not model the pricing as the ISO’s action, because it does not affect the ISO’s payoff,
i.e. the social welfare (this is because the payment from the aggregators to the ISO is a monetary
transfer within the system and does not count in the social welfare).

5Since we consider the interaction among the ISO and the aggregators only, we neglect the
payments from the ISO to the generators, which are not included in the total cost anyway,
because the payments are transferred among the entities in the system.
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where a−0,g is the production level in the previous time slot. In this case, the energy

generation cost function of generator g is a vector εg = (q0,g, q1,g, q2,g, qr,g, a
−
0,g). In

the cost function, q0,g + q1,g · a0,g + q2,g · a2
0,g is the quadratic cost of producing a0

amount of energy [65][66], and qr,g ·(a0,g−s0,g)
2 is the ramping cost of changing the

energy production level. We denote the total generation cost by c0 =
∑G

g=1 cg. The

ISO’s cost, denoted c̄0, is then the sum of generation costs and the aggregators’

costs, i.e. c̄0 =
∑N

i=0 ci.

Note, importantly, that the example cost functions above are for illustrative

purpose; we can define a variety of cost functions as long as they satisfy the

convexity assumption.

We assume that each entity’s state transition is Markovian6, namely its cur-

rent state depends only on its previous state and its previous action. Under the

Markovian assumption, we denote the transition probability of entity i’s state si

by ρi(s
′
i|si, ai). This assumption holds for the following reasons. The ISO’s state

consists of the energy generation cost functions and the status of the transmis-

sion lines. For renewable energy generation, the energy generation cost function

is modeled by the amount of available renewable energy sources (e.g. the wind

speed in wind energy, and the amount of sunshine in solar energy), which is usu-

ally assumed to be i.i.d. [67][71][72]. In our model, we relax the i.i.d. assumption

and allow the amount of available renewable energy sources to be correlated across

adjacent periods. For conventional energy generation, the energy generation cost

function is usually constant when we do not consider ramping costs. If we con-

sider ramping costs, we can include the energy production level at the previous

period in the energy generation cost function. For the aggregators, the amount of

energy left in the storage depends only on the amount of energy in the previous

period and the amount of energy purchases in the current period. The demand

6We need this assumption for our theoretical results. As we will show in the simulations, even
when the state transition is not Markovian, our proposed solution can track the nonstationary
dynamics (i.e. time-varying state transitions).
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of the aggregator is the total demand of all its customers. Since the number of

customers is large, the temporal correlation of each customer’s energy demand

can be neglected in the total demand. For this reason, the demand of the ag-

gregator is often assumed to be i.i.d. [75]–[77]. In our model, we relax the i.i.d.

assumption and allow the demand of the aggregator to be temporally correlated

across adjacent periods.

We also assume that conditioned on the ISO’s action a0 and the aggregators’

action profile a, each entity’s state transition is independent of each other. This

assumption holds for the ISO, because the energy generation cost functions and

the status of the transmission lines depend on the environments such as weather

conditions, and possibly on the previous energy production levels when we consider

ramping costs, but not on the aggregators’ demand or its energy storage. For each

aggregator, its energy storage level depends only on its own state and action, but

not on the ISO’s or the other aggregators’ states. The demand of each aggregator

could potentially depend on the ISO’s state, because the ISO’s state influences the

unit price of energy. However, in practice, consumers are not price-anticipating

(namely they do not determine how much to consume based on their anticipation

of the real-time prices). As a result, it is reasonable to assume that the demand

of each aggregator is independent of the ISO’s and the other aggregators’ states.

3.3.2 The DSM Strategy

At the beginning of each period t, each aggregator i chooses an action based

on all the information it has, namely the history of its private states and the

history of its prices. We write each aggregator i’s history in period t as hti =

(s0
i , y

0
i ; s

1
i , y

1
i ; . . . ; s

t−1
i , yt−1

i ; sti), and the set of all possible histories of aggregator i

in period t as Ht
i = St+1

i × Y t
i . Hence, each aggregator i’s strategy can be written

as πi : ∪∞t=0Ht
i → Ai. Similarly, we write the ISO’s history in period t as ht0 =

(s0
0,y

0; s1
0,y

1; . . . ; st−1
0 ,yt−1; st0), where yt is the collection of prices at period t, and
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the set of all possible histories of the ISO in period t asHt
0 = St+1

0 ×
∏

i∈N Y
t
i . Then

the ISO’s strategy can be written as π0 : ∪∞t=0Ht
i → Ai. The joint strategy profile of

all the entities is written as π = (π1, . . . , πN). Since each entity’s strategy depends

only on its local information, the strategy π is decentralized7. Among all the

decentralized strategies, we are interested in stationary decentralized strategies,

in which the action to take depends only on the current information, and this

dependence does not change with time. Specifically, entity i’s stationary strategy

is a mapping from its set of states to its set of actions, namely πsi : Si → Ai. Since

we focus on stationary strategies, we drop the superscript s, and write πi as entity

i’s stationary strategy.

The joint strategy profile π and the initial state (s0
0, s

0
1, . . . , s

0
N) induce a prob-

ability distribution over the sequences of states and prices, and hence a probability

distribution over the sequences of total costs c̄0
i , c̄

1
i , . . .. Taking expectation with

respect to the sequences of stage-game payoffs, we have entity i’s expected long-

term cost given the initial state as

C̄i(π|(s0
0, s

0
1, . . . , s

0
I)) = E

{
(1− δ)

∞∑
t=0

(
δt · c̄ti

)}
, (3.1)

where δ ∈ [0, 1) is the discount factor.

3.4 The Design Problem

The designer, namely the ISO, aims to maximize the social welfare, namely min-

imize the long-term total cost in the system. In addition, we need to satisfy the

constraints due to the capacity of the transmission lines, the supply-demand re-

quirements, and so on. We denote the constraints by f(s0, a0,a) ≤ 0, where

f(s0, a0,a) ∈ RN with N being the number of constraints. We assume that the

7As we will later, the proposed strategy requires the ISO and the aggregators to exchange
some information (i.e. the conjectured prices). As in the works based on network utility maxi-
mization [66], such strategies are called decentralized because the entities make decisions based
on local information.
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electricity flow can be approximated by the direct current (DC) flow model, in

which case the constraints f(s0, a0,a) ≤ 0 are linear in each ai. Hence, the design

problem can be formulated as

minπ
∑

s00,s
0
1,...,s

0
I

{
C0(π|(s0

0, s
0
1, . . . , s

0
I)) +

∑
i∈I

Ci(π|(s0
0, s

0
1, . . . , s

0
I))

}
(3.2)

s.t. f(s0, π0(s0), π1(s1), . . . , πI(sI)) ≤ 0, ∀(s0, s1, . . . , sN).

Note that in the above optimization problem, we use aggregator i’s cost Ci instead

of its total cost C̄i, because its payment is transferred to the ISO and is thus

canceled in the total cost. Note also that we sum up the social welfare under

all the initial states. This can be considered as the expected social welfare when

the initial state is uniformly distributed. The optimal stationary strategy profile

that maximizes this expected social welfare will also maximize the social welfare

given any initial state. We write the solution to the design problem as π? and the

optimal value of the design problem as C?.

3.5 Optimal Foresighted Demand Side Management

In this section, we derive the optimal foresighted DSM strategy assuming that

each entity knows its own state transition probabilities.

3.5.1 The aggregator’s Decision Problem and Its Conjectured Price

Contrary to the designer, each aggregator aims to minimize its own long-term total

cost C̄i(π|(s0
0, s

0
1, . . . , s

0
N)). In other words, each aggregator i solves the following

problem:

πi = arg max
π′i

C̄i(π
′
i,π−i|(s0

0, s
0
1, . . . , s

0
N)).
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Assuming that the aggregator knows all the information, the optimal solution to

the above problem should satisfy the following:

V (s0, si, s−i) =

max
ai∈Ai

(1− δ)c̄i(s0, si, ai,a−i) + δ ·
∑

s′0,s
′
i,s
′
−i

{
ρ0(s′0|s0)

∏
j∈N

ρj(s
′
j|sj, aj)V (s′0, s

′
i, s
′
−i)

}
.

Note that the above equations would be the Bellman equations, if the aggregator

knew all the information such as the other aggregators’ strategies π−i and states

s−i, and the ISO’s state s0. However, such information is never known to the

aggregator. Hence, we need to separate the influence of the other entities from

each aggregator’s decision problem.

One way to decouple the interaction among the aggregators is to endow each

aggregator with a conjectured price. In general, the conjecture informs the aggre-

gator of what price it should anticipate given its state and its action. However, in

the presence of decentralized information, such a complicated conjecture is hard,

if not impossible, to form. Specifically, aggregator i’s conjectured price should

depend not only on aggregator i’s action and state, but also on the ISO’s state.

Hence, no entity possess all the necessary information to form the conjecture. For

this reason, in this work, we adopt a simple conjecture, namely the price does not

depend on the aggregator’s state and action8. In this case, the conjectures can

be formed by the ISO based on its local information and then communicated to

the aggregators. Denote the conjectured price as ỹi, we can rewrite aggregator i’s

decision problem as

Ṽ ỹi(si) = max
ai∈Ai

(1− δ) [ci(si, ai) + ỹi · ai] + δ ·
∑
s′i

[
ρi(s

′
i|si, ai)Ṽ ỹi(s′i)

]
.

Clearly, we can see from the above equations that given the conjectured price ỹi,

each aggregator can make decisions based only on its local information.

8We could propose more complicated conjectures which may depend on the aggregators’
states and actions. However, as we will prove later, this simple conjecture is sufficient to achieve
the social optimum.
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Figure 3.3: Illustration of the entities’ decision making and information exchange

in the design framework based on conjectured prices.

In Fig. 3.3, we illustrate the entities’ decision making and information exchange

in the design framework based on conjectured prices. Comparing Fig. 3.3 with

Fig. 3.2 of the system without conjectured prices, we can see that in the proposed

design framework, the ISO sends the conjectured prices to the aggregators before

the aggregators make decisions. This additional procedure of exchanging conjec-

tured prices allows the ISO to lead the aggregators to the optimal DSM strategies.

Note that the conjectured price is generally not equal to the real price charged at

the end of the period, and is not equal to the expectation of the real price in the

future. In this sense, the conjectured prices can be considered as control signals

sent from the ISO to the aggregators, which can help the aggregators to compute

the optimal strategies. In Section 4.6, we will compare the conjectured price with

the expected real price by simulation.

The remaining question is how to determine the optimal conjectured prices,

such that when each aggregator reacts based on its conjectured price, the resulting

strategy profile maximizes the social welfare.
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3.5.2 The Optimal Decentralized DSM Strategy

The optimal conjectured prices depend on the ISO’s state, which is known to

the ISO only. Hence, we propose a distributed algorithm used by the ISO to

iteratively update the conjectured prices and by the aggregators to update their

optimal strategies. The algorithm will converge to the optimal conjectured prices

and the optimal strategy profile that achieves the minimum total system cost C?.

At each iteration k, given the conjectured price ỹ
(k)
i , each aggregator i solves

Ṽ
ỹ

(k)
i

i (si) = max
ai∈Ai

(1− δ)
[
ci(si, ai) + ỹ

(k)
i · ai

]
+ δ ·

∑
s′i

[
ρi(s

′
i|si, ai)Ṽ

ỹ
(k)
i

i (s′i)

]
,

and obtains the optimal value function Ṽ
ỹ

(k)
i

i as well as the corresponding optimal

strategy π
ỹ

(k)
i
i under the current conjectured price ỹ

(k)
i .

Similarly, given the conjectured prices ỹ
(k)
0 ∈ RG, the ISO solves

Ṽ
ỹ

(k)
0

0 (s0) = min
ai∈Ai

(1−δ)

[∑
g

cg(s0, a0) + ỹ
(k)T
0 · a0

]
+δ·
∑
s′0

[
ρ0(s′0|s0, a0)Ṽ

ỹ
(k)
0

0 (s′0)

]
,

and obtains the optimal value function Ṽ
ỹ

(k)
i

0 as well as the corresponding optimal

strategy π
ỹ

(k)
i

0 under the current conjectured price ỹ
(k)
i .

Then the ISO updates the conjectured prices as follows:

ỹ
(k+1)
i =

(
λ(k+1)(s0)

)T · ∂f(s0,a)

∂ai
,

where λ(k+1)(s0) ∈ RN is calculated as

λ(k+1)(s0) =

{
λ(k)(s0) + ∆(k) · f

(
s0, π

ỹ0(k)
0 (s0),

∑
s1
π
ỹ1(k)
1 (s1)

|S1|
, . . . ,

∑
sI
π
ỹI(k)
I (sI)

|SI |

)}+

,

where ∆(k) ∈ R++ is the step size, and {x}+ = max{x, 0}.

Note that in the above update of conjectures, to calculate (the subgradient)

λ(k), the ISO needs to know the average amount of purchase
∑
si
π
ỹ1(k)
i (si)

|Si| from
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Table 3.4: Distributed algorithm to compute the optimal decentralized DSM strat-

egy.

Input: Each entity’s performance loss tolerance εi

Initialization: Set k = 0, āi(0) = 0,∀i ∈ I, ỹi(0) = 0, ∀i ∈ I ∪ {0}.

repeat

Each aggregator i solves

Ṽ
ỹ
(k)
i (s0)

i (si) = maxai∈Ai
(1− δ)

[
ci(si, ai) + ỹ

(k)
i (s0) · ai

]
+ δ ·

∑
s′i

[
ρi(s

′
i|si, ai)Ṽ

ỹ
(k)
i (s0)

i (s′i)

]
The ISO solves

Ṽ
ỹ0(k)
0 (s0) = minai∈Ai

(1− δ)
[∑

g cg(s0, a0) + ỹ0(k)T · a0

]
+ δ ·

∑
s′0

[
ρ0(s′0|s0, a0)Ṽ

ỹ0(k)
0 (s′0)

]
Each aggregator i reports its purchase request π

ỹ
(k)
i (s0)

i (si)

The ISO updates āi(k + 1) = āi(k) + π
ỹ
(k)
i (s0)

i (si) for all i ∈ I

The ISO updates the conjectured prices:

ỹ
(k+1)
i (s0) =

(
λ(k + 1)T · ∂f(s0,a)

∂ai

)T
, where ∆(k) = 1

k+1
and

λ(k + 1) =
{
λ(k) + ∆(k) · f

(
s0, π

ỹ0(k)
0 (s0),

ā1(k+1)
k+1

, . . . ,
āI (k+1)
k+1

)}+

until ‖Ṽ ỹ
(k+1)
i (s0)

i − Ṽ ỹ
(k)
i (s0)

i ‖ ≤ εi

each aggregator i. This requires additional information exchange from the ag-

gregator to the ISO. Moreover, the aggregator may not be willing to report such

information to the ISO. To reduce the amount of information exchange and pre-

serve privacy, we propose that the ISO calculates the empirical mean values of

the aggregators’ purchases in the run-time (which results in stochastic subgradi-

ents). We summarize the algorithm in Table 3.4, and prove that the algorithm

can achieve the optimal social welfare in the following theorem.

Theorem 5 The algorithm in Table 3.4 converges to the optimal strategy profile,

namely

lim
k→∞

∣∣∣∣∣∣
∑

s00,s
0
1,...,s

0
I

{
C0(πỹ

(k) |(s0
0, s

0
1, . . . , s

0
I)) +

∑
i∈I

Ci(π
ỹ(k) |(s0

0, s
0
1, . . . , s

0
I))

}
− C?

∣∣∣∣∣∣ = 0.

Proof 2 See the appendix.

We summarize the information needed by each entity in Table 3.5. We can see
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Table 3.5: Information needed by each entity to implement the algorithm.

Entity Information at each step k

The ISO The purchase request π
ỹ
(k)
i (s0)

i (si) of each aggregator

Each aggregator i Conjecture on its price ỹ
(k)
i (s0)

that the amount of information exchange at each iteration is small (O(I)), com-

pared to the amount of information unavailable to each entity (
∏

j 6=i |Si| states

plus the strategies π−i). In other words, the algorithm enables the entities to ex-

change a small amount (O(I)) of information and reach the optimal DSM strategy

that achieves the same performance as when each entity knows the complete in-

formation about the system.

We briefly discuss the complexity of implementing the algorithm in terms

of the dimensionality of the Bellman equations solved by each entity. For each

aggregator, it solves the Bellman equation that has the the same dimensionality

as the cardinality of its state space, namely |Si|. For each ISO, the dimensionality

of its state space is large, because the generation cost functions ε are a vector of

length G and the status of the transmission lines is a vector of length L. However,

the ISO’s decision problem can be decomposed due to the following observation.

Note that the generators’ energy generation cost functions are independent of each

other. Then we have the following theorem.

Theorem 6 Given the conjectured price ỹ0(k), the ISO’s value function Ṽ
ỹ0(k)

0

can be calculated by Ṽ
ỹ0(k)

0 (s0) =
∑G

g=1 Ṽ
ỹ0,g(k)

0,g (εg), where Ṽ
ỹ0,g(k)

0,g solves

Ṽ
ỹ0,g(k)

0,g (εg) =

min
a0,g

(1− δ)
[
cg(εg, a0,g) + ỹ0,g(k)T · a0,g

]
+ δ ·

∑
ε′g

[
ρ0(ε′g|εg, a0,g)Ṽ

ỹ0,g(k)
0,g (ε′g)

]
.

Proof 3 The proof follows directly from Lemma 2 in the appendix.

From the above proposition, we know that the dimensionality of the ISO’s

decision problem is
∑G

g=1 |Eg|, where |Eg| is the cardinality of the set of genera-
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tor g’s generation cost functions. The dimensionality increases linearly with the

number of generators, instead of exponentially with the number of generators and

transmission lines without decomposition.

3.5.3 Learning Unknown Dynamics

In practice, each entity may not know the dynamics of its own states (i.e., its

own state transition probabilities) or even the set of its own states. When the

state dynamics are not known a priori, each entity cannot solve their decision

problems using the distributed algorithm in Table 3.4. In this case, we can adapt

the online learning algorithm based on post-decision state (PDS) in [84], which

was originally proposed for wireless video transmissions, to our case.

The main idea of the PDS-based online learning is to learn the post-decision

value function, instead of the normal value function. Each aggregator i’s post-

decision value function is defined as Ui(d̃i, ẽi), where (d̃i, ẽi) is the post-decision

state. The difference from the normal state is that the PDS (d̃i, ẽi) describes the

status of the system after the purchase action is made but before the demand in

the next period arrives. Hence, the relationship between the PDS and the normal

state is

d̃i = di, ẽi = ei + (ai − di).

Then the post-decision value function can be expressed in terms of the normal

value function as follows:

Ui(d̃i, ẽi) =
∑
d′i

ρi(d
′
i, ẽi − (ai − d̃i)|d̃i, ẽi) · Vi(d′i, ẽi − (ai − d̃i)).

In PDS-based online learning, the normal value function and the post-decision

value function are updated in the following way:

V
(k+1)
i (d

(k)
i , e

(k)
i ) = max

ai
(1− δ) · ci(d(k)

i , e
(k)
i , ai) + δ · U (k)

i (d
(k)
i , e

(k)
i + (ai − d(k)

i )),

U
(k+1)
i (d

(k)
i , e

(k)
i ) = (1− α(k))U

(k)
i (d

(k)
i , e

(k)
i ) + α(k) · V (k)

i (d
(k)
i , e

(k)
i − (ai − d(k)

i )).
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We can see that the above updates do not require any knowledge about the state

dynamics. It is proved in [84] that the PDS-based online learning will converge

to the optimal value function.

3.5.4 Detailed Comparisons with Existing Frameworks

Since we have introduced our proposed framework, we can provide a detailed com-

parison with the existing theoretical framework. The comparison is summarized

in Table 3.6.

First, the proposed framework reduces to the myopic optimization framework

when we set the discount factor δ = 0. In this case, the problem reduces to the

classic economic dispatch problem.

Second, the Lyapunov optimization framework is closely related to the PDS-

based online learning. In fact, it could be considered as a special case of the PDS-

based online learning when we set the post-decision value function as Ui(si) =

ci(si, ai) + (ei + ai)
2 − e2

i , and choose the action that minimizes the post-decision

value function in the run-time. However, the Lyapunov drift in the above post-

decision value function depends only on the status of the energy storage, but

not on the demand. In contrast, in our PDS-based online learning, we explicitly

considers the impact of the demand when updating the normal and post-decision

value functions.

Finally, the key difference between our proposed framework and the framework

for MU-MDP [78][79] is how we penalize the constraints f(s0, a0,a). In particular,

the framework in [78][79], if directly applied in our model, would define only one

Lagrangian multiplier for all the constraints under different states s0. This leads

to performance loss in general [79]. In contrast, we define different Lagrangian

multipliers to penalize the constraints under different states s0, and potentially

enable the proposed framework to achieve the optimality (which is indeed the case
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Table 3.6: Relationship between the proposed and existing theoretical frameworks.

Framework Relationship Representative works

Myopic δ = 0 [67]

Lyapunov optimization PDS value function Ui(si) = ci(si, ai) + (ei + ai − di)2 − e2i [75][76]

MU-MDP Lagrangian multiplier λ(s0) = λ for all s0 [78][79]

as have been proved in Theorem 5).

3.6 Simulation Results

In this section, we validate our theoretical results and compare against existing

DSM strategies through extensive simulations. We use the widely-used IEEE test

power systems with the data (e.g. the topology, the admittances and capacity

limits of transmission lines) provided by University of Washington Power System

Test Case Archive [87]. We describe the other system parameters as follows (these

system parameters are used by default; any changes in certain scenarios will be

specified):

• One period is one hour. The discount factor is δ = 0.99.

• The demand of aggregator i at period t is uniformly distributed among the

interval [di(t mod 24) − ∆di(t mod 24), di(t mod 24) + ∆di(t mod 24)].

In other words, the distribution of demand is time-varying across a day. We

let the peak hours for all the aggregators to be from 17:00 to 22:00. The

mean value di(t mod 24) and the range ∆di(t mod 24) of aggregator i’s

demand are described as follows (values are adapted from [88]):

di(t mod 24) =

 50 + (i− 1) · 0.5 MW if t mod 24 ∈ [17, 22]

25 + (i− 1) · 0.5 MW otherwise
(3.3)
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and

∆di(t mod 24) =

 5 MW if t mod 24 ∈ [17, 22]

2 MW otherwise
(3.4)

• All the aggregators have energy storage of the same capacity 25 MW.

• All the aggregators have the same linear energy storage cost function [70]:

ci(si, ai) = 2 · (ai − di)+,

namely the maintenance cost grows linearly with the charging/discharging

rates.

• We index the energy generators starting from the renewable energy genera-

tors. All the renewable energy generators have linear energy generation cost

functions: [88]

cg(a0,g) = g · a0,g,

where the unit energy generation cost has the same value as the index of the

generator (these values are adapted from [88], which cited that the unit en-

ergy generation cost ranges from $0.19/MWh to $10/MWh). Although the

energy generation cost function is deterministic, the maximum amount of

energy production is stochastic (due to wind speed, the amount of sunshine,

and so on). The maximum amounts of energy production of all the renew-

able energy generators follow the same uniform distribution in the range of

[90, 110] MW.

• The rest of energy generators are conventional energy generators that use

coal, all of which have the same energy generation cost function: [70]

cg(a0,g) =
1

2
(a0,g)

2︸ ︷︷ ︸
generation cost

+
1

10
(a0,g − a−0,g)2︸ ︷︷ ︸
ramping cost

.

In other words, the conventional energy generators have fixed (i.e. not

stochastic) generation cost functions.
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• The status of the transmission lines is their capacity limits. The nominal

values of the capacity limits are the same as specified in the data provided

by [87]. In each period, we randomly select a line with equal probability,

and decrease its capacity limit by 10%.

We compare the proposed DSM strategies with the following schemes.

• Centralized optimal strategies (“Centralized”): We assume that there is a

central controller who knows everything about the system and solves the

long-term cost minimization problem as a single-user MDP. This scheme

serves as the benchmark optimum.

• Myopic strategies (“Myopic”) [65]–[72]: In each period t, the aggregators

myopically minimizes their current costs, and based on their actions, the

ISO minimizes the current total generation cost.

• Single-user Lyapunov optimization (“Lyapunov”) [73]–[76]: We let each ag-

gregator adopt the stochastic optimization technique proposed in [73]–[76].

Based on the aggregators’ purchases, the ISO minimizes the current total

generation cost.

3.6.1 Learning and Tracking The Optimal Policies Without Knowl-

edge of State Transition Probabilities

Before comparing against the other solutions, we show that the proposed PDS-

based learning algorithm converges to the optimal solution (namely the optimal

value function is learned). The optimal solution is obtained by the proposed al-

gorithm in Table 3.4 assuming the statistical knowledge of the system dynamics.

We consider the IEEE 14-bus system, in which each aggregator has a energy stor-

age of 45 MW. For illustrative purpose, we show the convergence of the learning

algorithm in terms of the average long-term costs only for two aggregators in
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Figure 3.4: Convergence of the PDS-based learning algorithm. The two aggrega-

tors’ average long-term costs converge to the optimal one under the PDS-based

learning algorithm.
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Figure 3.5: The PDS-based learning algorithm tracks the optimal solution when

the underlying distribution of the energy generation is time-varying.

Fig. 3.4.

We also demonstrate that the proposed PDS-based learning lagorithm can

track the optimal solution when the state transition probabilities are time-varying.

Note that we assume that the maximum amounts of energy production by the

renewable energy generators are uniformly distributed in the range of [90, 110]

mW. In Fig. 3.5, we change the range of the uniform distribution to 20 mW and

30 mW (i.e. increase the uncertainty of renewable energy) every 5000 time slots.

We can see that the learning algorithm can track the optimal solution even when

the underlying distribution of the energy generation is time-varying.
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3.6.2 Performance Evaluation

Now we evaluate the performance of the proposed DSM strategy in various sce-

narios.

3.6.2.1 Impact of the energy storage

First, we study the impact of the energy storage on the performance of different

schemes. We assume that all the generators are conventional energy generators

using fossil fuel, in order to rule out the impact of the uncertainty in renewable

energy generation (which will be examined next). The performance criterion is the

total cost per hour normalized by the number of buses in the system. We compare

the normalized total cost achieved by different schemes when the capacity of the

energy storage increases from 5 MW to 45 MW.

Fig. 3.6–3.8 show the normalized total cost achieved by different schemes under

IEEE 14-bus system, IEEE 30-bus system, and IEEE 118-bus system, respectively.

Note that we do not show the performance of the centralized optimal strategy un-

der IEEE 118-bus system, because the number of states in the centralized MDP

is so large that it is intractable to compute the optimal solution. This also shows

the computational tractability and the scalability of the proposed distributed al-

gorithm. Under IEEE 14-bus and 30-bus systems, we can see that the proposed

DSM strategy achieves almost the same performance as the centralized optimal

strategy. The slight optimality gap comes from the performance loss experienced

during the convergence process of the conjectured prices. Compared to the DSM

strategy based on single-user Lyapunov optimization, our proposed strategy can

reduce the total cost by around 30% in most cases. Compared to the myopic

DSM strategy, our reduction in the total cost is even larger and increases with

the capacity of the energy storage (up to 60%).
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Figure 3.6: The normalized total cost per hour versus the capacity of the energy

storage in the IEEE 14-bus system.
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Figure 3.7: The normalized total cost per hour versus the capacity of the energy

storage in the IEEE 30-bus system.
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Figure 3.8: The normalized total cost per hour versus the capacity of the energy

storage in the IEEE 118-bus system.
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3.6.2.2 Impact of the uncertainty in renewable energy generation

Now we examine the impact of the uncertainty in renewable energy generation. For

a given test system, we let half of the generators to be renewable energy generators.

Recall that the maximum amounts of energy production of the renewable energy

generators are stochastic and follow the same uniform distribution. We set the

mean value of the maximum amount of energy production to be 100 MW, and

vary the range of the uniform distribution. A wider range indicates a higher

uncertainty in renewable energy production. Hence, we define the uncertainty in

renewable energy generation as the maximum deviation from the mean value in

the uniform distribution.

Fig. 3.9 shows the normalized total cost under different degrees of uncertainty

in renewable energy generation. Again, the proposed strategy achieves the per-

formance of the centralized optimal strategy in the IEEE 14-bus system. We can

see that the costs achieved by all the schemes increase with the uncertainty in

renewable energy generation. This happens for the following reasons. Since the

renewable energy is cheaper, the ISO will dispatch renewable energy whenever

possible, and dispatch conventional energy for the residual demand. However,

when the renewable energy generation has larger uncertainty, the variation in the

residual demand is higher, which results in a higher variation in the conventional

energy dispatched and thus a larger ramping cost. To reduce the ramping cost,

the ISO needs to be more conservative in dispatching the renewable energy, which

results in a higher total cost. However, we can also see from the simulation that

when the aggregators have larger capacity to store energy, the increase of the

total cost with the uncertainty is smaller. This is because the energy storage

can smooth the demand, in order to mitigate the impact of uncertainty in the

renewable energy generation. This shows the value of energy storage to reduce

the cost.
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Figure 3.9: The normalized total cost per hour versus the uncertainty in renew-

able energy generation in the IEEE 14-bus system. The aggregators have energy

storage of capacity 25 MW and 50 MW, respectively.

3.6.2.3 Fairness

Now we investigate how the individual costs of the aggregators are influenced by

the capacity of their energy storage. In particular, we are interested in whether

some aggregators are affected by having smaller energy storage. We assume that

half of the aggregators have energy storage of capacity 50 MW, while the other half

have energy storage of much smaller capacity 10 MW. In Fig. 3.10, we compare

the average individual cost of the aggregators with smaller energy storage and that

of the aggregators with larger energy storage. We can see that the average cost of

the aggregators with smaller energy storage does increase with the uncertainty in

renewable energy generation. Hence, the aggregators with higher energy storage

have an advantage over those with smaller energy storage, because they have high

flexibility in coping with the price fluctuation.
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Figure 3.10: The average individual costs of the aggregators with different energy

storage in the IEEE 118-bus system.

3.6.3 The Conjectured Prices

We compare the conjectured prices with the expected real prices. In our sim-

ulation, each aggregator i’s conjectured price is the conjectured price that the

proposed algorithm in Table 3.4 converges to, namely limk→∞ ỹ
(k)
i . We can also

calculate the expected real price as follows. The optimal DSM strategy that the

algorithm in Table 3.4 converges to will induce a probability distribution over the

states. In each state, we calculate the locational marginal price for each aggrega-

tor based on the actions taken at this state. Then we calculate the expected LMP

of each aggregator, which is the expected real price at which each aggregator pays

for the energy.

In Fig. 3.11, we show the highest conjectured price among all the aggregators

and the lowest expected real price among all the aggregators, because it is infea-

sible to plot the prices for all the aggregators in the figure. Hence, the difference

of the conjectured price and the real expected price for each individual aggregator

is no larger than the difference shown in the figure. First, as we can see from

the figure, the prices go down when the capacity of the energy storage increases.

This is because with energy storage, the congestion due to high energy purchase

demand decreases, which in turn decreases the congestion cost (technically, the
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Figure 3.11: The conjectured prices and the real expected locational marginal

prices (LMPs) in IEEE 14-bus and 118-bus systems.

Lagrangian multiplier associated with the capacity constraint is smaller). Second,

in our simulations (not shown in the figure), we observe that the conjectured prices

are always higher than the expected real prices. Hence, the conjectured price gives

each aggregator an overestimate of the real expected price. An overestimate is

better than an underestimate, in the sense that each aggregator has a guarantee

of how much it will pay in the worst case. Finally, we can see from the figure that

the conjectured price is close to the real expected price. The maximum difference

between these two prices is less than 20% in all the considered scenarios.

3.6.4 Comparisons of the DSM strategies

In this section, to better understand why the proposed DSM strategies outperform

the other strategies, we present a simple example and illustrate why the proposed

strategy achieves a lower cost. To keep the illustration simple, we reduce the num-

ber of states. Specifically, we assume that the demand has three states: “high”,

“medium”, “low”, which corresponds to the highest, medium, and lowest values

of the uniform distribution described in (3.3)(3.4). Similarly, the energy storage

has three states: “empty”, “half”, and “full”. The maximum capacity of the re-

newable energy generator has two values, corresponding to the highest and lowest

values in the uniform distribution described in the basic simulation setup at the
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beginning of Section 4.6. To distinguish the description of the demand state, we

suppose that the renewable energy generator harnesses solar energy, and refer to

its states as “sunny” and “cloudy” instead of “high” and “low”. We do not assume

any randomness in the transmission lines. The purchase from each aggregator is

also quantized into three levels: large, moderate, and small.

In Table 3.7, we compare the actions chosen by different strategies under dif-

ferent states in an IEEE 14-bus system. Due to space limitation, we cannot show

the strategies of all the aggregators, but only one of them. The state is a three

tuple that consists of the demand, the energy storage, and the renewable energy

generation capacity. Although we have reduced the number of states, there are

still 3 × 3 × 2 = 18 states, which is hard to show in one table. Instead, we only

show the actions in some representative states, in which different strategies take

very different actions.

First, we can observe that the myopic strategy takes actions based on the

demand and the energy storage exclusively. The myopic strategy aims to minimize

the current operational cost of the energy storage as long as the demand can be

satisfied. Hence, it chooses to purchase small amount of energy as long as the

demand can be fulfilled by the energy left in the storage. Second, as we discussed

at the end of Section 3.5, the strategy based on Lyapunov optimization does not

take into account the demand dynamics. As we can see from the table, the strategy

based on Lyapunov optimization takes actions based on the energy storage and the

renewable energy generation capacity exclusively. It will purchase large amount

of energy as long as it is sunny (which means that the capacity of the renewable

energy generator is high and hence the price is low). In contrast, the proposed

strategy considers all the three states when making decisions. For example, when

the states are (low,empty,sunny) and (high,empty,sunny), the strategy based on

Lyapunov optimization always chooses to purchase large amount of energy, while

the proposed strategy will purchase moderate amount of energy when the demand
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Table 3.7: Comparisons of different strategies.

State

high, high, low, low, high, high,

full, full, full, empty, empty, empty,

sunny cloudy sunny sunny cloudy sunny

Myopic small small small small large large

Lyapunov large small large large small large

MU-MDP large small small small small large

Proposed large low moderate moderate low large

is low. Finally, the strategy based on MU-MDP also considers all the three states,

and takes similar actions as the proposed strategy. However, the strategy based

on MU-MDP takes more conservative actions (e.g. purchases small amount of

energy when the proposed strategy purchases moderate amount of energy). This

is because there is only one Lagrangian multiplier under all the states, and to

ensure the feasibility of the constraints, the Lagrangian multiplier has to be set

larger. This results in a harsher penalty in the objective function. Hence, the

actions taken are more conservative to ensure that the line capacity constraints

are satisfied.

3.7 Conclusion

In this chapter, we proposed a methodology for performing optimal foresighted

DSM strategies that minimize the long-term total cost of the power system. We

overcame the hurdles of information decentralization and complicated coupling

among the various entities present in the system, by decoupling their decision

problems using conjectured prices. We proposed an online algorithm for the ISO

to update the conjectured prices, such that the conjectured prices can converge to

the optimal ones, based on which the entities make optimal decisions that mini-
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mize the long-term total cost. We prove that the proposed method can achieve

the social optimum, and demonstrate through simulations that the proposed fore-

sighted DSM significantly reduces the total cost compared to the optimal myopic

DSM (up to 60% reduction), and the foresighted DSM based on the Lyapunov

optimization framework (up to 30% reduction).

3.8 Appendix

Due to limited space, we only give a detailed proof sketch. The proof consists

of three key steps. First, we prove that by penalizing the constraints f(s0, a0,a)

into the objective function, the decision problems of different entities can be de-

centralized. Hence, we can derive optimal decentralized strategies for different

entities under given Lagrangian multipliers. Then we prove that the update of

Lagrangian multipliers converges to the optimal ones under which there is no du-

ality gap between the primal problem and the dual problem, due to the convexity

assumptions made on the cost functions. Finally, we validate the calculation of

the conjectured prices.

First, suppose that there is a central controller that knows everything about

the system. Then the optimal strategy to the design problem (4.6) should re-

sult in a value function V ∗ that satisfies the following Bellman equation: for all

s0, s1, . . . , sI , we have

V ∗(s0, s) = maxa0,a

(1− δ) ·
I∑
i=0

ci(si, ai) + δ ·
∑
s′0,s

′

ρ(s′0, s
′|s0, s, a0,a)V ∗(s′0, s

′)

(3.5)

s.t. f(s0, a0,a) ≤ 0.

Defining a Lagrangian multiplier λ(s0) ∈ RN
+ associated with the constraints

f(s0, a0,a) ≤ 0, and penalizing the constraints on the objective function, we get
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the following Bellman equation:

V λ(s0, s) = maxa0,a

{
(1− δ) ·

[
I∑
i=0

ci(si, ai) + λT (s0) · f(s0, a0,a)

]
(3.6)

+δ ·
∑
s′0,s

′

ρ(s′0, s
′|s0, s, a0,a)V λ(s′0, s

′)

 .

In the following lemma, we can prove that (3.6) can be decomposed.

Lemma 2 The optimal value function V λ that solves (3.6) can be decomposed

as V λ(s0, s) =
∑I

i=0 V
λ
i (si) for all (s0, s), where V λi can be computed by entity i

locally by solving

V
λ(s0)
i (si) = maxai

{
(1− δ) ·

[
ci(si, ai) + λT (s0) · fi(s0, ai)

]
+ δ ·

∑
s′i
ρi(s

′
i|si, ai)V λi (s′i)

}
.(3.7)

Proof 4 This can be proved by the independence of different entities’ states and by

the decomposition of the constraints f(s0, a0,a). Specifically, in a DC power flow

model, the constraints f(s0, a0,a) are linear with respect to the actions a0, a1, . . . , aI .

As a result, we can decompose the constraints as f(s0, a0,a) =
∑I

i=0 fi(s0, ai).

We have proved that by penalizing the constraints f(s0, a0,a) using Lagrangian

multiplier λ(s0), different entities can compute the optimal value function V
λ(s0)
i

distributively. Due to the convexity assumptions on the cost functions, we can

show that the primal problem (4.6) is convex. In addition, there always ex-

ists a strictly feasible solution. Hence, there is no duality gap. In other words,

at the optimal Lagrangian multipliers λ∗(s0), the corresponding value function

V λ
∗(s0)(s0, s) =

∑I
i=0 V

λ∗(s0)
i (si) is equal to the optimal value function V ∗(s0, s)

of the primal problem (3.5). It is left to show that the update of Lagrangian

multipliers converge to the optimal ones. It is a well-known result in dynamic

programming that V λ(s0) is convex and piecewise linear in λ(s0), and that the

subgradient of V λ(s0) with respect to λ(s0) is f(s0, a0,a) (it is a subgradient since
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the function V λ(s0) may not be differentiable with respect to λ(s0)) [79]. Note

that we use the sample mean of a0 and a, whose expectation is the true mean value

of a0 and a. Since f(s0, a0,a) is linear in a0 and a, the subgradient calculated

based on the sample mean has the same mean value as the subgradient calculated

based on the true mean values. In other words, the update is a stochastic subgra-

dient descent method. It is well-known that when the stepsize ∆(k) = 1
k+1

, the

stochastic subgradient descent on the dual variable (i.e. the conjectured prices)

λ will converge to the optimal λ∗ [91].

Finally, we can write the conjectured prices by taking the derivatives of the

penalty terms. For aggregator i, its penalty is λT (s0) · fi(s0, ai). Hence, its

conjectured price is

∂λT (s0)·fi(s0,ai)
∂ai

= λT (s0) · ∂fi(s0,ai)
∂ai

. (3.8)
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CHAPTER 4

Resource Exchange With Imperfect Monitoring

4.1 Introduction

Service exchange platforms have proliferated as the medium that allows the users

to exchange services valuable to each other. For instance, emerging new service

exchange platforms include crowdsourcing systems (e.g. in Amazon Mechani-

cal Turk and CrowdSource) in which the users exchange labor [92][93], online

question-and-answer websites (e.g. in Yahoo! Answers and Quora) in which the

users exchange knowledge [93], peer-to-peer (P2P) networks in which the users ex-

change files/packets [94][95][96], and online trading platforms (e.g. eBay) where

the users exchange goods [97]. In a typical service exchange platform, a user plays

a dual role: as a client, who requests services, and as a server, who chooses to

provide high-quality or low-quality services. Common features of many service

exchange platforms are: the user population is large and users are anonymous.

In other words, each user interacts with a randomly-matched partner without

knowing its partner’s identity (However, the platform does know the identify of

the interacting users.). The absence of a fixed partner and the anonymity of the

users create incentive problems – namely the users tend to “free-ride” (i.e., receive

high-quality services from others as a client, while providing low-quality services

as a server). In addition, a user generally may not be able to perfectly monitor1

its partner’s action, which makes it even harder to incentivize the users to provide

1The monitoring discussed throughout this paper is a user’s observation on its current part-
ner’s actions. Each user knows nothing about the ongoing interactions among the other pairs
of users.
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high-quality services.

An important class of incentive mechanisms for service exchange platforms

are the rating mechanisms2 [93]–[104], in which each user is labeled with a rat-

ing based on its past behaviors in the system. A rating mechanism consists of

a rating update rule and a recommended strategy3. The recommended strategy

specifies what is the desirable behavior under the current system state (e.g. the

current rating profile of the users or the current rating distribution). For exam-

ple, the rating mechanism may recommend providing high-quality services for all

the users when the majority of users have high ratings, while recommending to

provide high-quality services only to high-rating users when the majority have

low ratings. Then, based on each client’s report on the quality of service, the

rating mechanism revises each server’s rating according to the rating update rule.

Generally speaking, the ratings of the users who comply with (resp. deviate from)

the recommended behaviors go up (resp. down). Hence, each user’s rating sum-

marizes its past behavior in the system. By keeping track of all the users’ ratings

and recommending them to reward (resp. punish) the users with high (resp. low)

ratings, the rating mechanism gives incentives to the users to obtain high ratings

by rewarding them indirectly, through recommending other users to provide them

with high-quality services.

Existing rating mechanisms have been shown to work well when monitoring

and reporting are perfect. However, when monitoring and reporting are subject to

errors, existing rating mechanisms cannot achieve the social optimum [93]–[104].

The errors, which are often encountered in practice, may arise either from the

client’s own incapability of accurate assessment (for instance, the client, who wants

2Note that the rating mechanisms studied in this paper focus on dealing with moral hazard
problems, namely the server’s quality of service is not perfectly observable. They are different
from the rating mechanisms dealing with adverse selection problems, namely the problems of
identifying the users’ types. See [97, Sec. I] for detailed discussions on the above two classes of
rating mechanisms.

3Different terminologies have been used in the existing literature. For example, [97][98] used
“reputation” for “rating”, and [98] used “social norm” for “recommended strategy”.
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to translate some sentences into a foreign language, cannot accurately evaluate

the server’s translation), or from some system errors (for example, the client’s

report on the server’s service quality is missing due to network errors)4. In the

presence of errors, the server’s rating may be wrongly updated. Hence, even if

the users follow the recommended desirable behavior, the platform may still fall

into some “bad” states in which many users have low ratings due to erroneous

rating updates. In these bad states, the users with low ratings receive low-quality

services, resulting in large performance loss compared to the social optimum. This

performance loss in the bad states is the major reason for the inefficiency of the

existing rating mechanisms.

In this paper, we propose the first rating mechanisms that can achieve the

social optimum even under imperfect monitoring. A key feature of the proposed

rating mechanism is the nonstationary recommended strategy, which recommends

different behaviors under the same system state, depending on when this state oc-

curs (for example, the rating mechanism may not always recommend punishing

users with low ratings in the bad states). Note, importantly, that the rating

mechanism does not just randomize over different behaviors with a fixed proba-

bility in a state. Instead, it recommends different behaviors in the current state

based on the history of past states. We design the recommended strategy care-

fully, such that the punishments happen frequently enough to provide sufficient

incentives for the users, but not too frequently to reduce the performance loss

incurred in the bad states. The more patient the users are (i.e. the larger dis-

count factor they have), the less frequent are the punishments. As a result, the

designed rating mechanism can asymptotically achieve the social optimum as the

users become increasingly patient (i.e. as the discount factor approaches 1). This

4Note that the errors in this paper are not caused by the strategic behaviors of the users. In
other words, the clients report the service quality truthfully, and do not misreport intentionally to
manipulate the rating mechanism for their own interests. If the clients may report strategically,
the mechanism can let the platform to assess the service quality (still, with errors) to avoid
strategic reporting.
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is in contrast with the existing rating mechanisms with stationary recommended

strategies, whose performance loss does not vanish even as the users’ patience

increases. Another key feature of the proposed rating mechanism is the use of

differential punishments that punish users with different ratings differently. In

Section 4.4, we show that the absence of any one of these two features in our

mechanism will result in performance loss that does not vanish even when the

users are arbitrarily patient.

We prove that the social optimum can be achieved by simple rating mecha-

nisms, which assign binary ratings to the users and recommend a small set of three

recommended behaviors. We provide design guidelines of the rating update rules

in socially-optimal rating mechanisms, and a low-complexity online algorithm to

construct the nonstationary recommended strategies. The algorithm essentially

solves a system of two linear equations with two variables in each period, and

can be implemented with a memory of a fixed size (although by the definition of

nonstationary strategies, it appears that we may need a memory growing with

time to store the history of past states), because we can appropriately summarize

the history of past states (by the solution to the above linear equations).

The rest of the paper is organized as follows. In Section 4.2, we discuss the dif-

ferences between our work and related works. In Section 4.3, we describe the model

of service exchange systems with rating mechanisms. Then we design the optimal

rating mechanisms in Section 4.5. Simulation results in Section 4.6 demonstrate

the performance improvement of the proposed rating mechanism. Finally, Sec-

tion 4.7 concludes the paper.
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Table 4.1: Related Works on Rating Protocols.
Rating update error Recommended strategy Discount factor Performance loss

[93][94] → 0 Stationary < 1 Yes

[95][96] > 0 Stationary < 1 Yes

[97] > 0 Stationary/Nonstationary < 1 Yes

[98]–[103] = 0 Stationary → 1 Yes

[104] → 0 Stationary → 1 Yes

This work > 0 Nonstationary < 1 No

4.2 Related Works

4.2.1 Related Works on Rating Protocols

Rating mechanisms were originally proposed by [98] for a large anonymous society,

in which users are repeatedly randomly matched to play the Prisoners’ dilemma

game. Assuming perfect monitoring, [98] proposed a simple rating mechanism that

can achieve the social optimum: any user who has defected will be assigned with

the lowest rating forever and will be punished by its future partners. Subsequent

research has been focusing on extending the results to more general games (see

[99][100][101][103]), or on discovering alternative mechanisms (for example, [102]

showed that cooperation can be sustained if each user can observe its partner’s past

actions). However, all these works assumed perfect monitoring and were aimed

at dealing with the incentive problems caused by the anonymity of users and the

lack of fixed partnership; they did not study the impact of imperfect monitoring.

Under imperfect observation/reporting, the system will collapse under their rating

mechanisms because all the users will eventually end up with having low ratings

forever due to errors.

Some works [93][94][104] assumed imperfect monitoring, but focused on the

limit case when the monitoring tends to be perfect. The conclusion of these works

is that the social optimum can be achieved in the limit case when the monitoring

becomes “almost perfect” (i.e., when the rating update error goes to zero).
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Only a few works [95]–[97] analyzed rating mechanisms under imperfect mon-

itoring with fixed nonzero monitoring errors. For a variety of rating mechanisms

studied in [95]–[97], the performance loss with respect to the social optimum is

quantified in terms of the rating update error. These results confirm that exist-

ing rating mechanisms suffer from (severe) performance loss under rating update

errors. Note that the model in [97] is fundamentally different than ours. In [97],

there is only a single long-lived seller (server), while all the buyers (clients) are

short-lived. Under this model, it is shown in [97] that the rating mechanism is

bounded away from social optimum even when nonstationary strategies are used.

In contrast, we show that under our model with long-lived servers and clients,

we can achieve the social optimum by nonstationary strategies with differential

punishments. In the following, we discuss the intuitions of how to achieve the

social optimum under our model.

There are two sources of inefficiency. One source of inefficiency comes from the

stationary recommended strategies, which recommends the same behavior under

the same state [93]–[96][98]–[104]. As we have discussed earlier, the inefficiency

of the existing rating mechanisms comes from the punishments triggered in the

“bad” states. Specifically, to give incentives for the users to provide high-quality

services, the rating mechanism must punish the low-rating users under certain

rating distributions (i.e. under certain “bad” states). When the users are punished

(i.e. they are provided with low-quality services), the average payoffs in these

states are far below the social optimum. In the presence of rating update errors,

the bad states happen with a probability bounded above zero (the lower bound

depends only on the rating update error). As a result, the low payoffs occur with a

frequency bounded above zero, which incurs an efficiency loss that cannot vanish

unless the rating update error goes to zero.

Another source of inefficiency is the lack of differential punishments. As will

be proved in Section 4.4, the rating mechanisms with no differential punishment
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have performance loss even when nonstationary recommended strategies are used.

This paper is the first to propose a class of rating mechanisms that achieve the

social optimum even when update errors do not tend to zero. Our mechanisms rely

on (explicitly-constructed) nonstationary strategies with differential punishments.

The key intuitions of why the proposed mechanism achieves social optimum are

as follows. First, nonstationary strategies punish the users in the bad states only

when necessary, depending on the history of past states. In this way, nonstationary

strategies can lower the frequency of punishment in the bad states to a level

just enough to provide sufficient incentives for the users to provide high-quality

services. In addition, differential punishment further reduces the loss in social

welfare by transferring payoffs from low-rating users to high-rating users, instead

of lowering everyone’s payoff with non-differential punishment.

In Table 4.1, we compare the proposed work with existing rating mechanisms.

4.2.2 Related Works in Game Theory Literature

Our results are related to folk theorem results for repeated games [9] and stochastic

games [81]. However, these existing folk theorem results [9][81] cannot be directly

applied to our model. First, the results in [9] are derived for repeated games, in

which every stage game is the same. Our system is modeled as a stochastic game,

in which the stage games may be different because of the rating distributions.

Second, there do exist folk theorems for stochastic games [81], but they also

do not apply to our model. The folk theorems [81] apply to standard stochastic

games, in which the state must satisfy the following properties: 1) the state,

together with the plan profile, uniquely determines the stage-game payoff, and 2)

the state is known to all the users. In our model, since each user’s stage game

payoff depends on its own rating, each user’s rating must be included in the state

and be known to all the users. In other words, if we model the system as a
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standard stochastic game in order to apply the folk theorems, we need to define

the state as the rating profile of all the users (not just the rating distribution).

Then, the folk theorem states that the social optimum can be asymptotically

achieved by strategies that depend on the history of rating profiles. However,

in our model, the players do not know the full rating profile, but only know the

rating distribution. Hence, the strategy can use only the information of rating

distributions.5 Whether such strategies can achieve the social optimum is not

known according to the folk theorems; we need to prove the existence of socially

optimal strategies that use only the information of rating distributions.

In addition, our results are fundamentally different from the folk theorem

results [9][81] in nature. First, [9][81] focus on the limit case when the discount

factor goes to one, which is not realistic because the users are not sufficiently

patient. More importantly, the results in [9][81] are not constructive. They focus

on what payoff profiles are achievable, but cannot show how to achieve those

payoff profiles. They do not determine a lower bound on discount factors that

admit equilibrium strategy profiles yielding the target payoff profile, and hence

cannot construct equilibrium strategy profiles. By contrast, we do determine a

lower bound on discount factors that admit equilibrium strategy profiles yielding

the target payoff profile, and do construct equilibrium strategy profiles.

4.2.3 Related Mathematical Frameworks

Rating mechanisms with stationary recommended strategies can be designed by

extending Markov decision processes (MDPs) in two important and non-trivial

ways [93][94][105][106]: 1) since there are multiple users, the value of each state

is a vector of all the users’ values, instead of a scalar in standard MDPs, and 2)

5We insist on restricting to strategies that depend only on the history of rating distributions
because in practice, 1) the platform may not publish the full rating profile due to informa-
tional and privacy constraints, and 2) even if the platform does publish such information, it is
impractical to assume that the users can keep track of it.
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Table 4.2: Related Mathematical Frameworks.

Standard MDP
Extended MDP Self-generating sets

This work
[93][94][105][106] [9][14][81]

# of users Single Multiple Multiple Multiple

Value function Single-valued Single-valued Set-valued Set-valued

Incentive constraints No Yes Yes Yes

Strategies Stationary Stationary Nonstationary Nonstationary

Discount factor < 1 < 1 → 1 < 1

Constructive Yes Yes No Yes

the incentive compatibility constraints of self-interested users need to be fulfilled

(e.g., the values of “good” states, in which most users have high ratings, should

be sufficiently larger than those of “bad” states, such that users are incentivized

to obtain high ratings), while standard MDPs do not impose such constraints.

In this paper, we make a significant step forward with respect to the state-

of-the-art rating mechanisms with stationary strategies: we design rating mech-

anisms where the recommended strategies can be nonstationary. The proposed

design leads to significant performance improvements, but is also significantly

more challenging from a theoretical perspective. The key challenge is that non-

stationary strategies may choose different actions under the same state, resulting

in possibly different current payoffs in the same state. Hence, the value function

under nonstationary strategies are set-valued, which significantly complicates the

analysis, compared to single-valued value functions under stationary strategies6.

The mathematical framework of analyzing nonstationary strategies with set-

valued value functions was proposed as a theory of self-generating sets in [14]. It

was widely used in game theory to prove folk theorems in repeated games [9] and

stochastic games [81]. We have discussed our differences from the folk theorem

results [9][81] in the previous subsection.

6In randomized stationary strategies, although different actions may be taken in the same
state after randomization, the probability of actions chosen is fixed. In the Bellman equation,
we need to use the expected payoff before randomization which is fixed in the same state, instead
of the realized payoffs after randomization. Hence, the value function is still single-valued.
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Figure 4.1: Illustration of the rating mechanism in one period.

In Table 4.2, we compare our work with existing mathematical frameworks.

4.3 System Model and Problem Formulation

4.3.1 System Model

4.3.1.1 The Rating Mechanism

We consider a service exchange platform with a set of N users, denoted by N =

{1, . . . , N}. Each user can provide some services (e.g. data in P2P networks, labor

in Amazon Mechanic Turk) valuable to the other users. The rating mechanism

assigns each user i a binary label θi ∈ Θ , {0, 1}, and keep record of the rating

profile θ = (θ1, . . . , θN). Since the users usually stay in the platform for a long

period of time, we divide time into periods indexed by t = 0, 1, 2, . . .. In each

period, the rating mechanism operates as illustrated in Fig. 4.1, which can be

roughly described as follows:

• Each user requests services as a client.

• Each user, as a server, is matched to another user (its client) based on a

matching rule.
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• Each server chooses to provide high-quality or low-quality services.

• Each client reports its assessment of the service quality to the rating mech-

anism, who will update the server’s rating based on the report.

Next, we describe the key components in the rating mechanism in details.

Public announcement: At the beginning of each period, the platform makes

public announcement to the users. The public announcement includes the rating

distribution and the recommended plan in this period. The rating distribution

indicates how many users have rating 1 and rating 0, respectively. Denote the

rating distribution by s(θ) = (s0(θ), s1(θ)), where s1(θ) =
∑

i∈N θi is the num-

ber of users with rating 1, and s0(θ) = N − s1(θ) is the number of users with

rating 0. Denote the set of all possible rating distributions by S. Note that

the platform does not disclose the rating profile θ for privacy concerns. The

platform also recommends a desired behavior in this period, called recommended

plan. The recommended plan is a contingent plan of which service quality the

server should choose based on its own rating and its client’s rating. Formally,

the recommended plan, denoted by α0, is a mapping α0 : Θ×Θ→ {0, 1}, where

0 and 1 represent “low-quality service” and “high-quality service”, respectively.

Then α0(θc, θs) denotes the recommended service quality for a server with rating

θs when it is matched to a client with rating θc. We write the set of recommended

plans as A = {α|α : Θ × Θ → {0, 1}}. We are particularly interested in the

following three plans. The plan αa is the altruistic plan:

αa(θc, θs) = 1,∀θc, θs ∈ {0, 1}, (4.1)

where the server provides high-quality service regardless of its own and its client’s

ratings. The plan αf is the fair plan:

αf(θc, θs) =

 0 θs > θc

1 θs ≤ θc

, (4.2)
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where the server provides high-quality service when its client has higher or equal

ratings. The plan αs is the selfish plan:

αs(θc, θs) = 0,∀θc, θs ∈ {0, 1}, (4.3)

where the server provides low-quality service regardless of its own and its client’s

ratings. Note that we can consider the selfish plan as a non-differential punish-

ment in which everyone receives low-quality services, and consider the fair plan

as a differential punishment in which users with different ratings receive different

services.

Service requests: The platform receives service requests from the users. We

assume that there is no cost in requesting services, and that each user always have

demands for services. Hence, all the users will request services.

Matching: The platform matches each user i, as a client, to another user

m(i) who will serve i, where m is a matching m : N → N . Since the platform

cannot match a user to itself, we write the set of all possible matchings as M =

{m : m bijective, m(i) 6= i, ∀i ∈ N}. The mechanism defines a random matching

rule, which is a probability distribution µ on the set of all possible matchings M .

In this paper, we focus on the uniformly random matching rule, which chooses

every possible matching m ∈ M with the same probability. The analysis can be

easily generalized to the cases with non-uniformly random matching rules, as long

as the matching rules do not distinguish users with the same rating.

Clients’ ratings: The platform will inform each server of its client’s rating, such

that each server can choose its service quality based on its own and its client’s

ratings.

Reports: After the servers serve their clients, the platform elicits reports from

the clients about their service quality. However, the report is inaccurate, either by

the client’s incapability of accurate assessment (for instance, the client, who wants

to translate some sentences into a foreign language, cannot accurately evaluate
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the server’s translation) or by some system error (for example, the data/file sent

by the server is missing due to network errors). We characterize the erroneous

report by a mapping R : {0, 1} → ∆({0, 1}), where ∆({0, 1}) is the probability

distribution over {0, 1}. For example, R(1|q) is the probability that the client

reports “high quality” given the server’s actual service quality q. In this paper,

we focus on reports of the following form

R(r|q) =

 1− ε, r = q

ε, r 6= q
, ∀r, q ∈ {0, 1}, (4.4)

where ε ∈ [0, 0.5) is the report error probability.7 Note, however, that reporting

is not strategic: the client reports truthfully, but with errors. If the clients report

strategically, the mechanism can let the platform to assess the service quality (still,

with errors) to avoid strategic reporting. For simplicity, we assume that the report

error is symmetric, in the sense that reporting high and low qualities have the same

error probability. Extension to asymmetric report errors is straightforward.

Rating update: Given the clients’ reports, the platform updates the servers’

ratings according to the rating update rule, which is defined as a mapping τ :

Θ× Θ× {0, 1} × A → ∆(Θ). For example, τ(θ′s|θc, θs, r, α0) is the probability of

the server’s updated rating being θ′s, given the client’s rating θc, the server’s own

rating θs, the client’s report r, and the recommended plan α0. We focus on the

following class of rating update rules (see Fig. 4.2 for illustration):

τ(θ′s|θc, θs, r, α0) =



β+
θs
, θ′s = 1, r ≥ α0(θc, θs)

1− β+
θs
, θ′s = 0, r ≥ α0(θc, θs)

1− β−θs , θ′s = 1, r < α0(θc, θs)

β−θs , θ′s = 0, r < α0(θc, θs)

.

7We confine the report error probability ε to be smaller than 0.5. If the error probability ε is
0.5, the report contains no useful information about the service quality. If the error probability
is larger than 0.5, the rating mechanism can use the opposite of the report as an indication of
the service quality, which is equivalent to the case with the error probability smaller than 0.5.
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Figure 4.2: Illustration of the rating update rule. The circle denotes the rating,

and the arrow denotes the rating update with corresponding probabilities.

In the above rating update rule, if the reported service quality is not lower than

the recommended service quality, a server with rating θs will have rating 1 with

probability β+
θs

; otherwise, it will have rating 0 with probability β−θs . Other more

elaborate rating update rules may be considered. But we show that this simple

one is good enough to achieve the social optimum.

Recommended strategy: The final key component of the rating mechanism is

the recommended strategy, which determines what recommended plan should be

announced in each period. In each period t, the mechanism keeps track of the

history of rating distributions, denoted by ht = (s0, . . . , st) ∈ St+1, and chooses

the recommended plan based on ht. In other words, the recommended strategy is

a mapping from the set of histories to its plan set, denoted by π0 : ∪∞t=0S
t+1 → A.

Denote the set of all recommended strategies by Π. Note that although the rating

mechanism knows the rating profile, it determines the recommended plan based

on the history of rating distributions, because 1) this reduces the computational

and memory complexity of the protocol, and 2) it is easy for the users to follow

since they do not know the rating profile. Moreover, since the plan set A has 16

elements, the complexity of choosing the plan is large. Hence, we consider the

strategies that choose plans from a subset B ⊆ A, and define Π(B) as the set of
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Table 4.3: Gift-Giving Game Between A Client and A Server.

high-quality low-quality

request (b,−c) (0, 0)

strategies restricted on the subset B of plans.

In summary, the rating mechanism can be represented by the design parame-

ters: the rating update rule and the recommended strategy, and can be denoted

by the tuple (τ, π0).

4.3.1.2 Payoffs

Once a server and a client are matched, they play the gift-giving game in Table 4.3

[93]–[98][102][104], where the row player is the client and the column player is the

server. We normalize the payoffs received by the client and the server when a server

provides low-quality services to 0. When a server provides high-quality services,

the client gets a benefit of b > 0 and the worker incurs a cost of c ∈ (0, b). In

the unique Nash equilibrium of the gift-giving game, the server will provide low-

quality services, which results in a zero payoff for both the client and the server.

Note that as in [93]–[98][102][104], we assume that the same gift-giving game is

played for all the client-server pairs. This assumption is reasonable when the

number of users is large. Since b can be considered as a user’s expected benefit

across different servers, and c as its expected cost of high-quality service across

different clients, the users’ expected benefits/costs should be approximately the

same when the number of users is large. This assumption is also valid when the

users have different realized benefit and cost in each period but the same expected

benefit b and expected cost c across different periods.

Expected payoff in one period: Based on the gift-giving game, we can calculate

each user’s expected payoff obtained in one period. A user’s expected payoff
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in one period depends on its own rating, the rating distribution, and the users’

plans. We write user i’s plan as αi ∈ A, and the plan profile of all the users

as α = (α1, . . . , αN). Then user i’s expected payoff in one period is ui(θi, s,α).

For illustration, we calculate the users’ expected payoffs under several important

scenarios, assuming that all the users follow the recommended plan (i.e. αi =

α0, ∀i ∈ N ). When the altruistic plan αa is recommended, all the users receive

the same expected payoff in one period as

ui(θi, s, α
a · 1N) = b− c, ∀i, θi, s,

where α ·1N is the plan profile in which every user chooses plan α. Similarly, when

the selfish plan αs is recommended, all the users receive zero expected payoff in

one period, namely

ui(θi, s, α
s · 1N) = 0, ∀i, θi, s.

When the fair plan αf is recommended, the users receive expected payoffs in one

period as follows

ui(θi, s, α
f · 1N) =


s0−1
N−1
· b− c, θi = 0

b− s1−1
N−1
· c, θi = 1

. (4.5)

Under the fair plan, the users with rating 1 receive a payoff higher than b − c,

because they get high-quality services from everyone and provide high-quality

services only when matched to clients with rating 1. In contrast, the users with

rating 0 receive a payoff lower than b−c. Hence, the fair plan αf can be considered

as a differential punishment.

Discounted average payoff: Each user i has its own strategy πi ∈ Π. Write the

joint strategy profile of all the users as π = (π1, . . . , πN). Then given the initial

rating profile θ0, the recommended strategy π0 and the joint strategy profile π

induce a probability distribution over the sequence of rating profiles θ1,θ2, . . ..

Taking the expectation with respect to this probability distribution, each user i
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receives a discounted average payoff Ui(θ
0, π0,π) calculated as

Ui(θ
0, π0,π) = Eθ1,θ2,...

{
(1− δ)

∞∑
t=0

δtui
(
θti , s(θt),π(s(θ0), . . . , s(θt)

)}
where δ ∈ [0, 1) is the common discount factor of all the users. The discount

factor δ is the rate at which the users discount future payoffs, and reflects the

patience of the users. A more patient user has a larger discount factor. Note that

the recommended strategy π0 does affect the users’ discounted average payoffs

by affecting the evolution of the rating profile (i.e. by affecting the expectation

operator Eθ1,θ2,...).

4.3.1.3 Definition of The Equilibrium

The platform adopts sustainable rating mechanisms, which specifies a tuple of

rating update rule and recommended strategy (τ, π0), such that the users find it

in their self-interests to follow the recommended strategy. In other words, the

recommended strategy should be an equilibrium.

Note that the interaction among the users is neither a repeated game [9] nor

a standard stochastic game [81]. In a repeated game, every stage game is the

same, which is clearly not true in the platform because users’ stage-game payoff

ui(θi, s,α) depends on the rating distribution s. In a standard stochastic game,

the state must satisfy: 1) the state and the plan profile uniquely determines the

stage-game payoff, and 2) the state is known to all the users. In the platform, the

user’s stage-game payoff ui(θi, s,α) depends on its own rating θi, which should

be included in the state and be known to all the users. Hence, if we were to

model the interaction as a standard stochastic game, we need to define the state

as the rating profile θ. However, the rating profile is not known to the users in

our formulation.

To reflect our restriction on recommended strategies that depend only on rat-

ing distributions, we define the equilibrium as public announcement equilibrium
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(PAE), since the strategy depends on the publicly announced rating distributions.

Before we define PAE, we need to define the continuation strategy π|ht , which is

a mapping π|ht : ∪∞k=0Hk → A with π|ht(hk) = π(hthk), where hthk is the

concatenation of ht and hk.

Definition 3 A pair of a recommended strategy and a symmetric strategy profile

(π0, π0 · 1N) is a PAE, if for all t ≥ 0, for all h̃t ∈ Ht, and for all i ∈ N , we have

Ui(θ̃
t, π0|h̃t , π0|h̃t · 1N) ≥ Ui(θ̃

t, π0|h̃t , (πi|h̃t , π0|h̃t · 1N−1)), ∀πi|h̃t ∈ Π,

where (πi|h̃t , π0|h̃t ·1N−1) is the continuation strategy profile in which user i deviates

to πi|h̃t and the other users follow the strategy π0|h̃t.

Note that in the definition, we allow a user to deviate to any strategy πi ∈ Π,

even if the recommended strategy π0 is restricted to a subset B of plans. Hence,

the rating mechanism is robust, in the sense that a user cannot gain even when

it uses more complicated strategies. Note also that although a rating mechanism

can choose the initial rating profile θ0, we require a recommended strategy to

fulfill the incentive constraints under all the initial rating profiles. This adds to

the flexibility in choosing the initial rating profile.

PAE is stronger than the Nash equilibrium (NE), because PAE requires the

users to not deviate following any history, while NE requires the users to not

deviate following the histories that happen in the equilibrium. In this sense,

PAE can be considered as a special case of public perfect equilibrium (PPE) in

standard repeated and stochastic games, where the strategies depend only on the

rating distribution.

4.3.2 The Rating Protocol Design Problem

The goal of the rating mechanism designer is to choose a rating mechanism (τ, π0),

such that the social welfare at the equilibrium is maximized in the worst case (with
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respect to different initial rating profiles). Maximizing the worst-case performance

gives us a much stronger performance guarantee than maximizing the performance

under a given initial rating profile. Given the rating update error ε, the discount

factor δ, and the subset B of plans, the rating mechanism design problem is

formulated as:

W (ε, δ,B) = max
τ,π0∈Π(B)

min
θ0∈ΘN

1

N

∑
i∈N

Ui(θ
0, π0, π0 · 1N)

s.t. (π0, π0 · 1N) is a PAE. (4.6)

Note that W (ε, δ,B) is strictly smaller than the social optimum b−c for any ε,

δ, and B. This is because to exactly achieve b− c, the protocol must recommend

the altruistic plan αa all the time (even when someone shirks), which cannot be

an equilibrium. However, we can design rating mechanisms such that for any

fixed ε ∈ [0, 0.5), W (ε, δ,B) can be arbitrarily close to the social optimum. In

particular, such rating mechanisms can be simple, in that B can be a small subset

of three plans (i.e. B = Aafs , {αa, αf, αs}).

4.4 Sources of Inefficiency

To illustrate the importance of designing optimal, yet simple rating schemes, as

well as the challenges associated with determining such a design, in this section,

we discuss several simple rating mechanisms that appear to work well intuitively,

and show that they are actually bounded away from the social optimum even

when the users are arbitrarily patient. We will illustrate why they are inefficient,

which gives us some insights on how to design socially-optimal rating mechanisms.

124



4.4.1 Stationary Recommended Strategies

4.4.1.1 Analysis

We first consider rating mechanisms with stationary recommended strategies,

which determine the recommended plan solely based on the current rating dis-

tribution. Since the game is infinitely-repeatedly played, given the same rat-

ing distribution, the continuation game is the same regardless of when the rat-

ing distribution occurs. Hence, similar to MDP, we can assign value functions

V π0
θ : S → R, ∀θ for a stationary strategy π0, with V π0

θ (s) being the continuation

payoff of a user with rating θ at the rating distribution s. Then, we have the

following set of equalities that the value function needs to satisfy:

V π0
θi

(s) = (1− δ) · ui(π0(s), π0(s) · 1N) (4.7)

+ δ ·
∑
θ′i,s
′

Pr(θ′i, s
′|θi, s, π0(s), π0(s) · 1N) · V π0

θ′i
(s′), ∀i ∈ N ,

where Pr(θ′i, s
′|θi, s, π0(s), π0(s) · 1N) is the transition probability. We can solve

for the value function from the above set of equalities, which are similar to the

Bellman equations in MDP. However, note that obtaining the value function is not

the final step. We also need to check the incentive compatibility (IC) constraints.

For example, to prevent user i from deviating to plan α′, the following inequality

has to be satisfied:

V π0
θi

(s) ≥ (1− δ) · ui(π0(s), (α′, π0(s) · 1N−1)) (4.8)

+ δ ·
∑
θ′i,s
′

Pr(θ′i, s
′|θi, s, π0(s), (α′, π0(s) · 1N−1)) · V π0

θ′i
(s′), ∀i ∈ N .

Given a rating mechanism with a stationary recommended strategy π0, if its

value function satisfies all the IC constraints, we can determine the social welfare

of the rating mechanism. For example, suppose that all the users have an initial

rating of 1. Then, all of them achieve the expected payoff V π0
1 (0, N), which is the

social welfare achieved under this rating mechanism.
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Note that given a recommended strategy π0, it is not difficult to compute

the value function by solving the set of linear equations in (4.7) and check the

IC constraints according to the set of linear inequalities in (4.8). However, it

is difficult to derive structural results on the value function (e.g. whether the

state with more rating-1 users has a higher value), and thus difficult to know

the structures of the optimal recommended strategy (e.g. whether the optimal

recommended strategy is a threshold strategy). The difficulty mainly comes from

the complexity of the transition probabilities Pr(θ′i, s
′|θi, s, π0(s), π0(s) · 1N). For

example, assuming π0(s) = αa, we have

Pr(1, s′|1, αa, αa · 1N) = x+
1 ·∑min{s1−1,s′1−1}

k=max{0,s′1−1−(N−s1)}
(
s1−1
k

)
(x+

1 )k(1− x+
1 )s1−1−k( N−s1

s′1−1−k

)
(x+

0 )s
′
1−1−k(1− x+

0 )N−s1−(s′1−1−k)
,

where x+
1 , (1 − ε)β+

1 + ε(1 − β−1 ) is the probability that a rating-1 user’s rat-

ing remains to be 1, and x+
0 , (1 − ε)β+

0 + ε(1 − β−0 ) is the probability that a

rating-0 user’s rating goes up to 1. We can see that the transition probability

has combinatorial numbers in it and is complicated. Hence, although the sta-

tionary strategies themselves are simpler than the nonstationary strategies, they

are harder to compute, in the sense that it is difficult to derive structural results

for rating mechanisms with stationary recommended strategy. In contrast, we are

able to develop a unified design framework for socially-optimal rating mechanisms

with nonstationary recommended strategies.

4.4.1.2 Inefficiency

We measure the efficiency of the rating mechanisms with stationary recommended

strategies using the “price of stationarity” (PoStat), defined as

PoStat(ε,B) =
limδ→1W

s(ε, δ,B)

b− c
, (4.9)

where W s(ε, δ,B) is the optimal value of a modified optimization problem (4.6)

with an additional constraint that π0 is stationary.
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Table 4.4: Normalized social welfare of stationary strategies restricted on Aafs.

δ 0.7 0.8 0.9 0.99 0.999 0.9999

Normalized welfare 0.690 0.700 0.715 0.720 0.720 0.720

Note that PoStat(ε,B) measures the efficiency of a class of rating mechanisms

(not a specific rating mechanism), because we optimize over all the rating update

rules and stationary recommended strategies restricted on B. PoStat is a number

between 0 and 1. A small PoStat indicates a low efficiency.

Through simulation, we can compute PoStat(0.1, Aafs) = 0.720. In other

words, even with differential punishment αf, the performance of stationary strate-

gies is bounded away from social optimum. We compute the PoStat in a platform

with N = 5 users, the benefit b = 3, the cost c = 1, and ε = 0.1. Under each

discount factor δ, we assign values between 0 and 1 with a 0.1 grid to β+
θ , β

−
θ

in the rating update rule, namely we try 114 rating update rules to select the

optimal one. For each rating update rule, we try all the 3N+1 = 729 stationary

recommended strategies restricted on Aafs. In Table 4.4, we list normalized social

welfare under different discount factors.

As mentioned before, the inefficiency of stationary strategies is due to the

punishment exerted under certain rating distributions. For example, the optimal

recommended strategies discussed above recommend the selfish or fair plan when

at least one user has rating 0, resulting in performance loss. One may think that

when the users are more patient (i.e. when the discount factor is larger), we

can use milder punishments by lowering the punishment probabilities β−1 and β−0 ,

such that the rating distributions with many low-rating users happen with less

frequency. However, simulations on the above strategies show that, to fulfill the IC

constraints, the punishment probabilities cannot be made arbitrarily small even

when the discount factor is large. For example, Table 4.5 shows the minimum pun-

ishment probability β−1 (which is smaller than β−0 ) of rating mechanisms restricted
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Table 4.5: Minimum punishment probabilities of rating mechanisms restricted on

Aafs when ε = 0.1.

δ 0.7 0.8 0.9 0.99 0.999 0.9999 0.99999

Minimum β−1 0.8 0.8 0.6 0.6 0.3 0.3 0.3

on Aafs under different discount factors. In other words, the rating distributions

with many low-rating users will happen with some probabilities bounded above

zero, with a bound independent of the discount factor. Hence, the performance

loss is bounded above zero regardless of the discount factor. Note that in a nonsta-

tionary strategy, we could choose whether to punish in rating distributions with

many low-rating users, depending on the history of past rating distributions. This

adaptive adjustment of punishments allows nonstationary strategies to potentially

achieve the social optimum.

4.4.2 Lack of Differential Punishments

We have discussed in the previous subsection the inefficiency of stationary strate-

gies. Now we consider a class of nonstationary strategies restricted on the subset

of plans Aas. Under this class of strategies, all the users are rewarded (by choos-

ing αa) or punished (by choosing αs) simultaneously. In other words, there is no

differential punishment that can “transfer” some payoff from low-rating users to

high-rating users. We quantify the performance loss of this class of nonstationary

strategies restricted on Aas as follows.

Proposition 4 For any ε > 0, we have

lim
δ→1

W (ε, δ, Aas) ≤ b− c− ζ(ε), (4.10)

where ζ(ε) > 0 for any ε > 0.

Proof: The proof is similar to the proof of [97, Proposition 6]; see Appendix 4.8.1.

�
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The above proposition shows that the maximum social welfare achievable by

(π0, π ·1N) ∈ Π(Aas)×ΠN(Aas) at the equilibrium is bounded away from the social

optimum b− c, unless there is no rating update error. Note that the performance

loss is independent of the discount factor. In contrast, we will show later that,

if we can use the fair plan αf, the social optimum can be asymptotically achieve

when the discount factor goes to 1. Hence, the differential punishment introduced

by the fair plan is crucial for achieving the social optimum.

4.5 Socially Optimal Design

In this section, we design rating mechanisms that asymptotically achieve the social

optimum at the equilibrium, even when the rating update rule ε > 0. In our

design, we use the APS technique, named after the authors of the seminal paper

[14], which is also used to prove the folk theorem for repeated games in [9] and

for stochastic games in [81]. We will briefly introduce the APS technique first.

Meanwhile, more importantly, we will illustrate why we cannot use APS in our

setting in the same way as [9] and [81] did. Then, we will show how we use APS

in a different way in our setting, in order to design the optimal rating mechanism

and to construct the equilibrium strategy. Finally, we analyze the performance of

a class of simple but suboptimal strategies, which sheds light on why the proposed

strategy can achieve the social optimum.

4.5.1 The APS Technique

APS [14] provides a characterization of the set of PPE payoffs. It builds on the idea

of self-generating sets described as follows. Note that APS is used for standard

stochastic games, and recall from our discussion in Section 4.2 that the state of the

standard stochastic game is the rating profile θ. Then define a set Wθ ⊂ RN for

every state θ ∈ ΘN , and write (Wθ′)θ′∈ΘN as the collection of these sets. Then we
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have the following definitions [14][81][8]. First, we say a payoff profile v(θ) ∈ RN

is decomposable on (Wθ′)θ′∈ΘN given θ, if there exists a recommended plan α0,

an plan profile α∗, and a continuation payoff function γ : ΘN → ∪θ′∈ΘNWθ′ with

γ(θ′) ∈ Wθ′ , such that for all i ∈ N and for all αi ∈ A,

vi = (1− δ)ui(θ, α0,α
∗) + δ

∑
θ′

γi(θ
′)q(θ′|θ, α0,α

∗) (4.11)

≥ (1− δ)ui(θ, α0, αi,α
∗
−i) + δ

∑
θ′

γi(θ
′)q(θ′|θ, α0, αi,α

∗
−i).

Then, we say a set (Wθ)θ∈ΘN is a self-generating set, if for any θ, every payoff

profile v(θ) ∈ Wθ is decomposable on (Wθ′)θ′∈ΘN given θ. The important prop-

erty of self-generating sets is that any self-generating set is a set of PPE payoffs

[14][81][8].

Based on the idea of self-generating sets, [9] and [81] proved the folk theorem

for repeated games and stochastic games, respectively. However, we cannot use

APS in the same way as [9] and [81] did for the following reason. We assume that

the users do not know the rating profile of every user, and restrict our attention

on symmetric PA strategy profiles. This requires that each user i cannot use

the continuation payoff function γi(θ) directly. Instead, each user i should assign

the same continuation payoff for the rating profiles that have the same rating

distribution, namely γi(θ) = γi(θ
′) for all θ and θ′ such that s(θ) = s(θ′).

4.5.2 Socially Optimal Design

As mentioned before, the social optimum b − c can be exactly achieved only by

servers providing high-quality service all the time, which is not an equilibrium.

Hence, we aim at achieving the social optimum b − c asymptotically. We define

the asymptotically socially optimal rating mechanisms as follows.

Definition 4 (Asymptotically Socially Optimal Rating Mechanisms) Given

a rating update error ε ∈ [0, 0.5), we say a rating mechanism (τ(ε), π0(ε, ξ, δ) ∈ Π)
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is asymptotically socially optimal under ε, if for any small performance loss ξ > 0,

we can find a δ(ξ), such that for any discount factor δ > δ(ξ), we have

• (π0(ξ, δ), π0(ξ, δ) · 1N) is a PAE;

• Ui(θ0, π0, π0 · 1N) ≥ b− c− ξ, ∀i ∈ N , ∀θ0.

Note that in the asymptotically socially optimal rating mechanism, the rating

update rule depends only on the rating update error, and works for any tolerated

performance loss ξ and for any the discount factor δ > δ. The recommended

strategy π0 is a class of strategies parameterized by (ε, ξ, δ), and works for any

ε ∈ [0, 0.5), any ξ > 0 and any discount factor δ > δ under the rating update rule

τ(ε).

First, we define a few auxiliary variables first for better exposition of the

theorem. Define κ1 , b
N−2
N−1

b−c − 1 and κ2 , 1 + c
(N−1)b

. In addition, we write the

probability that a user with rating 1 has its rating remain at 1 if it follows the

recommended altruistic plan αa as:

x+
1 , (1− ε)β+

1 + ε(1− β−1 ).

Write the probability that a user with rating 1 has its rating remain at 1 if it

follows the recommended fair plan αf as:

xs1(θ) ,

[
(1− ε)s1(θ)− 1

N − 1
+
N − s1(θ)

N − 1

]
β+

1 +

(
ε
s1(θ)− 1

N − 1

)
(1− β−1 ).

Write the probability that a user with rating 0 has its rating increase to 1 if it

follows the recommended plan αa or αf:

x+
0 , (1− ε)β+

0 + ε(1− β−0 ).

Theorem 7 Given any rating update error ε ∈ [0, 0.5),

• (Design rating update rules): A rating update rule τ(ε) that satisfies
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– Condition 1 (following the recommended plan leads to a higher rating):

β+
1 > 1− β−1 and β+

0 > 1− β−0 ,

– Condition 2 (Enough “reward” for users with rating 1):

x+
1 = (1− ε)β+

1 + ε(1− β−1 ) >
1

1 + c
(N−1)b

,

– Condition 3 (Enough “punishment” for users with rating 0):

x+
0 = (1− ε)β+

0 + ε(1− β−0 ) <
1− β+

1
c

(N−1)b

,

can be the rating update rule in a asymptotically socially-optimal rating

mechanism.

• (Optimal recommended strategies): Given the rating update rule τ(ε) that

satisfies the above conditions, any small performance loss ξ > 0, and any

discount factor δ ≥ δ(ε, ξ) with δ(ε, ξ) defined in Appendix 4.8.2, the recom-

mended strategy π0(ε, ξ, δ) ∈ Π(Aafs) constructed by Table 4.6 is the recom-

mended strategy in a asymptotically socially-optimal rating mechanism.

Proof: See Appendix 4.8.3 for the entire proof. We provide a proof sketch here.

The proof builds on the theory of self-generating sets [14], which can be con-

sidered as the extension of Bellman equations in dynamic programming to the

cases with multiple self-interested users using nonstationary strategies. We can

decompose each user i’s discounted average payoff into the current payoff and the

continuation payoff as follows:

Ui(θ
0, π0,π)

= Eθ1,...

{
(1− δ)

∞∑
t=0

δtui
(
θti , s(θt),π(s(θ0), . . . , s(θt)

)}
= (1− δ) · ui

(
θ0
i , s(θ0),π(s(θ0))

)︸ ︷︷ ︸
current payoff at t=0

+ δ · Eθ2,...

{
(1− δ)

∞∑
t=1

δt−1ui
(
θti , s(θt),π(s(θ0), . . . , s(θt))

)}
︸ ︷︷ ︸

continuation payoff starting from t=1

.
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We can see that the continuation payoff starting from t = 1 is the discounted

average payoff as if the system starts from t = 1. Suppose that the users follow

the recommended strategy. Since the recommended strategy and the rating update

rule do not differentiate users with the same rating, we can prove that the users

with the same rating have the same continuation payoff starting from any point.

Hence, given π0 and π = π0 · 1N , the decomposition above can be simplified into

vπ0
θ (s) = (1− δ) · u (θ, s, α0 · 1N) + δ ·

1∑
θ′=0

∑
s′

q(θ′, s′|θ, s, α0 · 1N) · vπ0

θ′ (s
′),(4.12)

where q(θ′, s′|θ, s, α·1N) is the probability that the user has rating θ′ and the rating

distribution is s′ in the next period given the user’s current rating θ, the current

rating distribution s, and the action profile α · 1N , and vπ0
θ (s) is the continuation

payoff of the users with rating θ starting from the initial rating distribution s.

The differences between (4.12) and the Bellman equations are 1) the “value”

of state s in (4.12) is a vector comprised of rating-1 and rating-0 users’ values,

compared to scalar values in Bellman equations, and 2) the value of state s is not

fixed in (4.12), because the action α0 taken under state s is not fixed in a non-

stationary strategy (this is also the key difference from the analysis of stationary

strategies; see (4.7) where the action taken at state s is fixed to be π0(s)). In

addition, for an equilibrium recommended strategy, the decomposition needs to

satisfy the following incentive constraints: for all α,

vπ0
θ (s) ≥ (4.13)

(1− δ) · u (θ, s, (α, α0 · 1N−1)) + δ ·
∑1

θ′=0

∑
s′ ρ(θ′, s′|θ, s, (α, α0 · 1N−1)) · vπ0

θ′ (s
′).

To analyze nonstationary strategies, we use the theory of self-generating sets.

Note, however, that [14] does not tell us how to construct a self-generating set,

which is exactly the major difficulty to overcome in our proof. In our proof, we

construct the following self-generating set. First, since the strategies depend on

rating distributions only, we let W(θ) = W(θ′) for any θ and θ that have the
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0 1
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  
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(0, 0)

…
…...

Rating-0 users’ 
continuation payoff

Rating-1 users’ 
continuation payoff

(a) Feasible payoffs in one state
     (rating distribution (s0,s1))

(b) Common feasible payoffs in 
      all the states (rating distributions)

Feasible payoffs
under (N-1,1)

Feasible payoffs
under (s0,s1)

Feasible payoffs
under (1,N-1)

Figure 4.3: Illustration of how to build the self-generating set. The left figure

shows the set of feasible payoffs in one state (i.e. under the rating distribution

(s0, s1)). The right figure shows the sets of feasible payoffs in different states (i.e.

rating distributions) and their intersection, namely the set of common feasible

payoffs in all the states (i.e. under all the rating distributions).

(0, 0)

(b-c, b-c)

Rating-1 users’ 
continuation payoff

Rating-0 users’ 
continuation payoff

The dashed triangle:
the common feasible payoffs 

under all the states

Figure 4.4: Illustration of the self-generating set, which is a triangle within the

set of common feasible payoffs in Fig. 4.3.
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same rating distribution. Hence, in the rest of the proof sketch, we write the self-

generating set as {W(s)}s, which is illustrated in Fig. 4.3 and Fig. 4.4. Fig. 4.3

shows how to construct the self-generating set. The left of Fig. 4.3 shows the

feasible payoffs in one state, and the right shows the common feasible payoffs in

all the states (we consider the common feasible payoffs such that we can use the

same W(s) under all the states s). The self-generating set is a subset of the

common feasible payoffs, as illustrated in Fig. 4.4. When the users have different

ratings (i.e. 1 ≤ s0 ≤ N − 1), the set W(s) is the triangle shown in Fig. 4.4,

which is congruent to the triangle of common feasible payoffs (shown in dashed

lines), and has the upper right vertex at (b− c− ε0, b− c− ε1) with ε0, ε1 ≤ ξ. We

have the analytical expression for the triangle in Appendix 4.8.3. When all the

users have the same rating (i.e. s0 = 0 or s0 = N), only one component in v(s) is

relevant. Hence, the sets W((N, 0)) and W((0, N)) are line segments determined

by the ranges of v0 and v1 in the triangle, respectively.

In addition, we simplify the decomposition (4.12) and (4.13) by letting the

continuation payoffs vπ0

θ′ (s
′) = vπ0

θ′ for all s′. Hence, for a given s and a payoff

vector v(s), the continuation payoffs v′ = (v′0, v
′
1) can be determined by solving

the following two linear equations: v0(s)=(1− δ)u (0, s, α01N)+δ
∑1

θ′=0 q(θ
′|0, α01N)v′θ′

v1(s)=(1− δ)u (1, s, α01N)+δ
∑1

θ′=0 q(θ
′|1, α01N)v′θ′

(4.14)

where q(θ′|θ, α0) is the probability that the next rating is θ′ for a user with rating

θ under the plan profile α0 · 1N .

Based on the above simplification, the collection of sets {W(s)}s in Fig. 4.4 is

a self-generating set, if for any s and any payoff vector v(s) ∈ W(s), we can find

a plan α0 such that the continuation payoffs v′ calculated from (4.14) lie in the

triangle and satisfy the incentive constraints in (4.13).

In summary, we can prove that the collection of sets {W(s)}s illustrated in

Fig. 4.4 is a self-generating set under certain conditions. Specifically, given a
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(0, 0)

(b-c, b-c)

Rating-1 users’ 
continuation payoff

Rating-0 users’ 
continuation payoff

Payoff of 
altruistic plan

Decompose by 
altruistic plan

Continuation payoffs
(in different states)

(0, 0)

Rating-1 users’ 
continuation payoff

Rating-0 users’ 
continuation payoff

Payoff of 
fair plan

Continuation payoff
to decompose Decompose by 

fair plan

Continuation payoffs
(in different states)

(a) Decomposition in period 0
(b) Decomposition in period 1

(when users have different 
ratings in period 1)

Target payoff
to decompose

Figure 4.5: The decomposition of payoffs. The left figure shows the decomposition

in period 0, when the payoff to decompose is the target payoff (b−c−ε0, b−c−ε1);

the right figure shows the decomposition in period 1, when the payoff to decompose

is the continuation payoff starting from period 1 and when the users have different

ratings.

performance loss ξ, we construct the corresponding {W(s)}s, and prove that it

is a self-generating set under the following conditions: 1) the discount factor

δ ≥ δ(ε, ξ) with δ(ε, ξ) defined in Appendix 4.8.2, and 2) the three conditions on

the rating update rule in Theorem 7. This proves the first part of Theorem 7.

The corresponding recommended strategy can be determined based on the

decomposition of payoffs. Specifically, given the current rating distribution s

and the current expected payoffs v(s) ∈ W(s), we find a plan α0 such that the

continuation payoffs v′ calculated from (4.14) lie in the triangle and satisfy the

incentive constraints. The decomposition is illustrated in Fig. 4.5. One important

issue in the decomposition is which plan should be used to decompose the payoff.

We prove that we can determine the plan in the following way (illustrated in

Fig. 4.6). When the users have different ratings, choose the altruistic plan αa
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Rating-1 users’ 
continuation payoff

Rating-0 users’ 
continuation payoff

a
fa

s

s a

afa
f

Different ratings

(fewer users with 

rating 1)

Different ratings

(more users with 

rating 1)

(a) How to choose the plan
(b) The differences under    

     different rating distributions

Figure 4.6: Illustration of how to choose the plan in order to decompose a given

payoff. Each self-generating set is partitioned into two parts. In each period, a

recommended plan (the altruistic plan “a”, the fair plan “f”, or the selfish plan

“s”) is chosen, depending on which part of the self-generating set the expected

payoffs fall into.

when v(s) lies in the region marked by “a” in the triangle in Fig. 4.6-(b), and

choose the fair plan αf otherwise. When the users have the same rating 0 or 1,

choose the altruistic plan αa when v0(s) or v1(s) lies in the region marked by “a”

in the line segment in Fig. 4.6-(a) or Fig. 4.6-(c), and choose the selfish plan αs

otherwise. Note that we can analytically determine the line that separates the

two regions in the triangle and the threshold that separates the two regions in

the line segment (analytical expressions are omitted due to space limitation; see

Appendix 4.8.4 for details). The above decomposition is repeated, and is used

to determine the recommended plan in each period based on the current rating

distribution s and the current expected payoffs to achieve v(s). The procedure

described above is exactly the algorithm to construct the recommended strategy,

which is described in Table 4.6. Due to space limitation, Table 4.6 is illustrative

but not specific. The detailed table that describes the algorithm can be found in

Appendix 4.8.4. �
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Theorem 7 proves that for any rating update error ε ∈ [0, 0.5), we can design

an asymptotically optimal rating mechanism. The design of the asymptotically

optimal rating mechanism consists of two parts. The first part is to design the

rating update rule. First, we should give incentives for the users to provide high-

quality service, by setting β+
θ , the probability that the rating goes up when the

service quality is not lower than the recommended quality, to be larger than

1− β−θ , the probability that the rating goes up when the service quality is lower

than the recommended quality. Second, for a user with rating 1, the expected

probability that its rating goes up when it complies should be larger than the

threshold specified in Condition 2 (x+
s1
> x+

1 implies that x+
s1

is larger than the

threshold, too). This gives users incentives to obtain rating 1. Meanwhile, for

a user with rating 0, the expected probability that its rating goes up when it

complies, x+
0 , should be smaller than the threshold specified in Condition 3. This

provides necessary punishment for a user with rating 0. Note that Conditions 2

and 3 imply that x+
1 > x+

0 . In this way, a user will prefer to have rating 1.

The second part is to construct the equilibrium recommended strategy. The-

orem 7 proves that for any feasible discount factor δ no smaller than the lower-

bound discount factor δ(ε, ξ) defined in Appendix 4.8.2, we can construct the cor-

responding recommended strategy such that each user can achieve an discounted

average payoff of at least b − c − ξ. Now we show how to construct the recom-

mended strategy. Note that determining the lower-bound discount factor δ(ε, ξ)

analytically is important for constructing the equilibrium (π0, π0 · 1N), because a

feasible discount factor is needed to determine the strategy. In [9] and [81], the

lower bound for the discount factor cannot be obtained analytically. Hence, their

results are not constructive.

The algorithm in Table 4.6 that constructs the optimal recommended strategy

works as follows. In each period, the algorithm updates the continuation payoffs

(v0, v1), and determines the recommended plan based on the current rating dis-

138



Table 4.6: Algorithm to construct recommended strategies.

Require: b, c, ε, ξ; τ(ε), δ ≥ δ(ε, ξ); θ0

Initialization: t = 0, ε0 = ξ, ε1 = ε0/(1 + κ2

κ1
), vθ = b− c− εθ, θ = θ0.

repeat

if s1(θ) = 0 then

if (v0, v1) lies in region “a” of the horizontal line segment in Fig. 4.6-(a)

choose recommended plan αa

else

choose recommended plan αs

end

elseif s1(θ) = N then

if (v0, v1) lies in region “a” of the vertical line segment in Fig. 4.6-(c)

choose recommended plan αa

else

choose recommended plan αs

end

else

if (v0, v1) lies in region “a” of the triangle in Fig. 4.6-(b)

choose recommended plan αa

else

choose recommended plan αf

end

end

determine the continuation payoffs (v′0, v
′
1) according to (4.14)

t← t+ 1, determine the rating profile θt, set θ ← θt, (v0, v1)← (v′0, v
′
1)

until ∅
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tribution and the continuation payoffs. In Fig. 4.6, we illustrate which plan to

recommend based on where the continuation payoffs locate in the self-generating

sets. Specifically, each set W(s) is partitioned into two parts (the partition lines

can determined analytically; see Appendix 4.8.4 for the analytical expressions).

When all the users have rating 0 (or 1), we recommend the altruistic plan αa if

the continuation payoff v0 (or v1) is large, and the selfish plan αs otherwise. When

the users have different ratings, we recommend the altruistic plan αa when (v0, v1)

lies in the region marked by “a” in the triangle in Fig. 4.6-(b), and the fair plan

αf otherwise. Note that the partition of W(s) is different under different rating

distributions (e.g., the region in which the altruistic plan is chosen is larger when

more users have rating 1). Fig. 4.6 also illustrates why the strategy is nonstation-

ary: the recommended plan depends on not only the current rating distribution

s, but also which region of V(s) the continuation payoffs (v0, v1) lie in.

Complexity: Although the design of the optimal recommended strategy is

complicated, the implementation is simple. The computational complexity in each

period comes from 1) identifying which region the continuation payoffs lie in, which

is simple because the regions are divided by a straight line that is analytically

determined, and 2) updating the continuation payoffs (v0, v1) by (4.14), which

can be easily done by solving a set of two linear equations with two variables.

The memory complexity is also low: because we summarize the history of past

states by the continuation payoffs (v0, v1), the protocol does not need to store all

the past states.

4.5.3 Whitewashing-Proofness

An important issue in rating mechanisms is whitewashing, namely users with low

ratings can register as a new user to clear its history of bad behaviors. We say a

rating mechanism is whitewashing-proof, if the cost of whitewashing (e.g. creating

a new account) is higher than the benefit from whitewashing. The benefit from
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Figure 4.7: Illustration of the target payoff of a rating-1 user and the lowest

continuation payoff of a rating-0 user.

whitewashing is determined by the difference between the current continuation

payoff of a low-rating user and the target payoff of a high-rating user. Since this

difference is relatively small under the proposed rating mechanism, the proposed

mechanism is robust to whitewashing.

Proposition 5 Given the performance loss tolerance ξ > 0, the proposed rat-

ing mechanism is whitewashing-proof if the cost of whitewashing is larger than(
1− 1

κ1
− 1

κ2

)
· ξ.

Proof: We illustrate the proof using Fig. 4.7. In Fig. 4.7, we show the self-

generating set again, and point out the target payoff of a rating-1 user and the

lowest continuation payoff of a rating-0 user. The difference between these two

payoffs is the highest benefit that a rating-0 user can get by whitewashing. Simple

calculation tells us that the difference is
(

1− 1
κ1
− 1

κ2

)
· ξ, which completes the

proof of Proposition 5. �

4.6 Simulation Results

We compare against the rating mechanism with threshold-based stationary recom-

mended strategies. In particular, we focus on threshold-based stationary recom-
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mended strategies that use two plans. In other words, one plan is recommended

when the number of rating-1 users is no smaller than the threshold, and the other

plan is recommended otherwise. In particular, we consider threshold-based sta-

tionary recommended strategies restricted on Aaf , Aas, and Afs, and call them

“Threshold AF”, “Threshold AS”, and “Threshold FS”, respectively. We focus

on threshold-based strategies because it is difficult to find the optimal stationary

strategy in general when the number of users is large (the number of stationary

strategies grows exponentially with the number of users). In our experiments, we

fix the following system parameters: N = 10, b = 3, c = 1.

In Fig. 4.8, we first illustrate the evolution of the states and the recommended

plans taken under the proposed rating mechanism and the rating mechanism with

the Threshold AF strategy. The threshold is set to be 5. Hence, it recommends

the altruistic plan when at least half of the users have rating 1, and recommends

the fair plan otherwise. We can see that in the proposed strategy, the plans taken

can be different at the same state. In particular, in “bad” states (6,4) and (7,3) at

time slot 3 and 5, respectively, the proposed rating mechanism may recommend

the fair plan (as a punishment) and the altruistic plan (i.e. do not punish because

the punishment happens in time slot 3), while the stationary mechanism always

recommends the fair plan to punish the low-rating users.

Then in Fig. 4.9, we show the price of stationarity of three representative

stationary rating mechanisms: the one with the optimal Threshold AF strategy,

the one with the optimal Threshold AS strategy, and the one with the optimal

Threshold FS strategy. We can see from Fig. 4.9 that as the rating update error

increases, the efficiency of stationary rating mechanisms decreases, and drops to 0

when the error probability is large (e.g. when ε > 0.4). In contrast, the proposed

rating mechanism can achieve arbitrarily close to the social optimum.

In Fig. 4.10, we illustrate the lower-bound discount factors under different

performance loss tolerances and rating update errors. As expected, when the per-
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Figure 4.8: Evolution of states and recommended plans taken in different rating

mechanisms.
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Figure 4.10: Lower-bound discount factors under different performance loss toler-

ances and rating update errors.

formance loss tolerance becomes larger, the lower-bound discount factor becomes

smaller. What is unexpected is how the lower-bound discount factor changes with

the rating update error. Specifically, the lower-bound discount factor decreases

initially with the increase of the error, and then increases with the error. It is

intuitive to see the discount factor increases with the rating update error, because

the users need to be more patient when the rating update is more erroneous. The

initial decrease of the discount factor in the error can be explained as follows. If

the rating update error is extremely small, the punishment for the rating-0 users

in the optimal rating update rule needs to be very severe (i.e. a smaller β+
0 and

a larger β−0 ). Hence, once a user is assigned with rating 0, it needs to be more

patient to carry out the severe punishment (i.e. weigh the future payoffs more).

Finally, we illustrate the robustness of the proposed mechanisms with respect

to the estimation of rating update errors. Suppose that the rating update error is ε.

However, the designer cannot accurately measure this error. Under the estimated

error ε̂, the rating mechanism will construct another recommended strategy. In

Fig. 4.11, we illustrate the performance gain/loss in terms of social welfare under
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Figure 4.11: Performance gain/loss (in percentage) under different inaccuracy of

estimation (in percentage).

the estimated error ε̂, when the rating update error is ε. We can see that there

is less than 5% performance variance when the estimation inaccuracy is less than

50%. The performance variance is larger when the rating update error is larger.

4.7 Conclusion

In this paper, we proposed a design framework for simple binary rating mecha-

nisms that can achieve the social optimum in the presence of rating update errors.

We provided design guidelines for the optimal rating update rules, and an algo-

rithm to construct the optimal nonstationary recommended strategy. The key

design principles that enable the rating mechanism to achieve the social optimum

are the differential punishments, and the nonstationary strategies that reduce

the performance loss while providing enough incentives. We also reduced the

complexity of computing the recommended strategy by proving that using three

recommended plans is enough to achieve the social optimum. The proposed rat-

ing mechanism is the first one that can achieve the social optimum even when

the rating update errors are large. Simulation results demonstrated the signifi-

cant performance gain of the proposed rating mechanism over the state-of-the-art

mechanisms, especially when the rating update error is large.
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4.8 Appendix

4.8.1 Proof of Proposition 4

4.8.1.1 The Claim to Prove

In order to prove Proposition 4, we quantify the performance loss of strategies

restricted to Aas. The performance loss is determined in the following claim:

Claim: Starting from any initial rating profile θ, the maximum social welfare

achievable at the PAE by (π0, π · 1N) ∈ Π(Aas)× ΠN(Aas) is at most

b− c− c · ρ(θ, α∗0, S
∗
B)
∑
s′∈S∗B

q(s′|θ, α∗0, αa · 1N), (4.15)

where α∗0, the optimal recommended plan, and S∗B, the optimal subset of rating

distributions, are the solutions to the following optimization problem:

min
α0

min
SB⊂S

{
ρ(θ, α0, SB)

∑
s′∈SB q(s

′|θ, α0, α
a · 1N)

}
(4.16)

s.t.
∑
s′∈S\SB q(s

′|θ, α0, α
a · 1N) >

∑
s′∈S\SB q(s

′|θ, α0, αi = α0, αa · 1N), ∀i,∑
s′∈S\SB q(s

′|θ, α0, α
a · 1N) >

∑
s′∈S\SB q(s

′|θ, α0, αi = α1, αa · 1N), ∀,∑
s′∈S\SB q(s

′|θ, α0, α
a · 1N) >

∑
s′∈S\SB q(s

′|θ, α0, αi = α01, αa · 1N), ∀i,

where ρ(θ, α0, SB) is defined as

ρ(θ, α0, SB) , (4.17)

maxi∈N max

{ sθi−1

N−1∑
s′∈S\SB q(s

′|θ, α0, αa · 1N)− q(s′|θ, α0, αi = α0, αa · 1N)
,

s1−θi
N−1∑

s′∈S\SB q(s
′|θ, α0, αa · 1N)− q(s′|θ, α0, αi = α1, αa · 1N)

,

1∑
s′∈S\SB q(s

′|θ, α0, αa · 1N)− q(s′|θ, α0, αi = α01, αa · 1N)

}
,

where α0 (resp. α1) is the plan in which the user does not serve rating-0 (resp.

rating-1) users, and α01 is the plan in which the user does not serve anyone.
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The above claim shows that

W (ε, δ, Aas) ≤ b− c− c · ρ(θ, α∗0, S
∗
B)
∑
s′∈S∗B

q(s′|θ, α∗0, αa · 1N)

for any δ. By defining

ζ(ε) , c · ρ(θ, α∗0, S
∗
B)
∑
s′∈S∗B

q(s′|θ, α∗0, αa · 1N),

we obtain the result in Proposition 1, namely limδ→1W (ε, δ, Aas) ≤ b− c− ζ(ε).

Note that ζ(ε) is indeed a function of the rating update error ε, because ε deter-

mines the state transition function q(s′|θ, α∗0, αa·1N), and thus affects ρ(θ, α0, SB).

Note also that ζ(ε) is independent of the discount factor δ.

In the expression of ζ(ε), ρ(θ, α0, SB) represents the normalized benefit from

deviation (normalized by b− c). The numerator of ρ(θ, α0, SB) is the probability

of a player matched to the type of clients whom it deviates to not serve. The

higher this probability, the larger benefit from deviation a player can get. The

denominator of ρ(θ, α0, SB) is the difference between the two state transition

probabilities when the player does and does not deviate, respectively. When

the above two transition probabilities are closer, it is less likely to detect the

deviation, which results in a larger ρ(θ, α0, SB). Hence, we can expect that a

larger ρ(θ, α0, SB) (i.e. a larger benefit from deviation) will result in a larger

performance loss, which is indeed true as will be proved later.

We can also see that ζ(ε) > 0 as long as ε > 0. The reason is as follows.

Suppose that ε > 0. First, from (4.17), we know that ρ(θ, α0, SB) > 0 for any θ,

α, and SB 6= ∅. Second, we can see that
∑
s′∈S∗B

q(s′|θ, α∗0, αa · 1N) > 0 as long as

S∗B 6= ∅. Since S∗B = ∅ cannot be the solution to the optimization problem (4.16)

(because S∗B = ∅ violates the constraints), we know that ζ(ε) > 0.
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4.8.1.2 Proof of the Claim

We prove that for any self-generating set (Wθ)θ∈ΘN , the maximum payoff in

(Wθ)θ∈ΘN , namely maxθ∈ΘN maxv∈Wθ maxi∈N vi, is bounded away from the so-

cial optimum b − c, regardless of the discount factor. In this way, we can prove

that any equilibrium payoff is bounded away from the social optimum. In ad-

dition, we analytically quantify the efficiency loss, which is independent of the

discount factor.

Since the strategies are restricted on the subset of plans Aas, in each period,

all the users will receive the same stage-game payoff, either (b − c) or 0, regard-

less of the matching rule and the rating profile. Hence, the expected discounted

average payoff for each user is the same. More precisely, at any given history

ht = (θ0, . . . ,θt), we have

Ui(θ
t, π0|ht , π|ht · 1N) = Uj(θ

t, π0|ht , π|ht · 1N), ∀i, j ∈ N , (4.18)

for any (π0, π ·1N) ∈ Π(Aas)×ΠN(Aas). As a result, when we restrict to the plan

set Aas, the self-generating set (Wθ)θ∈ΘN satisfies for any θ and any v ∈ Wθ

vi = vj, ∀i, j ∈ N . (4.19)

Given any self-generating set (Wθ)θ∈ΘN , define the maximum payoff v̄ as

v̄ , max
θ∈ΘN

max
v∈Wθ

max
i∈N

vi. (4.20)

Now we derive the upper bound of v̄ by looking at the decomposability constraints.

To decompose the payoff profile v̄ · 1N , we must find a recommended plan

α0 ∈ Aas, a plan profile α · 1N with α ∈ Aas, and a continuation payoff function

γ : ΘN → ∪θ′∈ΘNWθ′ with γ(θ′) ∈ Wθ′ , such that for all i ∈ N and for all

αi ∈ A,

v̄ = (1− δ)ui(θ, α0, α · 1N) + δ
∑
θ′

γi(θ
′)q(θ′|θ, α0, α · 1N) (4.21)

≥ (1− δ)ui(θ, α0, αi, α · 1N−1) + δ
∑
θ′

γi(θ
′)q(θ′|θ, α0, αi, α · 1N−1).

148



Note that we do not require the users’ plan α to be the same as the recommended

plan α0, and that we also do not require the continuation payoff function γ to be

a simple continuation payoff function.

First, the payoff profile v̄ · 1N cannot be decomposed by a recommended plan

α0 and the selfish plan αs. Otherwise, since γ(θ′) ∈ Wθ′ , we have

v̄ = (1− δ) · 0 + δ
∑
θ′

γi(θ
′)q(θ′|θ, α0, α

a · 1N)

≤ δ
∑
θ′

v̄i · q(θ′|θ, α0, α
a · 1N)

= δ · v̄ < v̄,

which is a contradiction.

Since we must use a recommended plan α0 and the altruistic plan αa to de-

compose v̄ · 1N , we can rewrite the decomposability constraint as

v̄ = (1− δ)(b− c) + δ
∑
θ′

γi(θ
′)q(θ′|θ, α0, α

a · 1N) (4.22)

≥ (1− δ)ui(θ, α0, αi, α
a · 1N−1) + δ

∑
θ′

γi(θ
′)q(θ′|θ, α0, αi, α

a · 1N−1).

Since the continuation payoffs under different rating profiles θ,θ′ that have

the same rating distribution s(θ) = s(θ′) are the same, namely γ(θ) = γ(θ′),

the continuation payoff depends only on the rating distribution. For notational

simplicity, with some abuse of notation, we write γ(s) as the continuation payoff

when the rating distribution is s, write q(s′|θ, α0, αi, α
a · 1N−1) as the probability

that the next state has a rating distribution s′, and write ui(s, α
a, αi, α

a · 1N−1)

as the stage-game payoff when the next state has a rating distribution s. Then

the decomposability constraint can be rewritten as

v̄ = (1− δ)(b− c) + δ
∑
s′

γi(s
′)q(s′|θ, α0, α

a · 1N) (4.23)

≥ (1− δ)ui(s, α0, αi, α
a · 1N−1) + δ

∑
s′

γi(s
′)q(s′|θ, α0, αi, α

a · 1N−1).
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Now we focus on a subclass of continuation payoff functions, and derive the

maximum payoff v̄ achievable under this subclass of continuation payoff functions.

Later, we will prove that we cannot increase v̄ by choosing other continuation pay-

off functions. Specifically, we focus on a subclass of continuation payoff functions

that satisfy

γi(s) = xA, ∀i ∈ N , ∀s ∈ SA ⊂ S, (4.24)

γi(s) = xB, ∀i ∈ N , ∀s ∈ SB ⊂ S, (4.25)

where SA and SB are subsets of the set of rating distributions S that have no

intersection, namely SA ∩SB = ∅. In other words, we assign the two continuation

payoff values to two subsets of rating distributions, respectively. Without loss of

generality, we assume xA ≥ xB.

Now we derive the incentive compatibility constraints. There are three plans

to deviate to, the plan α0 in which the user does not serve users with rating 0, the

plan α1 in which the user does not serve users with rating 1, and the plan α01 in

which the user does not serve anyone. The corresponding incentive compatibility

constraints for a user i with rating θi = 1 are[∑
s′∈SA

q(s′|θ, α0, α
a · 1N)− q(s′|θ, α0, αi = α0, αa · 1N)

]
(xA − xB) ≥ 1− δ

δ

s0

N − 1
c,[∑

s′∈SA

q(s′|θ, α0, α
a · 1N)− q(s′|θ, α0, αi = α1, αa · 1N)

]
(xA − xB) ≥ 1− δ

δ

s1 − 1

N − 1
c,[∑

s′∈SA

q(s′|θ, α0, α
a · 1N)− q(s′|θ, α0, αi = α01, αa · 1N)

]
(xA − xB) ≥ 1− δ

δ
c. (4.26)

Similarly, the corresponding incentive compatibility constraints for a user j
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with rating θj = 0 are[∑
s′∈SA

q(s′|θ, α0, α
a · 1N)− q(s′|θ, α0, αj = α0, αa · 1N)

]
(xA − xB) ≥ 1− δ

δ

s0 − 1

N − 1
c,[∑

s′∈SA

q(s′|θ, α0, α
a · 1N)− q(s′|θ, α0, αj = α1, αa · 1N)

]
(xA − xB) ≥ 1− δ

δ

s1

N − 1
c,[∑

s′∈SA

q(s′|θ, α0, α
a · 1N)− q(s′|θ, α0, αj = α01, αa · 1N)

]
(xA − xB) ≥ 1− δ

δ
c. (4.27)

We can summarize the above incentive compatibility constraints as

xA − xB ≥
1− δ
δ

c · ρ(θ, α0, SA), (4.28)

where

ρ(θ, α0, SB) ,

maxi∈N max

{ sθi−1

N−1∑
s′∈S\SB q(s

′|θ, α0, αa · 1N)− q(s′|θ, α0, αi = α0, αa · 1N)
,

s1−θi
N−1∑

s′∈S\SB q(s
′|θ, α0, αa · 1N)− q(s′|θ, α0, αi = α1, αa · 1N)

,

1∑
s′∈S\SB q(s

′|θ, α0, αa · 1N)− q(s′|θ, α0, αi = α01, αa · 1N)

}
.

Since the maximum payoff v̄ satisfies

v̄ = (1− δ)(b− c) + δ

xA ∑
s′∈S\SB

q(s′|θ, α0, α
a · 1N) + xB

∑
s′∈SB

q(s′|θ, α0, α
a · 1N)

 ,

to maximize v̄, we choose xB = xA − 1−δ
δ
c · ρ(θ, α0, SB). Since xA ≥ v̄, we have

v̄ = (1− δ)(b− c) + δ

(
xA −

1− δ
δ

c · ρ(θ, α0, SB)
∑
s′∈SB

q(s′|θ, α0, α
a · 1N)

)

≤ (1− δ)(b− c) + δ

(
v̄ − 1− δ

δ
c · ρ(θ, α0, SB)

∑
s′∈SB

q(s′|θ, α0, α
a · 1N)

)
,

which leads to

v̄ ≤ b− c− c · ρ(θ, α0, SB)
∑
s′∈SB

q(s′|θ, α0, α
a · 1N). (4.29)
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Hence, the maximum payoff v̄ satisfies

v̄ ≤ b− c− c · min
SB⊂S

{
ρ(θ, α0, SB)

∑
s′∈SB

q(s′|θ, α0, α
a · 1N)

}
, (4.30)

where SB satisfies for all i ∈ N ,∑
s′∈S\SB

q(s′|θ, α0, α
a · 1N) >

∑
s′∈S\SB

q(s′|θ, α0, αi = α0, αa · 1N),

∑
s′∈S\SB

q(s′|θ, α0, α
a · 1N) >

∑
s′∈S\SB

q(s′|θ, α0, αi = α1, αa · 1N),

∑
s′∈S\SB

q(s′|θ, α0, α
a · 1N) >

∑
s′∈S\SB

q(s′|θ, α0, αi = α01, αa · 1N). (4.31)

Following the same logic as in the proof of Proposition 6 in [97], we can prove

that we cannot achieve a higher maximum payoff by other continuation payoff

functions.

4.8.2 Analytical Expression of The Lower-Bound Discount Factor

The lower-bound discount factor δ(ε, ξ) is the maximum of three critical discount

factors, namely δ(ε, ξ) , max{δ1(ε, ξ), δ2(ε, ξ), δ3(ε, ξ)}, where

δ1(ε, ξ) , max
θ∈{0,1}

c

c+ (1− 2ε)(β+
θ − (1− β−θ ))(ξ κ2

κ1+κ2
)
,

δ2(ε, ξ) , max
s1∈{1,...,N−1}: s1

N−1
b+

N−s1
N−1

c>ξ
κ2

κ1+κ2

{
ξ κ2

κ1+κ2
−
(

s1
N−1

b+ N−s1
N−1

c
)

(ξ κ2

κ1+κ2
)
(
x+
s1
− x+

0

)
−
(

s1
N−1

b+ N−s1
N−1

c
)} ,

and

δ3(ε, ξ) , max
θ∈{0,1}

b− c+ c
x+
θ

(1−2ε)[β+
θ −(1−β−θ )]

b− c+
c·x+

θ

(1−2ε)[β+
θ −(1−β−θ )]

−
(1+κ1)(ξ

κ2
κ1+κ2

)−z2
κ1

− z3

, (4.32)

where z2 , −κ1(b − c) + κ1(1 − 1/κ2)ξ + ξ κ1

κ2
/(1 + κ2

κ1
), and z3 , z2/(κ1 + κ2).

Note that
(1+κ1)(ξ

κ2
κ1+κ2

)−z2
κ1

+ z3 < 0. We can see from the above expressions that

δ1(ε, ξ) < 1 and δ2(ε, ξ) < 1 as long as ξ > 0. For δ3(ε, ξ), simple calculations tell
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us that ξ appears in the denominator in the form of − (2κ1+κ2)κ2

(κ1+κ2)2κ1
· ξ. Since κ1 > 0

and κ2 > 0, we know that − (2κ1+κ2)κ2

(κ1+κ2)2κ1
< 0. Hence, δ3(ε, ξ) is increasing in ξ. As

a result, δ3(ε, ξ) < 1 as long as ξ is small enough.

Note that all the critical discount factors can be calculated analytically. Specif-

ically, δ1(ε, ξ) and δ3(ε, ξ) are the maximum of two analytically-computed num-

bers, and δ2(ε, ξ) is the maximum of at mostN−1 analytically-computed numbers.

4.8.3 Proof of Theorem 7

4.8.3.1 Outline of the proof

We derive the conditions under which the set (Wθ)θ∈ΘN is a self-generating set.

Specifically, we derive the conditions under which any payoff profile v ∈ Wθ is

decomposable on (Wθ′)θ′∈ΘN given θ, for all θ ∈ ΘN .

4.8.3.2 When users have different ratings

4.8.3.3 Preliminaries

We first focus on the states θ with 1 ≤ s1(θ) ≤ N − 1, and derive the conditions

under which any payoff profile v ∈ Wθ can be decomposed by (α0 = αa, αa · 1N)

or (α0 = αf, αf ·1N). First, v could be decomposed by (αa, αa ·1N), if there exists

a continuation payoff function γ : ΘN → ∪θ′∈ΘNWθ′ with γ(θ′) ∈ Wθ′ , such that

for all i ∈ N and for all αi ∈ A,

vi = (1− δ)ui(θ, αa, αa · 1N) + δ
∑
θ′

γi(θ
′)q(θ′|θ, αa, αa · 1N) (4.33)

≥ (1− δ)ui(θ, αa, αi, α
a · 1N−1) + δ

∑
θ′

γi(θ
′)q(θ′|θ, αa, αi, α

a · 1N−1).

Since we focus on simple continuation payoff functions, all the users with the

same future rating will have the same continuation payoff regardless of the rec-

ommended plan α0, the plan profile (αi, α ·1N−1), and the future state θ′. Hence,
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we write the continuation payoffs for the users with future rating 1 and 0 as γ1

and γ0, respectively. Consequently, the above conditions on decomposability can

be simplified to

vi = (1− δ) · ui(θ, αa, αa · 1N) (4.34)

+ δ

γ1
∑
θ′:θ′i=1

q(θ′|θ, αa, αa · 1N) + γ0
∑
θ′:θ′i=0

q(θ′|θ, αa, αa · 1N)


≥ (1− δ) · ui(θ, αa, αi, α

a · 1N−1)

+ δ

γ1
∑
θ′:θ′i=1

q(θ′|θ, αa, αi, α
a · 1N−1) + γ0

∑
θ′:θ′i=0

q(θ′|θ, αa, αi, α
a · 1N−1)

 .

First, consider the case when user i has rating 1 (i.e. θi = 1). Based on (??),

we can calculate the stage-game payoff as ui(θ, α
a, αa · 1N) = b − c. The term∑

θ′:θ′i=1 q(θ
′|θ, αa, αa · 1N) is the probability that user i has rating 1 in the next

state. Since user i’s rating update is independent of the other users’ rating update,

we can calculate this probability as

∑
θ′:θ′i=1

q(θ′|θ, αa, αa · 1N) = [(1− ε)β+
1 + ε(1− β−1 )]

∑
m∈M :θm(i)=1

µ(m)(4.35)

+ [(1− ε)β+
1 + ε(1− β−1 )]

∑
m∈M :θm(i)=0

µ(m)(4.36)

= (1− ε)β+
1 + ε(1− β−1 ) = x+

1 . (4.37)

Similarly, we can calculate
∑
θ′:θ′i=0 q(θ

′|θ, αa, αa · 1N), the probability that user i

has rating 0 in the next state, as

∑
θ′:θ′i=0

q(θ′|θ, αa, αa · 1N) = [(1− ε)(1− β+
1 ) + εβ−1 ]

∑
m∈M :θm(i)=1

µ(m)(4.38)

+ [(1− ε)(1− β+
1 ) + εβ−1 ]

∑
m∈M :θm(i)=0

µ(m)(4.39)

= (1− ε)(1− β+
1 ) + εβ−1 = 1− x+

1 . (4.40)

Now we discuss what happens if user i deviates. Since the recommended plan αa

is to exert high effort for all the users, user i can deviate to the other three plans,
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namely “exert high effort for rating-1 users only”, “exert high effort for rating-0

users only”, “exert low effort for all the users”. We can calculate the corresponding

stage-game payoff and state transition probabilities under each deviation.

• “exert high effort for rating-1 users only” (αi(1, θi) = 1, αi(0, θi) = 0):

ui(θ, α
a, αi, α

a · 1N−1) = b− c ·
∑

m∈M :θm(i)=1

µ(m) = b− c · s1(θ)− 1

N − 1
(4.41)

∑
θ′:θ′i=1

q(θ′|θ, αa, αi, α
a · 1N−1) (4.42)

= [(1− ε)β+
1 + ε(1− β−1 )]

∑
m∈M :θm(i)=1

µ(m) + [(1− ε)(1− β−1 ) + εβ+
1 ]

∑
m∈M :θm(i)=0

µ(m)

= [(1− ε)β+
1 + ε(1− β−1 )]

s1(θ)− 1

N − 1
+ [(1− ε)(1− β−1 ) + εβ+

1 ]
s0(θ)

N − 1
.

∑
θ′:θ′i=0

q(θ′|θ, αa, αi, α
a · 1N−1) (4.43)

= [(1− ε)(1− β+
1 ) + εβ−1 ]

∑
m∈M :θm(i)=1

µ(m) + [(1− ε)β−1 + ε(1− β+
1 )]

∑
m∈M :θm(i)=0

µ(m)

= [(1− ε)(1− β+
1 ) + εβ−1 ]

s1(θ)− 1

N − 1
+ [(1− ε)β−1 + ε(1− β+

1 )]
s0(θ)

N − 1
.

• “exert high effort for rating-0 users only” (αi(1, θi) = 0, αi(0, θi) = 1):

ui(θ, α
a, αi, α

a · 1N−1) = b− c ·
∑

m∈M :θm(i)=0

µ(m) = b− c · s0(θ)

N − 1
(4.44)

∑
θ′:θ′i=1

q(θ′|θ, αa, αi, α
a · 1N−1) (4.45)

= [(1− ε)(1− β−1 ) + εβ+
1 ]

∑
m∈M :θm(i)=1

µ(m) + [(1− ε)β+
1 + ε(1− β−1 )]

∑
m∈M :θm(i)=0

µ(m)

= [(1− ε)(1− β−1 ) + εβ+
1 ]
s1(θ)− 1

N − 1
+ [(1− ε)β+

1 + ε(1− β−1 )]
s0(θ)

N − 1
.
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∑
θ′:θ′i=0

q(θ′|θ, αa, αi, α
a · 1N−1) (4.46)

= [(1− ε)β−1 + ε(1− β+
1 )]

∑
m∈M :θm(i)=1

µ(m) + [(1− ε)(1− β+
1 ) + εβ−1 ]

∑
m∈M :θm(i)=0

µ(m)

= [(1− ε)β−1 + ε(1− β+
1 )]

s1(θ)− 1

N − 1
+ [(1− ε)(1− β+

1 ) + εβ−1 ]
s0(θ)

N − 1
.

• “exert low effort for all the users” (αi(1, θi) = 0, αi(0, θi) = 0):

ui(θ, α
a, αi, α

a · 1N−1) = b (4.47)

∑
θ′:θ′i=1

q(θ′|θ, αa, αi, α
a · 1N−1) (4.48)

= [(1− ε)(1− β−1 ) + εβ+
1 ]

∑
m∈M :θm(i)=1

µ(m) + [(1− ε)(1− β−1 ) + εβ+
1 ]

∑
m∈M :θm(i)=0

µ(m)

= (1− ε)(1− β−1 ) + εβ+
1 .

∑
θ′:θ′i=0

q(θ′|θ, αa, αi, α
a · 1N−1) (4.49)

= [(1− ε)β−1 + ε(1− β+
1 )]

∑
m∈M :θm(i)=1

µ(m) + [(1− ε)β−1 + ε(1− β+
1 )]

∑
m∈M :θm(i)=0

µ(m)

= (1− ε)β−1 + ε(1− β+
1 ).

Plugging the above expressions into (4.34), we can simplify the incentive com-

patibility constraints (i.e. the inequality constraints) to

(1− 2ε)
[
β+

1 − (1− β−1 )
]

(γ1 − γ0) ≥ 1− δ
δ
· c, (4.50)

under all three deviating plans.

Hence, if user i has rating 1, the decomposability constraints (4.34) reduces to

v1 = (1− δ) · (b− c) + δ ·
[
x+

1 γ
1 + (1− x+

1 )γ0
]
, (4.51)

where v1 is the payoff of the users with rating 1, and

(1− 2ε)
[
β+

1 − (1− β−1 )
]

(γ1 − γ0) ≥ 1− δ
δ
· c. (4.52)
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Similarly, if user i has rating 0, we can reduce the decomposability constraints

(4.34) to

v0 = (1− δ) · (b− c) + δ ·
[
x+

0 γ
1 + (1− x+

0 )γ0
]
, (4.53)

and

(1− 2ε)
[
β+

0 − (1− β−0 )
]

(γ1 − γ0) ≥ 1− δ
δ
· c. (4.54)

For the above incentive compatibility constraints (the above two inequalities)

to hold, we need to have β+
1 − (1 − β−1 ) > 0 and β+

0 − (1 − β−0 ) > 0, which are

part of Condition 1 and Condition 2. Now we will derive the rest of the sufficient

conditions in Theorem 7.

The above two equalities determine the continuation payoff γ1 and γ0 as below
γ1 = 1

δ
· (1−x+

0 )v1−(1−x+
1 )v0

x+
1 −x

+
0

− 1−δ
δ
· (b− c)

γ0 = 1
δ
· x

+
1 v

0−x+
0 v

1

x+
1 −x

+
0

− 1−δ
δ
· (b− c)

. (4.55)

Now we consider the decomposability constraints if we want to decompose a

payoff profile v ∈ Wθ using the fair plan αf. Since we focus on decomposition by

simple continuation payoff functions, we write the decomposition constraints as

vi = (1− δ) · ui(θ, αf, αf · 1N) (4.56)

+ δ

γ1
∑
θ′:θ′i=1

q(θ′|θ, αf, αf · 1N) + γ0
∑
θ′:θ′i=0

q(θ′|θ, αf, αf · 1N)


≥ (1− δ) · ui(θ, αf, αi, α

f · 1N−1)

+ δ

γ1
∑
θ′:θ′i=1

q(θ′|θ, αf, αi, α
f · 1N−1) + γ0

∑
θ′:θ′i=0

q(θ′|θ, αf, αi, α
f · 1N−1)

 .

Due to space limitation, we omit the details and directly give the simplifi-

cation of the above decomposability constraints as follows. First, the incentive

compatibility constraints (i.e. the inequality constraints) are simplified to

(1− 2ε)
[
β+

1 − (1− β−1 )
]

(γ1 − γ0) ≥ 1− δ
δ
· c, (4.57)
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and

(1− 2ε)
[
β+

0 − (1− β−0 )
]

(γ1 − γ0) ≥ 1− δ
δ
· c, (4.58)

under all three deviating plans. Note that the above incentive compatibility con-

straints are the same as the ones when we want to decompose the payoffs using

the altruistic plan αa.

Then, the equality constraints in (4.56) can be simplified as follows. For the

users with rating 1, we have

v1 = (1− δ) ·
(
b− s1(θ)− 1

N − 1
c

)
+ δ ·

[
x+
s1(θ) · γ

1 + (1− x+
s1(θ)) · γ

0
]
, (4.59)

where

xs1(θ) ,

[
(1− ε)s1(θ)− 1

N − 1
+

s0(θ)

N − 1

]
β+

1 +

(
ε
s1(θ)− 1

N − 1

)
(1− β−1 ). (4.60)

For the users with rating 0, we have

v0 = (1− δ) ·
(
s0(θ)− 1

N − 1
b− c

)
+ δ ·

[
x+

0 γ
1 + (1− x+

0 )γ0
]
. (4.61)

The above two equalities determine the continuation payoff γ1 and γ0 as below
γ1 = 1

δ
·

(1−x+
0 )v1−(1−x+

s1(θ)
)v0

x+
s1(θ)

−x+
0

− 1−δ
δ
·
(
b− s1(θ)−1

N−1
c
)

(1−x+
0 )−

(
s0(θ)−1
N−1

b−c
)

(1−x+
s1(θ)

)

x+
s1(θ)

−x+
0

γ0 = 1
δ
·
x+
s1(θ)

v0−x+
0 v

1

x+
s1(θ)

−x+
0

− 1−δ
δ
·
(
b− s1(θ)−1

N−1
c
)
x+

0 −
(
s0(θ)−1
N−1

b−c
)
x+
s1(θ)

x+
s1(θ)

−x+
0

.(4.62)

4.8.3.4 Sufficient conditions

Now we derive the sufficient conditions under which any payoff profile v ∈ Wθ

can be decomposed by (α0 = αa, αa · 1N) or (α0 = αf, αf · 1N). Specifically, we

will derive the conditions such that for any payoff profile v ∈ Wθ, at least one

of the two decomposability constraints (4.34) and (4.56) is satisfied. From the

preliminaries, we know that the incentive compatibility constraints in (4.34) and

(4.56) can be simplified into the same constraints:

(1− 2ε)
[
β+

1 − (1− β−1 )
]

(γ1 − γ0) ≥ 1− δ
δ
· c, (4.63)
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and

(1− 2ε)
[
β+

0 − (1− β−0 )
]

(γ1 − γ0) ≥ 1− δ
δ
· c. (4.64)

The above constraints impose the constraint on the discount factor, namely

δ ≥ max
θ∈Θ

c

c+ (1− 2ε)
[
β+
θ − (1− β−θ )

]
(γ1 − γ0)

. (4.65)

Since γ1 and γ0 should satisfy γ1 − γ0 ≥ ε0 − ε1, the above constraints can be

rewritten as

δ ≥ max
θ∈Θ

c

c+ (1− 2ε)
[
β+
θ − (1− β−θ )

]
(ε0 − ε1)

, (4.66)

where is part of Condition 3 in Theorem 7.

In addition, the continuation payoffs γ1 and γ0 should satisfy the constraints

of the self-generating set, namely

γ1 − γ0 ≥ ε0 − ε1, (4.67)

γ1 +
c

(N − 1)b
· γ0 ≤ z2 , (1 +

c

(N − 1)b
)(b− c)− c

(N − 1)b
ε0 − ε1,(4.68)

γ1 − b
N−2
N−1

b− c
· γ0 ≤ z3 , −

b
N−2
N−1

b−c − 1

1 + c
(N−1)b

· z2. (4.69)

We can plug the expressions of the continuation payoffs γ1 and γ0 in (4.55) and

(4.62) into the above constraints. Specifically, if a payoff profile v is decomposed

by the altruistic plan, the following constraints should be satisfied for the contin-

uation payoff profile to be in the self-generating set: (for notational simplicity, we

define κ1 , b
N−2
N−1

b−c − 1 and κ2 , 1 + c
(N−1)b

)

1

δ
· v

1 − v0

x+
1 − x+

0

≥ ε0 − ε1, (αa-1)

1

δ
·
{

(1− κ2x
+
0 )v1 − (1− κ2x

+
1 )v0

x+
1 − x+

0

− κ2 · (b− c)
}
≤ z2 − κ2 · (b− c), (αa-2)

1

δ
·
{

(1 + κ1x
+
0 )v1 − (1 + κ1x

+
1 )v0

x+
1 − x+

0

+ κ1 · (b− c)
}
≤ z3 + κ1 · (b− c). (αa-3)
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The constraint (αa-1) is satisfied for all v1 and v0 as long as x+
1 > x+

0 , because

v1 − v0 > ε0 − ε1, |x+
1 > x+

0 | < 1, and δ < 1.

Since both the left-hand side (LHS) and the right-hand side (RHS) of (αa-2)

are smaller than 0, we have

(αa-2)⇔ δ ≤
(1−κ2x

+
0 )v1−(1−κ2x

+
1 )v0

x+
1 −x

+
0

− κ2 · (b− c)

z2 − κ2 · (b− c)
(4.70)

The RHS of (αa-3) is larger than 0. Hence, we have

(αa-3)⇔ δ ≥
(1+κ1x

+
0 )v1−(1+κ1x

+
1 )v0

x+
1 −x

+
0

+ κ1 · (b− c)

z3 + κ1 · (b− c)
. (4.71)

If a payoff profile v is decomposed by the fair plan, the following constraints

should be satisfied for the continuation payoff profile to be in the self-generating

set:

1

δ
·

{
v1 − v0

x+
s1(θ) − x

+
0

−
s1(θ)
N−1

b+ s0(θ)
N−1

c

x+
s1(θ) − x

+
0

}
≥ ε0 − ε1 −

s1(θ)
N−1

b+ s0(θ)
N−1

c

x+
s1(θ) − x

+
0

, (αf-1)

1

δ
·

(1− κ2x
+
0 )v1 − (1− κ2x

+
s1(θ))v

0

x+
s1(θ) − x

+
0

−
(1− κ2x

+
0 )
(
b− s1(θ)−1

N−1
c
)
− (1− κ2x

+
s1(θ))

(
s0(θ)−1
N−1

b− c
)

x+
s1(θ) − x

+
0


≤ z2 −

(1− κ2x
+
0 )
(
b− s1(θ)−1

N−1
c
)
− (1− κ2x

+
s1(θ))

(
s0(θ)−1
N−1

b− c
)

x+
s1(θ) − x

+
0

, (αf-2)

1

δ
·

(1 + κ1x
+
0 )v1 − (1 + κ1x

+
s1(θ))v

0

x+
s1(θ) − x

+
0

−
(1 + κ1x

+
0 )
(
b− s1(θ)−1

N−1
c
)
− (1 + κ1x

+
s1(θ))

(
s0(θ)−1
N−1

b− c
)

x+
s1(θ) − x

+
0


≤ z3 −

(1 + κ1x
+
0 )
(
b− s1(θ)−1

N−1
c
)
− (1 + κ1x

+
s1(θ))

(
s0(θ)−1
N−1

b− c
)

x+
s1(θ) − x

+
0

. (αf-3)

Since v1−v0

x+
s1(θ)

−x+
0

> ε0 − ε1, the constraint (αf-1) is satisfied for all v1 and v0 if

v1 − v0 ≥ s1(θ)
N−1

b+ s0(θ)
N−1

c. Hence, the constraint (αf-1) is equivalent to

δ ≥
v1 − v0 −

(
s1(θ)
N−1

b+ s0(θ)
N−1

c
)

(ε0 − ε1)(x+
s1(θ) − x

+
0 )−

(
s1(θ)
N−1

b+ s0(θ)
N−1

c
) , for θ s.t.

s1(θ)

N − 1
b+

s0(θ)

N − 1
c ≥ v1 − v0.(4.72)
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For (αf-2), we want to make the RHS have the same (minus) sign under any

state θ, which is true if

1− κ2x
+
0 > 0, 1− κ2x

+
s1(θ) < 0,

1− κ2x
+
s1(θ)

1− κ2x
+
0

≥ −(κ2 − 1), s1(θ) = 1, . . . , N − 1,(4.73)

which leads to

x+
s1(θ) >

1

κ2

, x+
0 <

1

κ2

, x+
0 <

1− x+
s1(θ)

1− κ2

, s1(θ) = 1, . . . , N − 1, (4.74)

⇔ N − 2

N − 1
x+

1 +
1

N − 1
β+

1 >
1

κ2

, x+
0 < min

{
1

κ2

,
1− β+

1

1− κ2

}
. (4.75)

Since the RHS of (αf-2) is smaller than 0, we have

(αf-2)⇔ δ ≤

(1−κ2x
+
0 )v1−(1−κ2x

+
s1(θ)

)v0

x+
s1(θ)

−x+
0

−
(1−κ2x

+
0 )
(
b− s1(θ)−1

N−1
c
)
−(1−κ2x

+
s1(θ)

)
(
s0(θ)−1
N−1

b−c
)

x+
s1(θ)

−x+
0

z2 −
(1−κ2x

+
0 )
(
b− s1(θ)−1

N−1
c
)
−(1−κ2x

+
s1(θ)

)
(
s0(θ)−1
N−1

b−c
)

x+
s1(θ)

−x+
0

.(4.76)

For (αf-3), since
1+κ1x

+
s1(θ)

1+κ1x
+
0

< 1 + κ1, the RHS is always smaller than 0. Hence,

we have

(αf-3)⇔ δ ≤

(1+κ1x
+
0 )v1−(1+κ1x

+
s1(θ)

)v0

x+
s1(θ)

−x+
0

−
(1+κ1x

+
0 )
(
b− s1(θ)−1

N−1
c
)
−(1+κ1x

+
s1(θ)

)
(
s0(θ)−1
N−1

b−c
)

x+
s1(θ)

−x+
0

z3 −
(1+κ1x

+
0 )
(
b− s1(θ)−1

N−1
c
)
−(1+κ1x

+
s1(θ)

)
(
s0(θ)−1
N−1

b−c
)

x+
s1(θ)

−x+
0

.(4.77)

We briefly summarize what requirements on δ we have obtained now. To make

the continuation payoff profile in the self-generating under the decomposition of

αa, we have one upper bound on δ resulting from (αa-2) and one lower bound

on δ resulting from (αa-3). To make the continuation payoff profile in the self-

generating under the decomposition of αf, we have two upper bounds on δ resulting

from (αf-2) and (αf-3), and one lower bound on δ resulting from (αf-1). First, we

want to eliminate the upper bounds, namely make the upper bounds larger than

1, such that δ can be arbitrarily close to 1.

To eliminate the following upper bound resulting from (αa-2)

δ ≤
(1−κ2x

+
0 )v1−(1−κ2x

+
1 )v0

x+
1 −x

+
0

− κ2 · (b− c)

z2 − κ2 · (b− c)
, (4.78)
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we need to have (since z2 − κ2 · (b− c) < 0)

(1− κ2x
+
0 )v1 − (1− κ2x

+
1 )v0

x+
1 − x+

0

≤ z2, ∀v1, v0. (4.79)

The LHS of the above inequality is maximized when v0 = z2−z3
κ1+κ2

and v1 = v0 +

κ1z2+κ2z3
κ1+κ2

. Hence, the above inequality is satisfied if

(1− κ2x
+
0 )
(
z2−z3
κ1+κ2

+ κ1z2+κ2z3
κ1+κ2

)
− (1− κ2x

+
1 ) z2−z3

κ1+κ2

x+
1 − x+

0

≤ z2 (4.80)

⇔
(

1− x+
1 − x+

0 (κ2 − 1)

x+
1 − x+

0

κ1

κ1 + κ2

)
z2 ≤ −

1− x+
1 − x+

0 (κ2 − 1)

x+
1 − x+

0

κ2

κ1 + κ2

z3.(4.81)

Since x+
0 <

1−β+
1

1−κ2
<

1−x+
1

1−κ2
, we have

z2 ≤ −
κ2

κ1

z3. (4.82)

To eliminate the following upper bound resulting from (αf-2)

δ ≤

(1−κ2x
+
0 )v1−(1−κ2x

+
s1(θ)

)v0

x+
s1(θ)

−x+
0

−
(1−κ2x

+
0 )
(
b− s1(θ)−1

N−1
c
)
−(1−κ2x

+
s1(θ)

)
(
s0(θ)−1
N−1

b−c
)

x+
s1(θ)

−x+
0

z2 −
(1−κ2x

+
0 )
(
b− s1(θ)−1

N−1
c
)
−(1−κ2x

+
s1(θ)

)
(
s0(θ)−1
N−1

b−c
)

x+
s1(θ)

−x+
0

, (4.83)

we need to have (since z2 −
(1−κ2x

+
0 )
(
b− s1(θ)−1

N−1
c
)
−(1−κ2x

+
s1(θ)

)
(
s0(θ)−1
N−1

b−c
)

x+
s1(θ)

−x+
0

< 0)

(1− κ2x
+
0 )v1 − (1− κ2x

+
s1(θ))v

0

x+
s1(θ) − x

+
0

≤ z2, ∀v1, v0. (4.84)

Similarly, the LHS of the above inequality is maximized when v0 = z2−z3
κ1+κ2

and

v1 = v0 + κ1z2+κ2z3
κ1+κ2

. Hence, the above inequality is satisfied if

(1− κ2x
+
0 )
(
z2−z3
κ1+κ2

+ κ1z2+κ2z3
κ1+κ2

)
− (1− κ2x

+
s1(θ))

z2−z3
κ1+κ2

x+
s1(θ) − x

+
0

≤ z2 (4.85)

⇔

(
1− x+

s1(θ) − x
+
0 (κ2 − 1)

x+
s1(θ) − x

+
0

κ1

κ1 + κ2

)
z2 ≤ −

1− x+
s1(θ) − x

+
0 (κ2 − 1)

x+
s1(θ) − x

+
0

κ2

κ1 + κ2

z3.(4.86)

Since x+
0 <

1−β+
1

1−κ2
<

1−x+
s1(θ)

1−κ2
, we have

z2 ≤ −
κ2

κ1

z3. (4.87)
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To eliminate the following upper bound resulting from (αf-3)

δ ≤

(1+κ1x
+
0 )v1−(1+κ1x

+
s1(θ)

)v0

x+
s1(θ)

−x+
0

−
(1+κ1x

+
0 )
(
b− s1(θ)−1

N−1
c
)
−(1+κ1x

+
s1(θ)

)
(
s0(θ)−1
N−1

b−c
)

x+
s1(θ)

−x+
0

z3 −
(1+κ1x

+
0 )
(
b− s1(θ)−1

N−1
c
)
−(1+κ1x

+
s1(θ)

)
(
s0(θ)−1
N−1

b−c
)

x+
s1(θ)

−x+
0

, (4.88)

we need to have (since z3 −
(1+κ1x

+
0 )
(
b− s1(θ)−1

N−1
c
)
−(1+κ1x

+
s1(θ)

)
(
s0(θ)−1
N−1

b−c
)

x+
s1(θ)

−x+
0

< 0)

(1 + κ1x
+
0 )v1 − (1 + κ1x

+
s1(θ))v

0

x+
s1(θ) − x

+
0

≤ z3, ∀v1, v0. (4.89)

Again, the LHS of the above inequality is maximized when v0 = z2−z3
κ1+κ2

and v1 =

v0 + κ1z2+κ2z3
κ1+κ2

. Hence, the above inequality is satisfied if

(1 + κ1x
+
0 )
(
z2−z3
κ1+κ2

+ κ1z2+κ2z3
κ1+κ2

)
− (1 + κ1x

+
s1(θ))

z2−z3
κ1+κ2

x+
s1(θ) − x

+
0

≤ z3 (4.90)

⇔

(
1− x+

s1(θ) + x+
0 (κ1 + 1)

x+
s1(θ) − x

+
0

κ1

κ1 + κ2

)
z2 ≤ −

1− x+
s1(θ) + x+

0 (κ1 + 1)

x+
s1(θ) − x

+
0

κ2

κ1 + κ2

z3.(4.91)

Since 1− x+
s1(θ) + x+

0 (κ1 + 1) > 0, we have

z2 ≤ −
κ2

κ1

z3. (4.92)

In summary, to eliminate the upper bounds on δ, we only need to have z2 ≤

−κ2

κ1
z3, which is satisfied since we define z3 , −κ1

κ2
z2.

Now we derive the analytical lower bound on δ based on the lower bounds

resulting from (αa-3) and (αf-1):

(αa-3)⇔ δ ≥
(1+κ1x

+
0 )v1−(1+κ1x

+
1 )v0

x+
1 −x

+
0

+ κ1 · (b− c)

z3 + κ1 · (b− c)
, (4.93)

and

δ ≥
v1 − v0 −

(
s1(θ)
N−1

b+ s0(θ)
N−1

c
)

(ε0 − ε1)(x+
s1(θ) − x

+
0 )−

(
s1(θ)
N−1

b+ s0(θ)
N−1

c
) , for θ s.t.

s1(θ)

N − 1
b+

s0(θ)

N − 1
c ≥ v1 − v0.(4.94)
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We define an intermediate lower bound based on the latter inequality along with

the inequalities resulting from the incentive compatibility constraints:

δ′ = max

{
max

s1∈{1,...,N−1}: s1
N−1

b+
N−s1
N−1

c>ε0−ε1

ε0 − ε1 −
(

s1
N−1

b+ N−s1
N−1

c
)

(ε0 − ε1)
(
N−s1
N−1

β+
1 + s1−1

N−1
x+

1

)
−
(

s1
N−1

b+ N−s1
N−1

c
) ,

max
θ∈{0,1}

c

c+ (1− 2ε)(β+
θ − (1− β−θ ))(ε0 − ε1)

}
.(4.95)

Then the lower bound can be written as δ = max {δ′, δ′′}, where δ′′ is the lower

bound that we will derive for the case when the users have the same rating. If

the payoffs v1 and v0 satisfy the constraint resulting from (αa-3), namely satisfy

(1 + κ1x
+
0 )v1 − (1 + κ1x

+
1 )v0

x+
1 − x+

0

≤ δz3 − (1− δ)κ1 · (b− c), (4.96)

then we use αa to decompose v1 and v0. Otherwise, we use αf to decompose v1

and v0

4.8.3.5 When the users have the same rating

Now we derive the conditions under which any payoff profile in W1N and W0N

can be decomposed.

If all the users have rating 1, namely θ = 1N , to decompose v ∈ W1N , we

need to find a recommended plan α0 and a simple continuation payoff function γ

such that for all i ∈ N and for all αi ∈ A,

vi = (1− δ)ui(θ, α0, α0 · 1N) + δ
∑
θ′

γi(θ
′)q(θ′|θ, α0, α0 · 1N) (4.97)

≥ (1− δ)ui(θ, α0, αi, α0 · 1N−1) + δ
∑
θ′

γi(θ
′)q(θ′|θ, α0, αi, α0 · 1N−1).

When all the users have the same rating, the altruistic plan αa is equivalent to the

fair plan αf. Hence, we use the altruistic plan and the selfish plan to decompose

the payoff profiles.

If we use the altruistic plan αa to decompose a payoff profile v, we have

v1 = (1− δ)(b− c) + δ(x+
1 γ

1 + (1− x+
1 )γ0), (4.98)
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and the incentive compatibility constraint

(1− 2ε)
[
β+

1 − (1− β−1 )
]

(γ1 − γ0) ≥ 1− δ
δ

c. (4.99)

Setting γ1 = γ0+1−δ
δ

c

(1−2ε)[β+
1 −(1−β−1 )]

and noticing that γ0 ∈
[

(1+κ1)(ε0−ε1)−z3
κ1

, κ1z2+(κ2−1)z3
κ1+κ2

]
,

we get an lower bound on v1 that can be decomposed by αa

v1 = (1− δ)(b− c) + δ

(
γ0 + x+

1

1− δ
δ

c

(1− 2ε)
[
β+

1 − (1− β−1 )
]) (4.100)

≥ (1− δ)

(
b− c+ c

x+
1

(1− 2ε)
[
β+

1 − (1− β−1 )
])+ δ

(1 + κ1)(ε0 − ε1)− z3

κ1

(4.101)

If we use the selfish plan αs to decompose a payoff profile v, we have

v1 = δ(x+
1 γ

1 + (1− x+
1 )γ0). (4.102)

Since the selfish plan is NE of the stage game, the incentive compatibility con-

straint is satisfied as long as we set γ1 = γ0. Hence, we have v1 = δγ0. Again,

noticing that γ0 ∈
[

(1+κ1)(ε0−ε1)−z3
κ1

, κ1z2+(κ2−1)z3
κ1+κ2

]
, we get an upper bound on v1

that can be decomposed by αs

v1 = δγ0 ≤ δ
κ1z2 + (κ2 − 1)z3

κ1 + κ2

. (4.103)

In order to decompose any payoff profile v ∈ W1N , the lower bound on v1 that

can be decomposed by αa must be smaller than the upper bound on v1 that can

be decomposed by αs, which leads to

(1− δ)
(
b− c+ c

x+
1

(1−2ε)[β+
1 −(1−β−1 )]

)
+ δ (1+κ1)(ε0−ε1)−z3

κ1
≤ δ κ1z2+(κ2−1)z3

κ1+κ2

⇒ δ ≥
b−c+c

x+
1

(1−2ε)[β+
1 −(1−β−1 )]

b−c+c
x+
1

(1−2ε)[β+
1 −(1−β−1 )]

+
κ1z2+(κ2−1)z3

κ1+κ2
− (1+κ1)(ε0−ε1)−z3

κ1

. (4.104)

Finally, following the same procedure, we derive the lower bound on δ when

all the users have rating 0, namely θ = 0N . Similarly, in this case, the altruistic

plan αa is equivalent to the fair plan αf. Hence, we use the altruistic plan and the

selfish plan to decompose the payoff profiles.
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If we use the altruistic plan αa to decompose a payoff profile v, we have

v0 = (1− δ)(b− c) + δ(x+
0 γ

1 + (1− x+
0 )γ0), (4.105)

and the incentive compatibility constraint

(1− 2ε)
[
β+

0 − (1− β−0 )
]

(γ1 − γ0) ≥ 1− δ
δ

c. (4.106)

If we use the selfish plan αs to decompose a payoff profile v, we have

v1 = δ(x+
0 γ

1 + (1− x+
0 )γ0). (4.107)

Note that when θ = 0N , if we substitute β+
0 , β−0 , x−0 with β+

1 , β−1 , x−1 , respec-

tively, the decomposability constraints become the same as those when θ = 1N .

Hence, we derive a similar lower bound on δ

δ ≥
b− c+ c

x+
0

(1−2ε)[β+
0 −(1−β−0 )]

b− c+ c
x+

0

(1−2ε)[β+
0 −(1−β−0 )]

+ κ1z2+(κ2−1)z3
κ1+κ2

− (1+κ1)(ε0−ε1)−z3
κ1

. (4.108)

Finally, we can obtain the lower bound on δ when the users have the same

rating as

δ′′ = max
θ∈{0,1}

b− c+ c
x+
θ

(1−2ε)[β+
θ −(1−β−θ )]

b− c+ c
x+
θ

(1−2ε)[β+
θ −(1−β−θ )]

+ κ1z2+(κ2−1)z3
κ1+κ2

− (1+κ1)(ε0−ε1)−z3
κ1

. (4.109)

Together with the lower bound δ′ derived for the case when the users have

different ratings, we can get the lower bound δ specified in Condition 3 of Theo-

rem 7.

4.8.4 Complete Description of the Algorithm
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Table 4.7: The algorithm of constructing the equilibrium strategy by the rating

mechanism.

Require: b, c, ε, ξ; τ(ε), δ ≥ δ(ε, ξ); θ0

Initialization: t = 0, ε0 = ξ, ε1 = ε0/(1 + κ2
κ1

), vθ = b− c− εθ, θ = θ0.

repeat

if s1(θ) = 0 then

if v0 ≥ (1− δ)
[
b− c+

(1−ε)β+
0 +ε(1−β−0 )

(1−2ε)(β+
0 −(1−β−0 )

c

]
+ δ ε0−ε1−z3

κ1
then

αt0 = αa

v0 ← v0

δ
− 1−δ

δ

[
b− c+

(1−ε)β+
0 +ε(1−β−0 )

(1−2ε)(β+
0 −(1−β−0 )

c

]
,v1 ← v0 + 1−δ

δ

[
1

(1−2ε)(β+
0 −(1−β−0 )

c

]
else

αt0 = αs

v0 ← v0

δ
, v1 ← v0

end

elseif s1(θ) = N then

if v1 ≥ (1− δ)
[
b− c+

(1−ε)β+
1 +ε(1−β−1 )

(1−2ε)(β+
1 −(1−β−1 )

c

]
+ δ ε0−ε1−z3

κ1
then

αt0 = αa

v1 ← v1

δ
− 1−δ

δ

[
b− c+

(1−ε)β+
1 +ε(1−β−1 )

(1−2ε)(β+
1 −(1−β−1 )

c

]
, v0 ← v1 − 1−δ

δ

[
1

(1−2ε)(β+
1 −(1−β−1 )

c

]
else

αt0 = αs

v1 ← v1

δ
, v0 ← v1

end

else

if
1+κ1x

+
0

x+1 −x
+
0

v1 − 1+κ1x
+
1

x+1 −x
+
0

v0 ≤ δz3 − (1− δ)κ1(b− c) then

αt0 = αa

v1′ ← 1
δ

(1−x+0 )v1−(1−x+1 )v0

x+1 −x
+
0

− 1−δ
δ

(b− c), v0′ ← 1
δ

x+1 v
0−x+0 v

1

x+1 −x
+
0

− 1−δ
δ

(b− c)

v1 ← v1′, v0 ← v0′

else

αt0 = αf

v1′ ← 1
δ

(1−x+0 )v1−(1−x+
s1(θ)

)v0

x+
s1(θ)

−x+0
− 1−δ

δ

(b− s1(θ)−1
N−1

c)(1−x+0 )−(
s0(θ)−1

N−1
b−c)(1−x+

s1(θ)
)

x+
s1(θ)

−x+0

v1′ ← 1
δ

x+0 v
1−x+

s1(θ)
v0

x+0 −x
+
s1(θ)

− 1−δ
δ

(b− s1(θ)−1
N−1

c)x+0 −(
s0(θ)−1

N−1
b−c)x+

s1(θ)

x+0 −x
+
s1(θ)

v1 ← v1′, v0 ← v0′

end

end

t← t+ 1, determine the rating profile θt, set θ ← θt

until ∅
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CHAPTER 5

Concluding Remarks

In this thesis, we have studied three classes of multi-agent sequential decision

problems: resource sharing with imperfect monitoring, resource sharing with de-

centralized information, and resource exchange with imperfect monitoring. We

have derived optimal solutions for all the above problems, and have demonstrated

the significant peroformance gains over state-of-the-art solutions.

There are many future research directions. All the problems studied in this

thesis have focused on certain features of the problems while making simplifying

assumptions on the other aspects of the problem. It is of great importance and

interest, although challenging, to study more general problems that include the

problems studied here as special cases. We mention some particularly interesting

directions as follows:

• Extentions on the agents’ interaction: The problems studied in this thesis

model the agents’ interaction by two extremes: either each player interacts

with every else, or each player interacts with only one other player uniformly

randomly. We can consider more general models for the interaction. For

example, we can have a underlying graph that represents how the agents

are connected, under which an agent interacts with its neighbors only. We

can also have different matching rules that are not uniformly random. It is

especially interesting when the designer can design the network topology or

the matching rules. In this case, the optimal design of the agents’ interaction

is crucial.
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• Extensions on the state dynamics: The problems studied in this thesis also

model the state dynamics by two extremes: either there is a public state

known to every agent, or each agent has a private state that is independent

of the others’ states and actions. We can consider more general models for

the state dynamics. The agents can have both the public state and private

states. The agents’ state transitions can depend on the others’ states and

actions.
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