- Main
Ionic Conductive and Highly‐Stable Interface for Alkali Metal Anodes
Abstract
Alkali metals are regarded as the most promising candidates for advanced anode for the next-generation batteries due to their high specific capacity, low electrochemical potential, and lightweight. However, critical problems of the alkali metal anodes, especially dendrite formation and interface stabilization, remain challenging to overcome. The solid electrolyte interphase (SEI) is a key factor affecting Li and Na deposition behavior and electrochemical performances. Herein, a facile and universal approach is successfully developed to fabricate ionic conductive interfaces for Li and Na metal anodes by modified atomic layer deposition (ALD). In this process, the Li metal (or Na metal) plays the role of Li (or Na) source without any additional Li (or Na) precursor during ALD. Moreover, the key questions about the influence of ALD deposition temperature on the compositions and structure of the coatings are addressed. The optimized ionic conductive coatings have significantly improved the electrochemical performances. In addition, the electrochemical phase-field model is performed to prove that the ionic conductive coating is very effective in promoting uniform electrodeposition. This approach is universal and can be potentially applied to other different metal anodes. At the same time, it can be extended to other types of coatings or other deposition techniques.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-