- Main
Pathway-based subnetworks enable cross-disease biomarker discovery
- Haider, Syed;
- Yao, Cindy Q;
- Sabine, Vicky S;
- Grzadkowski, Michal;
- Stimper, Vincent;
- Starmans, Maud HW;
- Wang, Jianxin;
- Nguyen, Francis;
- Moon, Nathalie C;
- Lin, Xihui;
- Drake, Camilla;
- Crozier, Cheryl A;
- Brookes, Cassandra L;
- van de Velde, Cornelis JH;
- Hasenburg, Annette;
- Kieback, Dirk G;
- Markopoulos, Christos J;
- Dirix, Luc Y;
- Seynaeve, Caroline;
- Rea, Daniel W;
- Kasprzyk, Arek;
- Lambin, Philippe;
- Lio’, Pietro;
- Bartlett, John MS;
- Boutros, Paul C
- et al.
Published Web Location
https://doi.org/10.1038/s41467-018-07021-3Abstract
Biomarkers lie at the heart of precision medicine. Surprisingly, while rapid genomic profiling is becoming ubiquitous, the development of biomarkers usually involves the application of bespoke techniques that cannot be directly applied to other datasets. There is an urgent need for a systematic methodology to create biologically-interpretable molecular models that robustly predict key phenotypes. Here we present SIMMS (Subnetwork Integration for Multi-Modal Signatures): an algorithm that fragments pathways into functional modules and uses these to predict phenotypes. We apply SIMMS to multiple data types across five diseases, and in each it reproducibly identifies known and novel subtypes, and makes superior predictions to the best bespoke approaches. To demonstrate its ability on a new dataset, we profile 33 genes/nodes of the PI3K pathway in 1734 FFPE breast tumors and create a four-subnetwork prediction model. This model out-performs a clinically-validated molecular test in an independent cohort of 1742 patients. SIMMS is generic and enables systematic data integration for robust biomarker discovery.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-