Skip to main content
eScholarship
Open Access Publications from the University of California

UC Berkeley

UC Berkeley Previously Published Works bannerUC Berkeley

Novel technique for the study of pileup events in cryogenic bolometers

Abstract

Precise characterization of detector time resolution is of crucial importance for next-generation cryogenic-bolometer experiments searching for neutrinoless double-beta decay, such as CUPID, in order to reject background due to pileup of two-neutrino double-beta decay events. In this paper, we describe a technique developed to study the pileup rejection capability of cryogenic bolometers. Our approach, which consists of producing controlled pileup events with a programmable wave-form generator, has the benefit that we can reliably and reproducibly control the time separation and relative energy of the individual components of the generated pileup events. The resulting data allow us to optimize and benchmark analysis strategies to discriminate between individual and pileup pulses. We describe a test of this technique performed with a small array of detectors at the Laboratori Nazionali del Gran Sasso, in Italy; we obtain a 90% rejection efficiency against pulser-generated pileup events with rise time of ∼15ms down to time separation between the individual events of about 2ms.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View