Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Extracellular Polymeric Substance Architecture Influences Natural Genetic Transformation of Acinetobacter baylyi in Biofilms

Abstract

Genetic exchange by natural transformation is an important mechanism of horizontal gene transfer in biofilms. Thirty-two biofilm metrics were quantified in a heavily encapsulated Acinetobacter baylyi strain and a miniencapsulated mutant strain, accounting for cellular architecture, extracellular polymeric substances (EPS) architecture, and their combined biofilm architecture. In general, transformation location, abundance, and frequency were more closely correlated to EPS architecture than to cellular or combined architecture. Transformation frequency and transformant location had the greatest correlation with the EPS metric surface area-to-biovolume ratio. Transformation frequency peaked when EPS surface area-to-biovolume ratio was greater than 3 μm(2)/μm(3) and less than 5 μm(2)/μm(3). Transformant location shifted toward the biofilm-bulk fluid interface as the EPS surface area-to-biovolume ratio increased. Transformant biovolume was most closely correlated with EPS biovolume and peaked when transformation occurred in close proximity to the substratum. This study demonstrates that biofilm architecture influences A. baylyi transformation frequency and transformant location and abundance. The major role of EPS may be to facilitate the binding and stabilization of plasmid DNA for cellular uptake.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View