Skip to main content
eScholarship
Open Access Publications from the University of California

The Large-scale Structure of the Universe: Probes of Cosmology and Structure Formation

  • Author(s): Noh, Yookyung
  • Advisor(s): White, Martin
  • Quataert, Eliot
  • et al.
Abstract

The usefulness of large-scale structure as a probe of cosmology and structure formation is increasing as large deep surveys in multi-wavelength bands are becoming possible. The observational analysis of large-scale structure guided by large volume numerical simulations are beginning to offer us complementary information and crosschecks of cosmological parameters estimated from the anisotropies in Cosmic Microwave Background (CMB) radiation. Understanding structure formation and evolution and even galaxy formation history is also being aided by observations of different redshift snapshots of the Universe, using various tracers of large-scale structure.

This dissertation work covers aspects of large-scale structure from the baryon acoustic oscillation scale, to that of large scale filaments and galaxy clusters. First, I discuss a large- scale structure use for high precision cosmology. I investigate the reconstruction of Baryon Acoustic Oscillation (BAO) peak within the context of Lagrangian perturbation theory, testing its validity in a large suite of cosmological volume N-body simulations. Then I consider galaxy clusters and the large scale filaments surrounding them in a high resolution N-body simulation. I investigate the geometrical properties of galaxy cluster neighborhoods, focusing on the filaments connected to clusters. Using mock observations of galaxy clusters, I explore the the correlations of scatter in galaxy cluster mass estimates from multi-wavelength observations and different measurement techniques. I also examine the sources of the correlated scatter by considering the intrinsic and environmental properties of clusters.

Main Content
Current View