Skip to main content
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

RelA-Containing NFκB Dimers Have Strikingly Different DNA-Binding Cavities in the Absence of DNA


The main nuclear factor kappa B transcription factor family members RelA-p50 heterodimer and RelA homodimer have different biological functions and show different transcriptional activation profiles. To investigate whether the two family members adopt a similar conformation in their free states, we performed hydrogen-deuterium exchange mass spectrometry, all-atom molecular dynamics simulations, and stopped-flow binding kinetics experiments. Surprisingly, the N-terminal DNA-binding domains adopt an open conformation in RelA-p50 but a closed conformation in RelA homodimer. Both hydrogen-deuterium exchange mass spectrometry and molecular dynamics simulations indicate the formation of an interface between the N-terminal DNA-binding domains only in the RelA homodimer. Such an interface would be expected to impede DNA binding, and stopped-flow binding kinetics show that association of DNA is slower for the homodimer as compared to the heterodimer. Our results show that the DNA-binding cavity in the RelA-p50 heterodimer is open for DNA binding, whereas in the RelA homodimer, it is occluded.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View