Skip to main content
eScholarship
Open Access Publications from the University of California

One-step model of photoemission from single-crystal surfaces

Abstract

In this paper, we present a three-dimensional one-step photoemission model that can be used to calculate the quantum efficiency and momentum distributions of electrons photoemitted from ordered single-crystal surfaces close to the photoemission threshold. Using Ag(111) as an example, we show that the model can not only calculate the quantum efficiency from the surface state accurately without using any ad hoc parameters, but also provides a theoretical quantitative explanation of the vectorial photoelectric effect. This model in conjunction with other band structure and wave function calculation techniques can be effectively used to screen single-crystal photoemitters for use as electron sources for particle accelerator and ultrafast electron diffraction applications.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View