Skip to main content
Download PDF
- Main
Patient-adaptable intracranial pressure morphology analysis using a probabilistic model-based approach
Published Web Location
https://doi.org/10.1088/1361-6579/abbcbbAbstract
Objective
We present a framework for analyzing the morphology of intracranial pressure (ICP). The analysis of ICP signals is challenging due to the non-linear and non-Gaussian characteristics of the signal dynamics, inevitable corruption by noise and artifacts, and variations in ICP pulse morphology among individuals with different neurological conditions. Existing frameworks make unrealistic assumptions regarding ICP dynamics and are not tuned for individual patients.Approach
We propose a dynamic Bayesian network for automated detection of three major ICP pulsatile components. The proposed model captures the non-linear and non-Gaussian dynamics of ICP morphology and further adapts to a patient as the individual's ICP measurements are received. To make the approach more robust, we leverage evidence reversal and present an inference algorithm to obtain the posterior distribution over the locations of pulsatile components.Main results
We evaluate our approach on a dataset with over 700 h of recordings from 66 neurological patients, where the pulsatile components were annotated by prior studies. The algorithm obtains accuracies of 96.56%, 92.39%, and 94.04% for the detection of each pulsatile component in the test set, showing significant improvement over existing approaches.Significance
Continuous ICP monitoring is essential in guiding the treatment of neurological conditions such as traumatic brain injuries. An automated approach for ICP morphology analysis is a step towards enhancing patient care with minimal supervision. Compared to previous methods, our framework offers several advantages. It learns the parameters that model each patient's ICP in an unsupervised manner, resulting in an accurate morphology analysis. The Bayesian model-based framework provides uncertainty estimates and reveals interesting facts about the ICP dynamics. The framework can readily be applied to replace existing morphological analysis methods and support the use of ICP pulse morphological features to aid the monitoring of pathophysiological changes of relevance to the care of patients with acute brain injuries.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
For improved accessibility of PDF content, download the file to your device.
Enter the password to open this PDF file:
File name:
-
File size:
-
Title:
-
Author:
-
Subject:
-
Keywords:
-
Creation Date:
-
Modification Date:
-
Creator:
-
PDF Producer:
-
PDF Version:
-
Page Count:
-
Page Size:
-
Fast Web View:
-
Preparing document for printing…
0%