Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Chelator Regulation of In Situ Calcium Availability to Enable Spray-Dry Microencapsulation in Cross-Linked Alginates

Abstract

A recently patented one-step in situ cross-linked alginate microencapsulation (CLAM) by spray-drying (i.e., the UC Davis CLAMs technology) can overcome the high cost of scale-up that limits commercial applications. While increasing calcium loading in the CLAMs process can increase the extent of cross-linking and improve retention and protection of the encapsulated cargo, the potential for residual undissolved calcium salt crystals in the final product can be a concern for some applications. Here, we demonstrate an alternate one-step spray-dry CLAMs process using pH-responsive chelation of calcium. The "Chelate CLAMs" process is an improvement over the patented process that controls ion availability based on pH-responsive solubility of the calcium salt. Hyaluronic acid was encapsulated in CLAMs to minimize swelling and release in aqueous formulations. CLAMs with 61% (d.b.) hyaluronic acid (HA-CLAMs) demonstrated restricted plumping, limited water absorption capacity, and reduced leaching, retaining up to 49% hyaluronic acid after 2 h in water. Alternatively, "Chelate HA-CLAMs" formed by the improved process exhibited nearly full retention of hyaluronic acid over 2 h in water and remained visibly insoluble after 1 year of storage in water at 4 °C. Successful hyaluronic acid retention in CLAMs is likely due in part to its ability to cross-link with calcium.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View