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ABSTRACT OF THE DISSERTATION

Computation Model Based Automatic Design Space Exploration

By

Kyoungwon Kim

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Irvine, 2014

Professor Daniel D. Gajski, Chair

Embedded system designers continuously face a twofold challenge handling the ever-

increasing complexity of design and meeting the ever-shrinking time-to-market time-

line. To meet such a challenge, the system design paradigm has shifted to platform-

based design characterized by intensive use of software and aggressive reuse of verified

components. More and more designs are turning to heterogeneous platforms to meet

design constraints in multiple criteria. However, the use of such and heterogeneity

generates more challenges for platform-based design. To address the challenges, sys-

tem designers must utilize system-level methodologies for specification and design.

Here the designers begin the design process by coming up with a computation model

that captures the behavior of the system. The computation model is successively

refined down to the structural model in the system level. In each refinement, the

designers explore the design space. The design space comprises a set of alternatives

concerning hardware/software partitioning, platform selection, and mapping. The

design space is huge, however, necessitating the automation of its exploration. The

platform is very often fixed regarding either availability or legacy reasons, making

mapping crucial. This dissertation focuses on the automatic mapping of the compu-

tation model for the given heterogeneous platform.
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This dissertation presents a new automatic mapping technique. The proposed tech-

nique consists of two separate phases: initial mapping and improvement driven by

cycle-approximate estimation. Existing mapping techniques depend on early esti-

mation so a dilemma arises from the fact that cycle-approximate estimation cannot

precede mapping. The dilemma can be gotten around by our performing initial map-

ping based on rough estimation and then making iterative improvements based on

cycle-approximate estimation. While earlier work has been domain specific, the map-

ping techniques in the proposed work are driven by a general computation model that

includes hierarchy, state transitions, dynamic data-oriented behavior, and imperative

languages. The proposed work also addresses mapping with an awareness of general

hierarchy in pipelined applications.

In such a mapping technique, the size of the design space explored is limited by

the speed of cycle-approximate estimation. Earlier work has realized such a fast

cycle-approximate estimation by generating and simulating Transaction Level Models.

However, simulation has to be performed whenever there is any change in the platform

or mapping. That is not necessary and therefore there is still room for improvement

regarding speed. This dissertation presents a new trace-driven estimation that is

orders of magnitude faster than simulation-based cycle-approximate estimation while

losing neither accuracy nor generality.

We have applied the proposed mapping techniques to multiple multimedia applica-

tions and the techniques outperformed in terms of execution time the competitors by

proportions ranging from 23.3% through 36.3%.
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Chapter 1

Introduction

1.1 Productivity Gap in Embedded System De-

sign

An embedded system is a computing system that is designed for mission-specific

computing devices rather than general purpose computing systems such as personal

computers. Therefore, embedded systems are intended to serve a dedicated set of

specific functions. Typical examples include:

• consumer electronic appliances such as smartphones and smartpads

• office automation such as wired/wireless printers

• automotive systems

• home appliances such as freezers, ovens and laundry machines

According to Vahid and Givargis [2], embedded systems are differentiated from other

computing devices by the following characteristics:
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• The system is dedicated to a set of specific functions rather than designed for

general purpose.

• Design constraints such as power consumption, size, cost, and requirements for

real-time processing are much tighter than those of general computing systems.

• The systems must be fault tolerent.

Embedded system designers are genenerally operating under time-to-market pressure.

Figure 1.1: Moore’s Law (source : [1])

On top of going with these factors, embedded system designers must contend with

the rapidly increasing hardware density. In accordance with Moore’s Law, advances

in semiconductor technology have increased at an exponential rate the transistor-

carrying capacity of a single chip. This technological advancement has generated a

positive feedback loop with the ever-increasing user demands for performance.
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In an effort to come to terms with the design complexity and time-to-market pres-

sures and tight design constraints inherent in embedded systems, the design paradigm

has shifted to software-centric, platform-based design [3]. In a traditional embed-

ded system design, a processor mainly served as a commodity part while the sys-

tem was close to being an amalgamation of nonprogrammable componnents such as

Application-Specific Integrated Circuits (ASICs), peripherals, buses, and glue logic

held together by. However, such a hardware implementation was ill-equipped to take

on the increasing design complexity of contemporary and future embedded systems.

Generally, software implementations can better handle higher complexity than can

hardware implementations. Fortunately, embedded processors have improved in terms

of capabilities and power. Moreover, with rising non-recurring engineering costs such

as the cost of mask, it has become very crucial to maximize post-fabrication reuse of

the verified components. Such progress has encouraged designers to implement large

portions of the given system to software running on general purpose and domain-

specific processors such as Digital Signal Processors (DSP) and network processors,

all of which are available in the platform components library.

In such software-centric platform-based designs, the system may have performance

issues: in general, hardware implementations outperform software implementations

in terms of performance. Indeed, software implementations have become prevalent

not for their performance but for the design complexity of embedded systems and

productivity concerns. The common engineering practice in software-centric designs

to ensure the required performance is to rely on frequency ramping followed by CMOS

scaling. CMOS scaling, however, is hobbled by physical and economic limitations

giving it a short future life [4]. Moreover, in embedded system designs, performance is

not at all the single optimization goal. Especially, in many embedded systems, power

consumption is no more a secondary issue. Frequency is proportional to operation

voltage, and dynamic power dissipation is proportional to the square of operation

3



voltage. Thus, the increase in power consumption has also been making infeasible

frequency ramping.

As an alternative to frequency ramping, engineers have proposed the integration of

multiple processors and/or cores into a single chip. In this design style, engineers put

onto a single chip an entire system that include multiple emdedded processors and/or

cores, specialized digital hardware, and, often, mixed-signal circuits. The advances in

semiconductor technology enabled this design style. Rather than increasing frequency,

the design replicates the functionality to exploit parallelism.

The disadvantage of this approach is the increased design complexity. One of the most

difficult design challenges lies in the programming models, which are required to map

application software into efficient implementations [5]. Several decades of computing

history have taught designers to think sequentially and most programming languages

encourage sequential thinking. Nevertheless, embedded systems are concurrently ex-

ecuted with process synchronization depending on dynamic data-oriented behaviors.

Another design challenge in multi processor/core designs is that analysis of such a

system executed in parallel is far harder than that of single processor/core systems.

Heterogeneity puts additional challenges to software-centric platform-based design.

Although homogeneous platforms can be manufactured in enormous volumes and

programming for such homogeneous platforms is easier [6], many embedded applica-

tions still call for several reasons heterogeneous platforms. The tasks in an embedded

application vary greatly, which encourages the use of different types of processors. In

addition, many embedded applications are memory-oriented, and the required access

times of the tasks in such applications are not uniform. Memory subsystems are

prime determinants of power consumption, and a platform may need different mem-

ory subsystems, with each subsystem providing different memory access time. As

configurable and extensible processors are replacing ASICs [5], platforms tend to be

4



more heterogeneous. Heterogeneity, however, even harder programming and thorough

design space exploration for mapping the given application into implementations even

harder.

Inevitably, these design challenges result in a longer design cycle. Nonetheless, time-

to-market windows tend, contrarily, to decrease. Therefore, all major technology

roadmaps to address productivity gap in embedded system designs [7]. The produc-

tivity gap, for sure, augments the need for well-defined system design methodologies

accompanied by Computer-Aided Design tool(s).

1.2 System-Level Design

A well-known solution intended to gain the required productivity is to raise the level

of abstraction of the design process to the system-level [7]. System-level design uses

models at the system level, where the unnecessary implementation details are left out.

The advantage is that the designers can worry less about implementation specifics and

concentrate more on the behavior of the system and on high-level design decisions such

as hardware/software partitioning, platform selection, and mapping. In addition, as

the granularity of the design components are much coarser at the system level than at

any lower level, the design complexity can be quickly relaxed. The coarse granularity

of the system-level design allows components, connectivity, and parameters to be

easily changed. Therefore, the designers can explore a broad range of the design

space with an eye on high-level design decisions.

Even at the system level, however, the design complexity is still high. The mapping

of a given application processes to the given, fixed homogeneous platform is only a

small subset of all the problems at system-level design but already an NP-complete

5



problem [8]. Therefore, the design complexity at the system level highlights the needs

for well-defined, system-level methodologies for specification and design.

A common system-level design methodology is called platform methodology [9]. De-

signers begin the design process by defining the platform. The defined platform could

be informal block diagrams for the structure of the system. The block diagrams are

created by chief architects who rely on their experience and intuition. Or, the plat-

form exists as a legacy. The design process often serves as an improvement of the

given platform. However, when these block diagrams are created, the functionality

of the system is not fully understood. This results in inconsistencies discovered only

late in the design process, neccessitating unnecessary iterations that result in a long

design time. Therefore, many studies on system-level design methodologies have sug-

gested that the design process should start with, rather than platform, an executable,

purely behavioral models for the system and non-functional design constraints.

In such design methodologies, however, designers must address the large gap between

system-level behavioral models and implementations. In general, the transformation

cannot be done in a single step. Therefore, the design process is broken into man-

ageable pieces at the expense of losing global optimality. In this regard, it is a must

to have well-defined levels of abstractions, models at each level of abstraction, and

transformation rules.

1.3 Transaction Level Model-Based Design

One such system-level design methodology is the Transaction Level Model-based de-

sign [9] shown in Figure 1.2. Transaction Level Model-based design starts with not

the platform but a set of non-functional design constraints and Behavioral Models of
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Figure 1.2: Automatic Design Space Exploration for TLM-Based System Design

the system, captured with computation models [10, 11, 12, 13]. Computation models

are generalized ways to describe the system-level behavior of the design.

To close the gap between computation models and implementations, Transaction

Level Model-based design offers several orthogonal levels of abstraction and models

to utilize the ’divide and conquer’ strategy. The design flow in Transaction Level

Model-based design is a series of successive refinements from one model to another.

At each refinement step, the designers are encouraged to explore the design alter-

natives at the given level of abstraction but discouraged to worry about the details

below that level. In fact, it could be argued that the ideal is the minimum number of

required levels of abstraction. One way to determine what this number is to consider

the number of different types of designers in contemporary embedded system design

practices. Generally, designers are of three types: application programmers, system
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designers, and implementation. Accordingly, it is reasonable to define three orthogo-

nal levels of abstractions for the three types of designers: the Behavioral Level (shape

1) for application programmers, the Transaction Level (shape 6) for system design-

ers, and the Cycle-Accurate Level (shape 8) for implementation designers. In this

regard, Transaction Level Model-based design offers the three levels of abstractions

and defines the design process as two refinements: one from Behavioral Model to

Transaction Level Model [14] and the other from Transaction Level Model to Cycle-

Accurate Models.

Behavioral Models are computation models that are purely functional and preferably

executable; all implementation details are abstracted out; execution of the Behav-

ioral Models allows, above all, validation of the functionality. Moreover, executable

computation models allow rough estimation on the design decisions. Based on the

estimation, designers can explore the design space concerning early design decisions

such as hardware/software partitioning, platform selection, and mapping. Once the

design decisions are made, the Transaction Level Model (Shape 6) is automatically

generated (Shape 5).

In this design stage, however, design space is too broad, so automation is a must,

although Transaction Level Model-based design is missing such automation. This

dissertation is intended to define automatic design space exploration for Transaction

Level Model-based design. There have been a large number of papers addressing

automatic design space exploration. The papers have presented many different algo-

rithms to automate design space exploration in this design stage [15, 16, 17, 18, 19].

These algorithms, however, have limitations regarding the estimation they depend

on. The limitations highlight the need of new approaches to automatic design space

exploration and refinement.

In the algorithms, estimation is assumed to be given ahead of design decisions. The
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estimation is also a prime determinant of the design quality. For the algorithms to

ensure the required design quality, the estimation has to meet the following three

requirements: fast, accurate, and general. If the speed of estimation is too low,

the size of the design space explored will be narrowed. Accuracy greatly impacts

the design quality. For an estimation to be general, it should be applicable to both

hardware and software. Otherwise, many platforms that include custom hardware to

accelerate critical functions with reasonable power consumption will not be available

for evaluation. The estimation should not require Cycle-Accurate Models, either.

Otherwise, it is not general enough because Cycle-Accurate Models may not, in the

early design stages, be available for one or more platform components.

The estimation techniques [20, 21, 22, 23, 24] by which the automatic design space

algorithms can be facilitated do not, however, meet altogether all three requirements.

The estimation techniques include Cycle-Accurate Model estimations [20, 21], static

analysis-based estimations [22], trace-driven estimations [23, 24]. Cycle-Accurate

Model estimations tended to be too slow for early design space exploration. More-

over, it may not be available for the entire platform. Static analysis-based estimations

are not at the cycle level. Trace-driven estimations either need Cycle-Accurate Models

or cannot be applied to hardware. Thus, trace-driven estimations are not sufficiently

general. Therefore, the exisiting techniques may not be sufficient regarding the limi-

tation in estimation rather than the quality of those algorithms themselves.

Transaction Level Model estimation (shape 9, 10) [25, 26, 27] can satisfy all three

requirements at the same time. Transaction Level Models are abstract, executable

models for the system, where communication and computation are separated and one

of them or both are approximate-timed instead of cycle-timed. Generally, Transac-

tion Level Model estimation has advantages over Cycle-Accurate Model estimations.

It is faster by orders of magnitude, available for the entire platform even in the early

9



design stages, and yet cycle-approximate. Therefore, design decisions can be evalu-

ated very fast and accurately so it dramatically reduces the design cycle. However, in

the viewpoint of design space exploration concerning hardware/software partitioning,

mapping, and platform selection, there exists a conflict that gives rise to a “chicken-or-

the-egg” type of dilemma: the design decisions need estimation, yet Transaction Level

Model estimation cannot be fed to the input of the design space exploration process.

This conundrum underscores the need to change design space exploration techniques.

As Transaction Level Model estimation is applicable to a very small number of plat-

forms at a time, one reasonable way to utilize Transaction Level Model estimation is

to improve the given design by local searches.

Therefore, this dissertation proposes new approaches to automatic design space explo-

ration. The approaches consist of two phases: initial design decision and Transaction

Level Model estimation-based iterative improvements. In the first phase, computation

models are roughly estimated and any existing automatic design space exploration

algorithm could be applied to make the initial design decisions. In the second phase,

the given platform and mapping are iteratively improved based on the Transaction

Level Model estimation until all the design constraints are met.

Once the design constraints are met, the Transaction Level Models are refined to

Cycle-Accurate Models. Generated in this step are the interface hardware and system

software such as device drivers. Cycle-Accurate Models describe the state of the

system-level components on each clock cycle. These are synthesized by existing logic

synthesis tools to be transformed into the final implementation. This dissertation,

however, focuses on the refinement from the computation model to the Transaction

Level Model so that the design constraints are met.

In Transaction Level Model-design, two crucial issues should be addressed: efficient

Transaction Level Model estimation and definition of computation models and algo-
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rithms driven by the computation models.

Transaction Level Model estimtion plays a crucial role in the second phase of transfor-

mation from computation model to Transaction Level Models. The size of the design

space that can be explored is limited by the speed of the Transaction Level Model

estimation. Existing Transaction Level Model estimations require simulation of the

entire platform model. Depending on the application, this may not be necessary.

Therefore, there is still room for improvement regarding speed. In this dissertation,

a Trace-Driven estimation in Transaction Level is proposed to complement the exist-

ing, simulation-based Transaction Level Model estimations to enhance the speed of

estimation without losing generality and accuracy.

In the Transaction Level Model-based design, many different computation models

could be used for various applications and optimization goals. Generally, there exist

requirements that must met by computation models. Computation models, first of

all, should be complete so as to capture the behavior of the entire system. Thus,

concurrency, state-transition, structural/behavioral hierarchy, and synchronization

depending on data and control should be supported. Moreover, as verification between

models at different levels of abstraction is a bottleneck in embedded system design

flow, automation in refinement processes are a must. Computation models must

be defined with an eye on synthesis. In this dissertation, computation models are

defined to answer the requirements, and algorithms for automation in design space

exploration, for both phases are proposed based on the defined computation models.
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1.4 Transaction Level Model Estimation

Estimation on the design decisions can be performed at several different levels of

abstraction. One method to provide estimates on the system in the early design

stages is to use the computation models. As computation models are very often

executable, estimates can be given by simulating the model on the host machine or an

Instruction Set Simulator. While these approaches are fast and available in the early

design stages, they fall short of ensuring the required accuracy. The design metrics are

impacted by many different factors, such as the datapath of the processing elements,

memory hierarchy, RTOS scheduling policy and overhead, and delays regarding bus

protocol. In estimation based on computation models, however, these factors are

ignored. Another method is to depend on Cycle-Accurate Models. Cycle-Accurate

Models provide highly accurate estimation regarding any design metric. Where the

design space is vast, however, the speed of estimation is too slow. Moreover, Cycle-

Accurate Models for a portion of hardware components in the platform may not be

available, yet.

Transaction Level Model-based design requires a fast and cycle-approximate estima-

tion, on which can depend the process of iterative improvements of the design. That

is where the Transaction Level Model comes. Transaction Level Model estimations

provide cycle-approximate estimates on design decisions that are orders of magnitude

faster than Cycle-Accurate Model esitmations. It is applicable to both hardware and

software from the early design stages on.

The existing Transaction Level Model estimations [25, 26, 27] depend on generation

and simulation of Transaction Level Models. Such simulation-based Transaction Level

Model Estimations offer speed, accuracy, and generality at the same time. The speed

is close to that of native simulation as Transaction Level Models are typically written
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in a single System-Level Design Language such as SystemC [28], natively compiled

to the binary for the simulation host, and simulated. Compared to Cycle-Accurate

Model estimations, simulation-based Transaction Level Model estimations are order of

magnitude faster. Researchers have claimed that accuracy is close to Cycle-Accurate

Models. The error ratio is less than 10% that of the board measurement [26], and in

this regard, estimations based on Transaction Level Models are claimed to be cycle-

approximate. Simulation-based Transaction Level Model estimations are retargetable

in the sense that they are applicable to both hardware and software. Moreover,

as simulation-based Transaction Level Model estimations require no Cycle-Accurate

Models, they are applicable to most of the platforms in early design stages.

However, the design space is still too broad. There is also room for improvement

regarding speed. This dissertation proposes a new trace-driven estimation based

on Transaction Level Model. The Trace-Driven estimation is complementary to

simulation-based Transaction Level Model estimations. For applications in which

the execution path of each task depends only on data, Trace-Driven estimation offers

orders of magnitude faster estimation than does simulation-based Transaction Level

Model estimation, and without losing accuracy or generality. Trace-Driven estimation

generates, only once, the ordered list of continuous communication and computation

events at the Transaction Level annotated with delay estimates before any design

decision is made. Once a new platform selection and mapping has been given, Trace-

Driven estimation places the traces at the right location in the global timeline. Note

that simulation-based Transaction Level estimation must generate the Transaction

Level Model and simulate the entire platform from scratch. Thus, Trace-Driven es-

timation is faster than simulation-based Transaction Level Model estimation. The

delay estimates are calculated in exactly the same way as was performed in Hwang

et al [26]. Placing the events along the global time line takes into consideration the

abstract RTOS model [25], memory hierarchy models, Processing Element configura-
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tions [26], and bus protocol models [29]. All of these abstract models are Transaction

Level Models. Moreover, the delay estimate calculation is performed at the Transac-

tion Level. Thus, Trace-Driven estimation lose accuracy and generality.

1.5 Computation Model Based Automatic Design

Space Exploration

In any system-level design methodology including Transaction Level Model-based de-

sign, computation models are necessary for thorough exploration of all architectural

design alternatives. A computation model is a generalized way to describe the func-

tionality of the system, although it can be defined in several different ways [10, 11,

12, 13].

To guide the system-level design flow, computation models must meet several require-

ments. First of all, a computation model should provide completeness [30]. It must

be able to capture the complex behavior of the entire given system. Completeness

refers the concept of explicit state transitions, concurrency, timing, leaf-behaviors

described in imperative language, and synchronization. Moreover, to ensure the re-

quired productivity, the computation model should be able to be combined with

well-established, automated design flow.

Existing computation models can be categorized into two groups: process-based and

state-based models [9]. Not one of them is, however, complete. A process-based

model [31, 32, 33, 34] is a set of concurrently executed, communicating processes.

Thus, process-based ones take advantage of explicitly exposed concurrency by focusing

only on data dependencies throughout the model. However, process-based models are

mainly limited to modeling dynamic behaviors in data oriented applications such as
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modern multimedia applications. There is no concept of explicit state transitions.

On the contrary, state-based models [35, 36, 37] generally target control-oriented

applications such as automotive systems. Although such state-based models provide

hierarchy and concurrency, they tend to be more on lock-step synchronization or,

at least, require the local clock for the leaf behaviors. Compared to process-based

models where processes are executed in a completely asynchronous manner, state-

based models have the limitation of describing the dynamic behavior depending on

data. Thus, state-based models are not complete in terms of timing.

A general computation model such as Program State Machine [9] combines both

process-based and state-based models to achieve the completeness. A Program State

Machine is close to hierarchical concurrent state machines. However, each program-

state is a function written in an imperative language. Program states can runs in a

completely asynchronous manner, and can have synchronization depending on data.

On the other hand, a general model of computation such as Program State Machines

already have well-established automated refinement flow provided by Computer-Aided

Design tools such as System-on-Chip Environment [38].

Therefore, it is valuable to define the Transaction Level Model-based design flow that

starts with a general computation model. Existing automatic design space algorithms

may not be efficient for such a general model. The algorithms tend to have assump-

tions that are held by a small set of domain-specific computation models. For exam-

ple, Erbas et al [18] implicitly assume that computation model is decomposed into

completely parallel, non-hierarchical processes communicating with non-hierarchical

channels. Therefore, it is not efficiently applicable to Program State Machines, where

explicit sequential executions are defined in forms of state transitions.

This dissertation proposes, for general model of computation, several algorithms for
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initial design decisions. First of all, this dissertation addresses optimization in map-

ping of pipelined applications. Previous works [39, 40, 41, 42] have assumed that a

period of executions can be flattened into an acyclic directed graph. However, our

general model can have many program-states inside a pipeline stage and complex

state transitions can be defined over the program-states. This general model can

hardly be flattened. Thus, to balance the pipeline stages, design space exploration al-

gorithms must be aware of hierarchy. Besides pipelined structures, automatic design

space algorithms for a general computation model should address process schedul-

ing. Process scheduling can greatly impact the performance of the design. In general

computation models, processes can run in a completely asynchronous manner and

complex synchronization based on data dependencies can be defined. Thus, process

scheduling is not highly predictable, so a general models does not accomodate existing

algorithms. Nonetheless, some information is available regarding process scheduling,

as any two processes can be either parallel or sequential. This dissertation presents

heuristic mapping algorithms that put together into the objective functions all of

process scheduling, communication, and computation.

For iterative improvements of the given design decisions, this dissertation proposes

heuristics that performs local searches near the given design point.

1.6 Scope

The input of this dissertation is a general computation model, design constraints such

as cost, and a platform model. This dissertation focuses on mapping only. Mapping is

a crucial problem as the platform is very often, for legacy reasons or availability, given

and fixed [9]. The optimization goal is to reduce execution time as much as possible

while meeting all the other design constraints such as cost. Since the performance
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demands of the marketing departments are ever-increasing, a primary issue is still

performance. The output is a Transaction Level Model that represents the platform

given by the design decisions.

1.7 Tool

The most recently released version of Embedded System Environment is the Embed-

ded System Environment 2.0 [43]. It is intended to realize the concept of Transaction

Level Model-based design. Embedded System Environment is a Computer-Aided

Design tool set that helps users specify the system and explore the design space con-

cerning hardware/software partitioning, platform selection, and mapping. Embedded

System Environment also provides automatic refinements, so as to ensure the required

productivity, from the computation model to the Transaction Level Model and from

the Transaction Level Model to the Cycle-Accurate Model. Still missing in Embedded

System Environment, however, is automatic design space exploration.

By adding automatic design space exploration, this dissertation takes Embedded

System Environment to the next level of a system-level design tool set. The automatic

design space exploration process that consists of two phases: initial design decision-

making and iterative improvements based on Transaction Level Model estimations.

1.8 Contribution

The contribution of this dissertation can be enumerated as follows:

• Data structure for Transaction Level Model-based Design: Any system-level

17



methodology is accompanied with Computer-Aided Design tools. Transaction

Level Model-based design was realized in Embedded System Environment 2.0.

The implementation of Embedded System Environment 2.0 failed to provide

efficient data structure and API to describe general computation models and

broad design space explorations. In this dissertation, data structures and APIs

for specification and design space exploration have been redesigned. Moreover,

Transaction Level Model generation requires well-established data structure and

API, which were missing from Embedded System Environment 2.0.

• A Transaction Level Modeling style that has synthesis semantics: The mod-

eling style of Embedded System Environment Transaction Level Models were

proposed with synthesis semantics. However, the style in Embedded System En-

vironment 2.0 allows only very limited number of platforms to be transformed

into Transaction Level Models. For Transaction Level Model generation to be

allowed for most feasible platforms, Transaction Level Model components are

redefined and re-implemented.

• New Transaction Level Model-based design flow: This dissertation proposes

the new design flow of Transaction Level Model-based design. Design space

exploration is decomposed into two phases depending on the estimation that

each phase uses. The first phase is an initial design decision-making based

on rough estimation. The second phase is iterative improvements based on

Transaction Level Model estimation.

• The algorithms for initial mapping of a general computation model to the given

platform: For initial mapping, any existing algorithm can be applied. However,

most existing algorithms depend on a domain-specific computation model, and,

for a general compuation model, are not efficient. This dissertation, first of

all, addresses the pipelined application with complex hierarchy captured with
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a general compuation model. Unlike previous works, the proposed algorithms

balance the pipeline stages by considering complex hierarchy inside each stage.

• The algorithms for improvements in mapping based on Transaction Level Model

estimation: Transaction Level Models are available only for a limited number of

design alternatives at a time. Therefore, it requires a set of algorithms different

from the ones for initial mapping. Those algorithmes tend to be local search

from the given design point. This dissertation suggests heuristic algorithms

based on local search.

• Trace-Driven Performance Estimation: Transaction Level Model-based design

requires fast, general, and cycle-approximate estimation using Transaction Level

Models. Existing works use Transaction Level Model generation and simulation.

For a set of applications, Trace-Driven Performance Estimation speeds up, with-

out losing generality and accuracy, simulation-based Transaction Level Model

estimations. Trace-Driven Performance Estimation records, at the Transaction

Level, communication API calls and executions between communication API

calls, thus generating an ordered list of execution and communication events

for each process. The events are placed while abstract RTOS, memory hierar-

chy, and bus models at the Transaction Level are emulated. As simulation of the

entire platform is unnecessary, Trace-Driven Performance Estimation is orders

of magnitude faster than simulation-based Transaction Level Model estimation.

1.9 Dissertation Overview

The rest of this dissertation is organized as follows. Chapter 2 offers a review

of previous works. Chapter 3 explains the latest generation of Embedded System

Environment, which is extended from Embedded System Environment 2.0. Chap-
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ters 4 and 5 detail the proposed initial design decision-making algorithms: Hierarchy-

Aware Mapping of a Pipelined Application and N-Way Clustering and Mapping al-

gorithms. Hierarchy-Aware Mapping of a Pipelined Application addresses mapping

of a pipelined application captured with a general computation model to the given

platform while execution time is minimized. N-Way Clustering and Mapping al-

gorithms reduces the execution time of the system by putting altogether into the

objective functions process scheduling, communication, and computation. Chapter 6

discusses Cycle-Approximate Estimation Based Mapping, which is a set of algorithms

for iterative improvements of the given design decisions based on cycle-approximate

estimation such as Transaction Level Model estimation. Mapping algorithms based

on Transaction Level Model estimation calls for even faster Transaction Level Model

estimation. Chapter 7 shows one such faster Transaction Level Model estimation tech-

nique: Trace-Driven Performance Estimation. Trace-Driven Performance Estimation

is orders of magnitude faster than simulation-based Transaction Level Model estima-

tions while losing neither accuracy nor generality. Chapter 8 offers the conclusion. In

Chapter 9, the future work is stated.
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Chapter 2

Related Work

2.1 System-Level Design Methodologies

To tackle the high design complexity of contemporary embedded systems, one must

address productivity in any design methodology. In order to achieve the required

productivity gain in embedded system design, the level of abstraction of the design

process should be raised to so called Electronic System-Level (ESL). System-level

design typically starts with specification of the system: behavioral models captur-

ing the system’s functionality and non-functional design constraints. As there is a

huge gap between specification and implementation, the transformation from specifi-

cation to implementation cannot be completed in a single step. The transformation

is divided into pieces at the expense of losing global optimality. Several orthogonal

models are defined in different levels of abstractions, design spaces are explored to

optimized the required design metrics, and successive refinements from a model to
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another follows design space exploration based on the “correct-by-construction” prin-

ciple. Moreover, automation in such design space exploration and refinements is a

must to achieve the required productivity gain. Thus, system-level design method-

ologies have to be accompanied by Electronic Design Automation (EDA) tools that

also target synthesis of the specification models. Densmore et al. [44] reviewed more

than 90 different EDA tools, many of which are, however, only for simulation. There

have been several EDA tools that intended automated system-level synthesis [9] of the

given behavioral model of the system to the platform. Daedalus [15, 16] provided a

highly-automated framework for system-level architecture exploration, modeling and

platform selection as well as system synthesis. SystemCoDesigner was intended to

implement an EDA tool that offers automatic mapping from a given behavioral model

to the selected, heterogeneous MPSoC platform. The behavioral model is synthesized

by automatic refinements. Peace [17] is an EDA tool that started a Ptolemy II [45].

Peace offers a seamless hardware/software co-design flow including from behavioral

simulation through system synthesis. HOPES [46] [47] was, more recently, proposed

as an enhancement to Peace. HOPES mainly focuses on generation of MPSoC soft-

ware to overcome the limitations of OpenMP and MPI. All of these tools, however,

do not state approaches to automatic design space exploration facilitated by cycle-

approximate estimations such as Transaction Level Estimation. Moreover, these are

more on data-oriented applications.

On the contrary, System-on-Chip Environment (SCE) [38] focuses on the general com-

putation models. The design flow starts by capturing the system’s functionality with

a Program State Machine. Following that, SCE offers well-established definition of

orthogonal models at different levels of abstraction and transformation from a model

to another. However, in System-on-Chip Environment, design space exploration is

not automated.
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2.2 ComputationModel Based Initial Design Decision-

Makings

Many applications such as multimedia streaming applications can run in a pipelined

manner. In these applications, balancing pipeline stages plays a crucial role in mini-

mizing the execution time. Ideally, the execution time of the system is proportional

to the delay of the stage with the critical path.

As it is a challenging problem, a great deal of papers have appeared, over the past

few years, in the literature try to solve it. Lin et al [39] suggested pipeline-aware

mapping of an application that is based on heuristics using Strength Pareto Evolu-

tionary Algorithm (SPEA) II [48] and Integer Linear Programming to find Pareto

optimal solutions in terms of throughput, latency and cost. Gordon et al [49] devised

heuristics to optimize throughput in mapping of a streaming application to the target

platform. However, these works require the application to be captured in Synchronous

Data Flow (SDF) models. Javaid and Parameswaran [42] conducted multiobjective

optimization based on ILP and the heuristics the authors suggested. Optimal configu-

rations for the given, reconfigurable processor-based platform are explored followed by

mapping. Benoit et al [40, 41] established the complexity of pipeline-aware mapping

problems and suggested heuristics if the time complexity is NP-hard.

All of these studies, however, assume that a period of execution of the application

can become an acyclic directed graph without hierarchy. The assumption may not

hold in general computation models. In general models, a stage could be decomposed

into many subprogram-states, over which very complex state transitions depending

on data are defined.

In this dissertation, Hierarchy-Aware Mapping of Pipelined Applications are pre-
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sented for such general computation models. It performs mapping of a given pipelined

application captured with general computation models to the given multi-processor/core

platform. The optimization goal is to reduce the execution time as much as possible

under the cost constraints. The application model is decomposed into one or more

pipeline stages or, interchangeably, stages. Each stage consists of parallel and/or

sequential hierarchical tasks. Each task can be decomposed into sequential and/or

parallel tasks, recursively. Since a period of the application can be hardly flattened

to an acyclic directed graph, hierarchical tasks will tend to be large in previous ap-

proaches. In this dissertation, a large hierarchical stage or task can be divided into

small pieces, and each piece can be mapped separately. By partioning a large hierar-

chical stage, the proposed approach makes the delay of each stage approximately the

same.

In computation model based initial design decision-making, process scheduling also

greatly impacts the quality of the design. There have, in the past few years, been

a large amount of library mapping computation models to platforms. Among them,

several studies takes into consideration process scheduling. There have been several

early studies focusing on Synchronous Data Flow models [31]. Bonfietti et al [50] used

graph-based solutions to optimize throughput in mapping Synchronous Data Flow

models to the platform. Oh and Ha [51] presented mapping Synchronous Data Flow

models to the platform to optimzes cost with real-time constraints. Lin et al [39]

showed mapping Synchronous Data Flow models to heterogeneous MPSoC. Multi-

objective optimization based on Strength Pareto Evolutionary Algorithm (SPEA)

II [48] and Integer Linear Programming (ILP) is performed to achieve Pareto front

in terms of latency, throughput, and cost. They take process scheduling into con-

sideration as well as computation and/or communication. However, in Synchronous

Data Flow models, there is trade-off between analyzability and generality. In the

models, a task must consume all input data at the beginning of execution and pro-
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duce all output data at the end of execution. The number of tokens that the task

consumes or produces are statically given and fixed. There is no control dependency

among tasks. Thus, Synchronous Data Flow model-based mapping techniques are

mainly applicable to data-oriented applications only. The assumptions do not hold

in general computation models.

Thompson et al [15], Nikolov et al [16], and Erbas et al [18] perform mapping of

process network models to the given platforms. Although both communication and

computation are taken into account, process scheduling is not considered.

Ferrandi et al [19] took as an input Hierarchical Task Graph (HTG) [52] and mapped

the input to a heterogeneous MPSoC platform. The optimization goal is to minimize

overall execution time [19], which is the time difference between the start time of

the start task and the end time of the end node. Most computation models can be

refined to this HTG and thus the tecniques are generally applicable. However, HTG

in its nature does not represent communication overhead. In addition, Ferrandi et al

did not address the impact of process scheduling caused by data dependency between

parallel processes.

We propose heuristics that take into account process scheduling as well as both com-

putation and communication. The proposed heuristics can take as an input a general

MoC to map it to heterogeneous MPSoC while latency is minimized as much as pos-

sible and all the other constraints are met. To the best of our knowledge, there is

no previous work that maps general MoCs, while communication, computation and

process scheduling are involved in the optimization processes.
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2.3 Transaction Level Model Estimation

Transaction Level Model estimation plays a crucial role in Transaction Level Model-

based design. During iterative improvements of the given design, the design process

must depend on Transaction Level Model estimation. For Transaction Level Model

estimation to meet the need of the iterative improvement phase of Transaction Level

Model-based design, Transaction Level Model estimations should be fast, accurate,

and general.

Existing estimation tecniques but Transaction Level Model estimation could use in-

clude; Cycle-Accurate Model estimation [20, 21], static analysis-based estimations [22],

and trace-driven estimations [23, 24]. Cycle-Accurate Model based estimation is gen-

erally very accurate. However, they may not be available for the entire platform

especially in early design stages where early design decisions are made. In addition,

Cycle-Accurate Model based estimation is too slow so the size of the design space that

can be explored is limited. Static analysis-based estimations are not in cycle level.

The design will still take the risk of over-design while depending on static analysis-

based estimations. Trace-driven estimations are not applicable to custom hardware.

In addition, existing trace-driven estimation requires Cycle-Accurate Models or In-

struction Set Simulators, which limits the estimation in terms of generality; Generality

refers that the estimation should be applicable to both hardware and software and

not require Cycle-Accurate Models so that it can be applied to any platforms in early

design stages.

Recently, novel, fast, and general cycle-approximate estimation techniques based on

Transaction Level Model generation and/or simulation have been proposed [25, 26,

27]. Such simulation-based Transaction Level Model Estimations offer speed, accu-

racy, and generality at the same time. The speed is close to that of native simulation
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as Transaction Level Models are typically written in a single System-Level Design

Language such as SystemC [28], natively compiled to the binary for the simulation

host, and simulated. Compared to Cycle-Accurate Model estimations, simulation-

based Transaction Level Model estimations are order of magnitude faster. The accu-

racy has been claimed to be close to Cycle-Accurate Models. The error ratio is less

than 10% compared to the board measurement [26], and, in this regards, estimations

based on Transaction Level Models are claimed to be cycle-approximate. Simulation-

based Transaction Level Model estimations are retargetable in the sense that they

are applicable to both hardware and software. Moreover, as simulation-based Trans-

action Level Model estimations do not require any Cycle-Accurate Models, they are

applicable to most of the platforms in early design stages.

This dissertation proposes a new trace-driven estimation performed in Transaction

Level. Our Trace-Driven Performance Estimation is complementary to simulation-

based Transaction Level Model estimations. For applications in which the execution

path of each task depends only on data, Trace-Driven Performance Estimation offers

order of magnitude faster estimation compared to simulation-based Transaction Level

Model estimation without losing accuracy and generality. Since Trace-Driven Perfor-

mance Estimation generates traces once and places the events in the global timeline

whenever new design decisions are made, simulation of the entire platform model is

not necessary.
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Chapter 3

Embedded System Environment

(ESE)

3.1 ESE Idea

ESE is intended to realize the concept of Transaction Level Model-based design.

Figure 3.1a shows the design flow with ESE. With the given combination of behavioral

model, platform and mapping, ESE front-end tools automatically produces TLM.

TLM allows fast and accurate early estimation so designers can explore broader design

space. ESE back-end takes TLM as an input and generates PCAM, which can be

measured on the board for further metric refinements.

This dissertation is focused on the front-end tool. The main task of ESE front-end

tools is the following:
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(a) ESE Design Flow

(b) ESE Front-End

Figure 3.1: ESE Design Flow and Front-End Tool

• system specification

• initial design space exploration concerning hardware-software partioning, plat-

form selection, and mapping
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• TLM generation

• TLM estimation

• iterative improvements of the given design based on TLM estimation

Figure 3.1b explains ESE front-end in greater details. First of all, designers will write

the behavioral model with GUI and source code editors. Platform will be selected with

the help of GUI. Following that, design space exploration will be performed either

automatically or manually. In the view point of the ESE front-end tools, behavioral

model, platform, and mapping is stored in ESE Data Structure (EDS). The platform

components are retrieved from ESE Database (ESE DB). Design space exploration is

to manipulate EDS through EDS API and ESE DB API. Thus, EDS and ESE API,

which consists of ESE DB and EDS API, should be sufficiently efficient for broad

design space exploration. On the other hand, EDS includes all required information

for TLM generation. This dissertation offers EDS and ESE to meet those needs.

3.2 EDS(ESE Data Structure)

System specification should include all necessary information for TLM and PCAM

generation and be well-organized. In Figure 3.2, SW architecture for system specifi-

cation is depicted. That is the part of ESE for system specification. ESE DB stores

platform components and is accessed via ESE DB API. They will be discussed in

Section 3.3 and 3.4. Except what a platform component is, everything is kept in EDS

so that what EDS has and how EDS is organized are the core.

In our implementation, EDS keeps system specification by separating platform, be-

havioral model and mapping( 4 ). API is also separated as depicted in Figure 3.2. In
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Figure 3.2: SW Architecture for System Specification

addition to error checking modules, modules to update dependencies may be needed.

For example, when a PE(Processing Element) is removed, the processes on the PE

should become unmapped. This kind of dependencies are handled by the modules.

In the rest part of this section, the structure of EDS is explained in section 3.2.1 and

what the required changes in system specification and how EDS should be updated

on each change is presented in section 3.2.2.

3.2.1 The Structure of EDS

This section is written to show the structure of EDS to keep system specification.

Conceptually, data structure for system specification looks like Figure 3.3. For now,

we assume that a behavioral model in ESE is a flattened program state machine. It

has processes communicating via channels. A process is a C function. Platform is a

net-list of platform components such as PEs, Tx(transducer)s and buses. Mapping is
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Figure 3.3: The Structure of EDS

basically channel to route mapping and process to PE mapping.

The eclipses in Figure 3.3 with a blue line are not explained, yet. A transducer has

an internal FIFO memory. A channel passing the transducer may share the FIFO

with other channels or exclusively occupy a designated partition of the FIFO [53].

Therefore, the configuration of the Tx FIFO is given for each transducer. Aside from

that, since a Tx may be connected to many buses, the Tx should be able to know from

which bus address to which bus, to whom on the bus the data must be transferred.

The information is kept in a routing table. A bus may keep a bus address space and

have arbitration.

All that have been explained so far in this Section, Section 3.2.1 are intuitive. The only

thing that is not explained is bus synchronization table. Our bus model implements

point-to-point transactions while communication API for channels are in the network

layer according to OSI 7 layers [53] [54]. C3 mapped to route2 is implemented by

two point-to-point transactions; from p1 on PE0 to Tx0 and from Tx0 to p3 on PE1.

Each transaction is synchronized [53] [54]. One of two communicating partners is

the resetter while the other the initiator. A resetter does different from an initiator.
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Therefore, bus functions in TLM needs to be different depending on whether the

caller is the resetter or not. That is why a bus should keep the list of resetters using

the bus. Synchronization table is the list.

Figure 3.4: Synchronization Tables for Buses for The Example in Figure 3.3

Figure 3.4 is an example. For example, only route2 mapped to c3 passes bus0.

What bus0 should do for c3 is to transfer data from p1 to Tx0. However, for that,

bus0 should know which one is the resetter. In this example, p1 is the resetter on

bus0. Likewise, route2 and route0 shared by c1 and c2 passes bus1. Thus, the

synchronization table of bus1 has three entries, each of which is for c1, c2 and c3

respectively. In each entry, the resetter on bus1 is specified as well as the sender and

the receiver.

Figure 3.5 shows our implementation for the EDS concept. Behavioral model, plat-

form and mapping are separated since unseparated EDS was a major source of bugs in

the previous ESE [55]. EDS for a behavioral model includes processes, channels and

their connectivity only. There is no platform-related information unlike the previous

versions of ESE. In EDS for platform, there are nothing but PEs, buses, transducers

and their connectivity.

Mapping in system specification is kept in EDS for mapping. Process-PE mapping

and channel-route mapping are intuitive. The only thing needed to be mentioned is

the list of routes. A route is one directional list of pointers to platform components,
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Figure 3.5: The Implementation of EDS

every of which is in EDS for platform. EDS keeps a list of the used routes. A channel

may need a memory. The location of the memory may differ even if a single route is

shared by two different channels. That is why we need a separate channel-memory

mapping, which is also new.

Note that every connection or mapping is written in C++ template, generic 2D

mapping table.

The information depicted in Figure 3.5 is not enough. The followings are the omitted

information.

A. RTOS type on each PE if applicable

B. Bus address table and synchronization table on each bus
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C. Tx FIFO configuration and routing table on each Tx

RTOS type is stored in each PE if needed. Bus address tables and synchronization

tables are kept in each bus. Each Tx must keep its own routing table and FIFO

configuration so that the data structures are in the Tx.

Following subsections explains how the EDS structure should be updated on each

required change in system specification.

3.2.2 Update of EDS on Changes in System Specification

System specification may change during iterative design cycles either manually by

designers or automatically by synthesis tools. For example, the designers feels a bus

has too heavy traffic so that they make up their mind to duplicate the bus. Or, a PE

is identified as a hot spot and the synthesis tools may move some processes on the

PE to a different PE.

EDS should have a structure that can be efficiently updated on each change. For

that, we need to enumerate the required changes first and then present how EDS can

be updated on each change. The followings are the list of the required changes.

A. Change in Mapping

i. Channel-Route Mapping

ii. PE-Process Mapping

B. Change in Platform

i. Addition of PE/Tx/Bus

ii. Removal of PE/Tx/Bus
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C. Change in Behavioral Model

Firstly, mapping may change while platform and behavioral model does not. In that

case, a channel may be mapped to a different route while PE-Process mapping does

not change. However, note that, when a process is mapped to a different PE, channel-

route mappings may need to be changed due to the changed PE-Process mapping.

Secondly, platform may change while behavioral model is not changed. A platform

component can be either added or removed. In the former case, mapping does not

change. In the latter, everything mapped to the platform component becomes un-

mapped and should be re-mapped at some point.

Thirdly, behavioral model itself may change. For example, designers may find out

that the design constraints cannot meet unless they split a heavy process and map

them to multiple PEs. In this case, platform will not change. However, mapping have

to be sometimes changed and automatic update of EDS is complicated while manual

update with GUI is not a big deal.

In the following three subsections, these three cases are reviewed in great details.

Change in Mapping

As depicted in Figure 3.6, a channel can be mapped to a different route without

changing anything. In the Figure, channel c1 was mapped to route rt0, which does

not pass Tx0 and is mapped to route rt3 passing Tx0. This change does not affect

PE-Process mapping so that the simplest case.

The list of operations that should be done is as follows.

A. Add a route object to EDS if the new route does not exist
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(a) Routes in The Platform (b) Bus Synchronization Table Update

(c) EDS Update

Figure 3.6: Change in Channel-Route Mapping

B. Update channel-route mapping and channel-memory location mapping in EDS

for mapping.

C. Update synchronization tables, bus address tables, Tx FIFO configurations and

routing tables

The updates are depicted in Figure 3.6c. Route rt3 is added in EDS for mapping.
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Also, channel-route mapping table needs a new column for rt3. C1 is now mapped

to not rt0 but rt3. Therefore, channel-route mapping table is updated. Tx0 has

an internal memory to save spaces for c1. Designers may decide to the memory

location for c1 to Tx0. That is why the channel-memory mapping table is updated

in Figure 3.6c. In addition to that, the bus address table and synchronization table

of bus1 has been changed as well as routing table and FIFO configuration of Tx0.

Figure 3.6b shows the bus synchronization table as an example. Via bus1, p3 was

supposed to directly send data to p5. However, since the route for c1 is changed to

rt3, c1 is implemented with two point-to-point communication. p3 now has to talk

to Tx0 and Tx0 to p5.

A process can be mapped to a different PE. For example, designers find out that a

PE is utilized 95% based on TLM estimation. Since TLM estimation is not 100%

accurate, the designers may move some processes on the PE to a different, less utilized

PE. Figure 3.7a shows an example. p3 was mapped to PE1 and has been moved to

PE2. Note that the change implies extra changes in channel-route mapping. In the

example, the route for c1 is changes to PE2 and the route for c3 has been also changed.

The list of necessary operations are as follows.

A. Update PE-Process mapping table in EDS for mapping

B. Change channel-route mapping following i. in Section 3.2.2

Figure 3.7c shows an example. PE-Process mapping table has been updated. p3

is now mapped to PE2 rather than PE1. The channels connected to p3, c1 and c3

needed to find different routes. The routes are rt3 and rt4, which were not in the

route list. Thus, rt3 and rt4 has been added to the route list as well as to the channel-

route mapping table. c1 and c3 are now mapped to rt4 and rt3 respectively. Memory
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(a) Move A Process to A Different PE (b) Bus Synchronization Table Update

(c) EDS Update

Figure 3.7: Change in PE-Process Mapping

location for c1 was in PE1. This should be changed. In this example, it has been

changed to PE2 so that the channel-memory mapping table is updated. Bus address

tables, synchronization tables, FIFO configurations for Tx0 and routing tables in

Tx0 should be changed. Figure 3.7b shows change in the synchronization table inside

bus1. c1 is not passing bus1 no more so that two entries for c1 are removed. Since p3

is moved to a different PE, the resetter for c3, which is connected to p3, may change
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and changed in this example to Tx0.

Change in Platform

(a) Add/Remove PE (b) Remap

(c) EDS Update

Figure 3.8: Change in Platform : Move A PE

Platform components may be added or removed. Moving a platform component is

equal to addition and then removal. Thus, the example in Figure 3.8c shows both of

the cases at the same time. In the example, PE2 on bus1 is moved to bus0.

40



As depicted in Figure 3.8a, PE3 is added and PE2 is removed. Addition is easily

done by updating EDS for platform. However, when PE2 is removed, p5, c1 and c2

become unmapped. Therefore, remove a PE implies change in PE-Process mapping

explained in the Section 3.2.2. That is what Figure 3.8b is explaining. Removing a

bus or Tx is similar. The channels depending on the bus or Tx become unmapped

and should be remapped later. Figure 3.8c shows how EDS is updated when a PE is

moved from bus1 to bus0. In EDS for platform, PE2 is removed and PE3 is added.

PE-Process table is also updated. The column for PE2 are deleted and the one for

PE3 is added. p5 is moved from PE2 to the new PE3. C1 and c2 share a new route,

rt3. Rt3 is added and channel-route mapping table is updated so that c1 and c2 are

now mapped to rt3. Since routes that the channels mapped to have been changed,

FIFO configuration and routing table in Tx0 become different. Synchronization tables

and address spaces in bus0 and bus1 have been also changed.

Change in Behavioral Model

(a) Behavioral Model (b) A Mapping for The Behavioral Model

Figure 3.9: Change in PE-Process Mapping

Behavioral model also changes. For example, designers may think there is no way to

meet all design constraints but splitting a heavy process and map the new processes

to multiple PEs.

However, Figure 3.9a shows that automatic update of EDS may not be simple in this
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case. In the Figure, the behavioral model is rewritten so that all p8 had is manually

moved into p1 and p2. Figure 3.9b should be updated in accordance with the change.

However, since the behavioral model may have hierarchy, this is not easy.

On the contrary, redo the mapping from the scratch is not a big deal with the help

of GUI. Therefore, the current ESE is asking designers to redo the mapping if they

change the behavioral model.

3.3 Transaction Level Model

Purely behavioral models such as ours do not allow accurate estimation. On the

contrary, PCAM is ready at late design stages and slow to simulate. TLM is in the

middle. TLM is functionally equivalent to the behavioral model and has platform in

it to allow accurate estimation on the system.

TLM is a working code functionally equivalent to the behavioral model and having

platform inside. In this section, an overview of TLM and TLM structure are given

as well as the SW architecture of each TLM components and how the architecture

works. This section is organized as follows.

3.3.1 TLM Overview

Figure 3.10 is an overview of a typical example of our TLM. TLM is a net-list of TLM

platform components written in SystemC. As depicted, the three core components

are PE(PE0, PE1, PE2), Tx(Tx0) and UBC(Bus0, Bus1), which is a bus model. PE

composes the computational part of TLM while Tx and UBC the communicational

part.
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Figure 3.10: Transaction Level Model

Computation means running processes. What runs the processes may be either

HW(PE2) or an RTOS on a CPU(RTOS0 on PE0, RTOS1 on PE1). HW directly

runs a single, timed process while a CPU only has an RTOS and the processes are not

visible to the CPU. Instead, the RTOS runs multiple timed processes. In addition
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to the timing delays in the timed processes [26], RTOS also has extra delays due to

its operations [25]. Since the amount of the delays may change from RTOS type to

RTOS type, from CPU type to CPU type and so on, RTOS keeps its overhead table

and wait statements in RTOS refer the table.

Communication means an end-to-end data transaction by calling communication API.

For example, p1 sends data to p3 and each of them calls communication API for the

purpose. The end-to-end transaction is implemented with a couple of point-to-point

communications, each of which needs an UBC or a Tx. For example, for p1 to send

data to p3 on bus1, the following steps should follow.

A P1 sends data to Tx0

B Tx0 moves data from Bus0 to Bus1 by using the memory as a buffer

C P3 receives data from Tx0

A and C are done by UBC functions of bus0 and bus1, respectively. B is done by the

operations of Tx0.

A Tx moves data from a bus to another or the same bus. For the purpose, a Tx has

two request buffers per each connected bus. In Figure 3.10, Tx0 has RB0 and RB1

for bus0 as well as RB2 and RB3 on the side of bus1. Each request buffer takes data

from the bus and pushes the data into the memory inside the Tx, or vice versa. RB0

may take data from p1 and pushes it into the memory so that RB2 picks up the data.

Or, RB3 may pop data from the memory and sends the data to p5. The routing table

keeps necessary information for a request buffer to take its actions. The necessary

information will be explained later on in the following subsections.

Before an UBC is briefly reviewed, we introduce definition of a terminology as follows.
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Entity or Entity on A Bus: A Communicating Process or Request Buffer of Tx

on A Bus

The main task of an UBC is to transfer data from an entity to another entity. For

example, bus0 should transfer data from p1 to RB0 by implementing UBC functions

and bus1 has to transfer data from p4 to p5, from p3 to RB2 and so on. An UBC

has only a set of functions and data structures needed by the functions.

In the following subsections, we will discuss the TLM components one by one in great

details.

3.3.2 Computational Part of TLM : PE

What should be discussed in this section is the followings;

• How a PE runs processes

• How communication is viewed in the view of a process

In this subsection, the former is explained first and then the latter will discussed.

Figure 3.11 shows the structure of two types of PE, CPU and HW. PE0 and PE1

in the red-lined box in Figure 3.11a are CPU types and PE2 in the blue-lined box

is a custom HW type. Both of the two types are SystemC SC MODULEs. In other

words, they are C++ classes inheriting SC MODULE defined in the SystemC library.

HW and CPU, however, are different in how they run processes and, as a result, in

SW architecture.

HW directly runs a single user process. Note that the user process is written in C

while the entire TLM in SystemC. Therefore, a SystemC wrapper is needed for the
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(a) PE in TLM

Figure 3.11: Structure of PE in TLM

user process. In addition to that, the HW is functionally equal to PEs in functional

TLM, which is not discussed here, except that a PE in functional TLM runs multiple

processes in parallel. To be reused in functional TLM as well, the SystemC wrapper
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(b) SW Architecture of custom HW (c) SW Architecture of CPU

(d) SW Architecture of CPU with RTOS Ex-
panded

Figure 3.11: Structure of PE in TLM ( Cont’d )

is written in SystemC SC Module. The SystemC wrapper is called ’Process’ and only

runs a single user process as a SC THREAD. An example is depicted in Figure 3.11b.

PE2 is a custom HW running p5. Therefore, it has a sub module, which is also

SC MODULE called ’Process’ and the sub module runs p5 as a SC THREAD.

On the contrary, as depicted in Figure 3.11c, a CPU such as PE0 and PE1 can not even

directly see the processes. What runs the processes is the RTOS on a CPU. Therefore,

the SW architecture of a CPU is simple; it has an RTOS, which is an SC CHANNEL.

A CPU has almost no code but instantiating and initiating its RTOS.

47



Primitive Operations Estimated Delays

Context Switch 45 cycles
IRQ Return 17 cycles
Task Creation 33 cycles

... ...

Table 3.1: Example of RTOS Overhead Table

All complexities are implemented in the RTOS models, an example of which is de-

picted in Figure 3.11d. RTOS in the Figure keeps multiple processes, p1 and p2.

As explained, each user process require a SystemC wrapper, which is a C++ class

called ’Thread’. RTOS operations such as scheduling, interrupt handling and so on

are implemented as the member functions of the RTOS class. Each of the functions

needs an overhead value since our RTOS models support RTOS overhead estimation.

The delay value for each operation differs from RTOS type to RTOS type, from CPU

type to CPU type and so on. One easy way for all RTOS instances to share a common

RTOS class is that every RTOS instance keeps its overhead table, a small data struc-

ture, and the RTOS services read the table. Figure 3.11d shows that as well. A very

simplified example of an RTOS table is shown in Table 3.1. The table is obtained

with the help of the techniques introduced in [25]. We will not discuss that in great

details.

How an RTOS model sequentializes the execution of multiple processes is complicated.

Basically, an user process is bound with an event, which is an sc event. The RTOS

model has the event object with the corresponding ’Thread’ object of the user process.

When the user process is suspended, the process called either a wait statement or

other system call to explicitly yield the CPU. Inside any system call including a wait

statement, there is the event waiting. Therefore, when the RTOS scheduler resumes

the process, it notifies the event bound with the process at last.
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Figure 3.12: Sequential Execution of Processes on RTOS Model

Figure 3.12 shows an example, where p1 and p2 are running on the same CPU. P2

was already running and p1 had not started yet. The RTOS is non-preemptive so

that the context can be switched only by explicit yielding through system calls. P2

called a system call, SysCall2. Since, inside the system call, there is a wait statement

for the event, E2, bound with p2, p2 began waiting for notification of E2 and became

suspended. On the other hand, RTOS took control, did scheduling and made a

decision to initiate p1. RTOS switched the context so that p1 began execution. P1

also called a system call, SysCall1. RTOS took the control again. Since p2 was ready

to resume at that time, RTOS awoke p2 by notifying the event, E2. Then, the wait

statement for E2 can return. In addition to that, as a result, p2 has returned from

SysCall2. In the viewpoint of p2, it called SysCall2, was suspended, waited for the

return from SysCall2 and has just resumed execution. Note that SystemC does not

have representation for pre-emption. Pre-emptive kernels can be modeled by adding

the routines polling the interrupt flags to wait statements at the end of basic blocks.
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A basic block cannot be pre-emptied in the middle of execution.

Figure 3.13: Same Communication API with Different Implementation

From now one, how communication can be viewed from the prospective of an user

process will be explained. Communication API is a set of functions called by user

processes. Each function in communication API is a C function. In the viewpoint of

the user processes, communication API are not different. If p0 in Figure 3.13 calls the

send function in communication API in the specification level, the process will call

the same function in TLM. However, the implementation is different from platform

to platform and depends on the location of the communicating processes.

The right communication API is implemented as a global function. As depicted

in Figure 3.11, an RTOS model and HW have pointers to the proper functions in

communication API, which are used by the user processes on the RTOS or HW.
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Note that communication API may be implemented on the top of the UBC functions.

The UBC functions can be called through bus ports to the UBC. The bus ports are

depicted as the blue semi-circles in Figure 3.11. Thus, there is still one more problem;

how a function in communication API identifies the bus port that it should access.

The solution is as follows. If p1 and p3 uses the same send function, we duplicate the

send function and give different names. Each copy of the send function is bound with

the right bus port. For example, we duplicate the send function and give ’send p1’

and ’send p3’ as the names of the copies. Then, the bus port to bus0 is bound with

’send p1’ while port to bus1 with ’send p3’. Following that, RTOS0 in PE0 will have

a pointer to ’send p1’ while RTOS1 in PE1 a pointer to ’send p3’.

The actual implementation of communication API is not covered in this Section. It

will be covered in Section 3.3.3.

Estimation in computational part is categorized into two groups; user process estima-

tion and RTOS overhead modeling. RTOS overhead modeling is realized by RTOS

member functions’ referring its overhead table and calling wait statements. That is

implemented during TLM generation. However, user process estimation solely de-

pends on the timed processes.

3.3.3 Communicational Part of TLM

In a behavioral model, communication is done via channels. Since processes can be

mapped to arbitrary PEs, user-level functions in communication API should provide

end-to-end communications.

This end-to-end communication is actually implemented by one or more point-to-

point communications. UBC and transducers are the components that implement
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point-to-point communications.

An UBC model moves data for an entity on the bus to another over the bus. On the

other hand, a Tx moves data between two buses connected to the Tx. Note that the

two buses are not necessary to be different. For example, a Tx, Tx0, can move data

from p0 on bus1 to p1 on the same bus, bus1. This case is not meaningless since the

memory that Tx0 has inside serves as a smart, shared memory to both p0 and p1.

This section will explain the structure of communication components and show how

communication in TLM works. We will see the structure of the components one

by one. Following that, how the structures make communication work in TLM is

reviewed.

Universal Bus Channel(UBC)

Figure 3.14 shows examples of UBC. Bus0 and Bus1 are the examples. The role of

an UBC is to move data from an entity to another entity on the UBC. For example,

bus0 moves data from p1 to RB0 or RB1 and bus1 from p4 to p5 and so on.

Each entity does data transaction by calling UBC user functions. The list of user

functions are enumerated in [54].

A. Send

B. Receive

C. Write

D. Read

E. Memory Service
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Figure 3.14: UBC

In addition to that, if two entities on the bus do a synchronized transaction, synchro-

nization by setting/resetting a flag is implemented as UBC functions. For memory

channels, test-and-set functions are needed as well. [54] provides more details.
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(a) SW Architecture of UBC

(b) Functions and Data Structures in Figure

Figure 3.15: The Structure of UBC

Figure 3.15a shows SW architecture of UBC. Basically, our UBCmodel is SC CHANNEL

in SystemC. Therefore, through the bus ports bound with a given UBC, entities can

execute UBC functions. In the Figure, PE0, RB0 and more may call UBC user func-
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tions in the blue eclipses through bus ports depicted as the small, blue semi-circles.

Inside UBC, in addition to the user functions, arbitration is also implemented. Ar-

bitration policy may differ from bus to bus. We do not want to implement a new

UBC code whenever arbitration policy changes. Therefore, all arbitration functions

are implemented in a single SC CHANNEL, UBC, and selected at runtime depending

on the arbitration policy. The function looks like Algorithm 1. UBC has a variable

to represent the type of arbitration policy.

Algorithm 1 Runtime Selection of Arbitration

1: ArbId = read arbitration policy variable

2: if ArbId = FCFS then

3: Do First Come First Served

4: else if ArbId = PRIORITY then

5: Do Priority Based Arbitration

6: else if ArbId = Something Else then

7: Do Something Else

8: end if

9: return Who Gets Bus

The UBC functions as depicted in Figure 3.15a read the overhead table for commu-

nication estimation. The delays for each UBC primitive operations are determined

at TLM generation time and are put together on the overhead table.

The user functions are categorized into two groups depending whether the function

is for synchronized communication or not. The synchronization table and flags are

used by functions for synchronized communication. The address table is used by read

and write, which are not for synchronized communication. All of the tables and the
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list of flags are simple C++ data structures inside UBC, the SC CHANNEL.

Figure 3.15b shows a typical transaction scenario and how it is implemented. Actually,

in a big picture, the resetter and the initiator are synchronized either by interrupt or

by polling, the resetter takes the bus(again in case of polling-based synchronization)

and begins the transaction. The Figure is thus a expansion of the big picture.

First, the resetter p1 should write a request on RB0 so that RB0 can be ready to

do the transaction. That is done by p1 calling the UBC function, write. Inside the

write function, the followings come after the function call. P1 asks the bus, waits

for the bus and is granted. Bus0 may execute the arbitration function to choose the

entity to be granted. Therefore, p1 being granted may take time. Depending on

implementation, p1 can yield the CPU. Once bus0 is granted, p1 writes a request on

RB0. UBC needs to have a mapping between the given bus address of RB0 and the

actual address on the host machine to be written. The actual address is included in

the RB0 object. The address table has this kind of mappings. That writing may fail

with timed-out, success or something else. In any case, the bus is released and the

write function returns. The procedures in this paragraph model writing a request on

a memory-like entity, request buffer, over a bus.

So far, RB0 notices that there is a request to serve for p1. Since RB0 may have

multiple requests from a couple of different sources on the bus, taking the request

from p1 may take time.

Synchronization between RB0 and p1 follows. That is done in either one of the two

ways; interrupt-based and polling-based. Both of them are implemented with a flag

and functions inside UBC. [54] provides more details on that.

UBC keeps the list of the flags used in synchronization although the communicating

processes or Tx should keep the flags in real world. The number of the flags are
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scalable. We do not want to write a different UBC class whenever we change the

list of synchronizing pairs. That is the reason why we keep a re-sizable array for the

flags and a synchronization table to identify the right flag depending on the header

of the message, which includes source/destination process and/or the channel ID. In

addition to that, we have only two different UBC functions for synchronization itself.

One is for interrupt-based synchronization and the other polling-based. Both of them

are implemented and stored in UBC. Note that any of them needs to know which

entities are trying to synchronize. Therefore, the synchronization functions has to

access the synchronization table.

Once the two entities are synchronized, the resetter may try to get the bus. On

the other hand, the initiator is completely ready to give or take the data. After the

resetter asks the bus and is granted, the address and the data will be put on the bus

and transferred. After a certain handshaking protocol, the resetter will release the

bus.

The procedures are modeled as send/receive function of UBC in our TLM. Either the

sender or the receiver can do the tasks of the initiator and vice versa. In Figure 3.15b,

p1, the sender is the resetter and the receiver, RB0 is the initiator. Therefore, inside

the send function, what happens to p1 is as follows. P1 asks the bus and is granted.

Once p1 gets the bus, p1 set the address on the bus and waits until the address is

taken by RB0. Following that, p1 lets the bus know the size, the source address,

where the data is and so on. After that, p1 waits until RB0 notifies p1. Once p1

gets the data taken event from RB0, p1 releases the bus and returns from the send

function. Note that if the resetter calls receive function to get data, the function does

the same thing as the resetter version of send except the direction of the data. On the

other hand, inside the receive function called by an initiator, the followings happen

as depicted in Figure 3.15b. RB0, the initiator waits for the address set. Once it is
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set, RB0 notifies the resetter by signaling the address taken event. Following that,

RB0 can take or give the data. Finally, RB0 rises the data taken event and returns

from the receive function. Likewise, the initiator version of send function is the same

as the initiator version of receive function except the direction of data flow.

Figure 3.16: Communication Delay Table in UBC

Even though the communication delay table is not explicitly depicted in Figure 3.15b,

note that all UBC functions have waits statements inside and the amount of time to

wait is determined by reading the communication delay table. A simplified example

of communication delay table is shown in Figure 3.16. Bus0 keeps the table. On the

table, the delay of some UBC operations are enumerated. The table is read by all

the UBC functions of bus0.
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Transducers(Tx)

(a) Tx

Figure 3.17: Data Transaction Scenario in Tx

A Tx is a complex bridge serving as a router as well and connected to one ore more

buses. Two communicating processes may not be connected to the same bus. In
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(b) Data Transaction ( source : [56] )

Figure 3.17: Data Transaction Scenario in Tx ( Cont’d )

Figure 3.17a where p1 sends data to p3(according to the green-lined path), p1 and

p3 are connected to two different buses, bus0 and bus1 respectively. The purpose

of transducer is to facilitate this kind of multi-hop transactions. That happens, for

example, when IPs from different vendors are put in a system together. Each IP uses

its own bus protocols so that all of them cannot be connected to a single type of bus.

The basic functionality of a Tx is to receive data from the sending process or other

Tx and to send the data to the receiving process or another Tx. For example, Tx0

in Figure 3.17a receives data from p1 and sends the data to p3.

In that sense, a Tx is similar with a bridge. However, a bridge does not synchronize

with its communication partner so that the communicating processes should synchro-
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nize with each other. If Tx0 were a bridge, it would not synchronize with p1. On

the contrary, a Tx does synchronize and has a buffer. Since Tx0 in Figure 3.17a does

synchronization phase with p1, p1 can continue its execution without being synchro-

nized with p3. In addition to synchronization and buffering, a Tx also does routing.

They are differences between a Tx and a bridge.

Figure 3.17b shows more details on that. A request buffer such as RB0 or RB2 can

work only when a request is written on it. That is why p1 and p3 also depicted

in Figure 3.17a write a request on RB0 and RB2, respectively. The processes are

expecting being synchronized with and doing data transaction by send/receive with

the request buffers. What a request buffer is doing is checking the list of the written

requests, doing synchronization over the connected bus if the request is selected and

the FIFO has item and moving the data from/to the bus to/from the internal FIFO

memory. That is how a Tx does synchronized data transaction and serves as a

data buffer for outside world. In addition to that, even though RB2 is selected in

Figure 3.17b to send the data to p3, Tx0 was able to choose a different request buffers

according to the route assigned to the channel. A Tx0 must select a right request

buffer to move the data by following the right route. That is the duty of Tx in routing.

Figure 3.18 shows the internal structure of Tx0 in Figure 3.17. SW architecture of

a Tx more or less looks like Figure 3.18. The three main components are request

buffers, an internal FIFO memory and a routing table. The routing table is a C++

class, the FIFO memory is implemented as a SC CHANNEL and the request buffers

as SC MODULEs. The Tx module itself has all of them connected but almost no

function.

The FIFO memory serves as a data buffer. It has a storage, which may be either

shared or partitioned. If the storage is partitioned, then, each channel uses the FIFO

memory has its own, separated partition. Otherwise, the entire FIFO is simply shared
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Figure 3.18: SW Architecture of Tx

by all channels. If the FIFO memory is partitioned, the FIFO memory also includes

partition identification mechanism. The internal structure of the FIFO memory need

not be visible to the connected request buffers. Instead, the FIFO are accessed

via channel interfaces such as checking FIFO status(MayIRead, MayIWrite, etc) or

pushing/popping the data.

A request buffer hosts an active thread in our Tx model. A request buffer always

checks if any request is written on it. If there are one or more requests to serve,

the scheduler in the request buffer selects one at a time and serve it. Serving it

means doing synchronization with the entity having made the request, making the

I/O module do the actual transfer and pushing/popping the data to/from the FIFO

memory. Each request buffer is given one I/O module directly connected to the bus

and does the actual transfer according to the request buffer’s control. For example,
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request buffer0 may choose req0, which is from p1 on bus0. It synchronizes with p1

and instructs the I/O module to get the data from p1. The I/O module moves the

data from p1 to the FIFO channel. Likewise, the request buffer2 may select req3,

which is written by p3 and tells the request buffer to send the data to p3. According

to the request, request buffer2 checks if the FIFO is available. Following that, the

request buffer instructs the I/O module to pop the data and send it to p3.

(a) Old Tx Model with 1 Request Buffer per Each Connected Bus

(b)

Figure 3.19: Old Tx Model with Deadlock
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Note that the number of request buffers are two per connected bus. In the previous

versions of ESE, the number was one as depicted in Figure 3.19a. However, that leads

a deadlock in some cases.

Figure 3.19a shows an example of the deadlock. p0 is sending data to p1. p2 is sending

data to p3. A channel needs a memory location. In the example, Tx0 provides c1

with the memory. Tx1 gives the data buffer to c0. For c0, p0 writes request to RB0.

For RB1 to send RB2, something should write a request on RB1 and there is nothing

but RB0 to do that. Once RB1 picks up the request from RB0, RB1 is trying to

write a request on RB2. Likewise, regardless of the direction of the data flow, for c1,

p3 writes the request on RB3, RB3 on RB2 and RB2 on RB1. RB1 does not need to

do that because the data buffer is between RB0 and RB1, which means the request

from the other side of the channel c1, the process p2, will be propagated to RB0.

The dotted lines between Tx0 and Tx1 represents who wrote a request and to whom

the request is written. It is saying that RB1 writes a request on RB2 for c0 and RB2

writes another request on RB1 for c1.

Note that the direction of the data flow does not matter. What is important is who

must write a request to whom. Depending on that, Figure 3.19a may or may not

cause deadlock. The reason why is the most complicate part in our TLM and is

explained in the following paragraphs.

Figure 3.19b shows a deadlock scenario. Assume that both RB1 and RB2 are masters

on bus1. RB1 is written a request, req0 by RB0. Since RB0 needs to write a request,

req1 on RB2, at time t0, RB1 takes bus0 and write it on RB2. RB1 successfully writes

the request and then, at t1, releases the bus. At t1, RB1 does not have request3, yet.

Therefore, it interrupts RB2. Interrupting RB2 means setting a flag in RB2, does

nothing but waiting until something happens on bus1.
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On the contrary, RB2 selects the request from RB3, req2, later than RB1 chose

req0. Therefore, when RB2 is not granted for the bus by time t1. At t1, RB2

returns from the UBC write function. The previous implementation immediately

called synchronization function to interrupt RB1. Then, RB2 goes a state to wait

until something happens on bus1 due to RB1. RB1 will never reply.

The Figure 3.19 is the simplest case ever. It even seems that the problem is solved if

RB2 checks the request buffer again before calling synchronization function. However,

even that simple solution implies many change in implementation of synchronization

mechanism. Moreover, the case can be even worse since more than two transducers

as well as multiple processes can be connected to a single bus. Also, the fact that

SystemC does not have pre-emption in its nature makes the problem harder. Even

RTOS models for pre-emptive operating systems are often implemented with explicit

CPU yield in wait statements at the end of every basic blocks [25] [57].

Our solution is presented in Figure 3.20. The solution is based on the following

observation. Cyclic dependencies in writing requests and waiting for responses to

the requests may bring about the deadlock. Therefore, disconnecting the cycle is a

solution.

Our solution is neither the only way nor the best way. However, it is one of the

simplest, working solution. We separate a request buffer into two, the passive request

buffer and the active request buffer as depicted in Figure 3.20a. In the Figure, the

active request buffers have names underline. An active request buffer takes requests

that require the request buffer to remotely write a request to serve the given request.

A passive request buffer takes all the other requests.

For example, the blue dotted lines in Figure 3.20b shows the direction of requests for

channel c0. The memory mapped to the channel is in Tx1. Therefore, p0 must write
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(a) Duplication of Request Buffers

(b) Current Tx Model with 2 Request Buffers per Each Connected Bus

Figure 3.20: Number of Request Buffers in A Tx

a request on RB4 or RB0. Any of them will not write a request over bus0. Therefore,

the request should go to the passive request buffer on the bus0 side of Tx0. That is

RB4. RB4 should write a request either on RB1 or on RB5. Note that this request

requires the request buffer to write a request over bus1. If not, the data cannot be

moved from Tx0 to Tx1. Thus, the request from RB4 for c0 should be written on the

active request buffer on the bus1 side of Tx0, which is RB1. Likewise, RB1 writes a

request on either RB2 or RB6 due to c0. Since any of RB2 or RB6 does not need

to activate anything on bus1, the request from RB1 will go to RB6. Now, for p1 to

receive the data via c0 from Tx1, p1 must write a request on Tx1. It is done either on

RB3 or RB7, which are on the bus2 side. Since any of RB3 or RB7 does not activate
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any on bus2 due to c0, the request from p1 should be written on RB7, the passive

request buffer of Tx1 which is on the bus1 side.

Likewise, the red, dotted lines shows the flow of activation, which is writing a request

and waiting for the response. P3 writes its request for c1 on RB7 not on RB3 since

RB7 does not activate anything on bus2. Tx1 activates Tx0 for c1. Therefore, the

request from RB7 should be written on RB2, the active request buffer. The green

lines can be interpreted in the same way.

The reason why this solution is working is explained as follows. In most cases, an

active request buffer writes a request on the passive request buffer. If that’s the case,

since the passive request buffer does not depend on any remote request buffer, there

is no cycle unless the route itself is a multi-hop route with at least one cycle. We can

prevent this since that is redundant.

Figure 3.21: Active to Active Buffer : Redundant Cycle in A Route

If an active request buffer writes a request on another active request buffer not on a

passive request buffer, a cycle can be found in the dependencies in writing requests and
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waiting for the responses. However, that is not a reasonable scenario. In Figure 3.21,

if Tx1 were not supposed to send the data through c0 directly to Tx2 over bus1, RB1

would have written a request on RB6 not on RB2. The thing is that RB2 is writing

a request on RB8 of Tx2. That means RB2 will send the data from RB1 directly to

RB8. Likewise, the Figure implies RB8 sends the data to RB1, again. That is not

reasonable.

Therefore, unless any cycle is prevented from being included in a multi-hop route,

our solution is working. Moreover, the constraint is very reasonable. Implementing

the prevention is easy. We can detect a cycle in multi-hop routes before TLM/PCAM

generation and cut the redundant cycle off.

A routing table in Figure 3.18 keeps all the information that the request buffers need

at runtime. As we can see in its name, a routing table, the routing information is

also kept in the routing table so that the request buffers can read the table.

The problem is what routing means inside a Tx. Actually, the route mapped to c0

in Figure 3.20a is p0 - bus0 - Tx0( RB4 - RB1 ) - Bus1 - Tx1( RB6 - RB7 ) - p1.

The reason why is already explained; to avoid deadlock. Routing in the prospective

of Tx0 means the followings.

A. RB4 takes the data from p0.

B. RB4 pushes the data and triggers RB1 to get the data from the FIFO.

C. RB1 sends the data to RB6, neither RB2 nor any entity on bus1.

In Figure 3.22, an example is present to show how a routing table provides the Tx

with the required routing information. In the example, the routing table of Tx0 is

depicted.
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(a) Example in Figure 3.20a

(b) Routing Table of Tx0

Figure 3.22: Tx Routing Table

Since two channels, c0 and c1 pass Tx0, the routing table has two entries, in other

words, two rows. The first three columns are the final source, destination processes

and the channel ID. The header of the data is compared to these three columns to

be identified. The ’From’ column is the sender entity on the source side bus. For

example, in the viewpoint of Tx0, for c0, bus0 is on the source side and p0 is the

sender.

The ’From’ and ’To’ in Figure 3.22b let the request buffers to send/receive data over

the bus to/from the right communicating partner. For example, RB1 must send data

to anything else but RB6 for c0. The two columns help that. The ’From’ of the first

row in the table is p0. ’To’ is the receiving entity on the destination side bus, bus1.
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RB6 is taking the data from bus1 side so that ’To’ is RB6. By looking up ’To’, RB1

can send data to the right partner, RB6 and RB4 can wait for the right partner, p0.

The rest four columns, two ’Via’s and two ’Activation’s are needed, for example, for

RB4 triggers RB1 to sned data from RB6 to implement transaction via c0. Generally

speaking, since a request buffer can begin a data transaction only when a request

is written on it, there are some cases that a request buffer must write a request on

another request buffer either in the same Tx or in a different Tx over the bus.

In Figure 3.22a, RB1 should pop the data from the data and send to RB6. However,

note that nothing but RB4 can do that. In this case, RB4 must know whether it must

locally activate another request buffer in Tx0 or not or whether it must remotely

activate another request buffer not in Tx0 but on bus0. In addition to that, if there

is any ’yes’, RB4 should also know which request buffer it must activate.

The required information is kept in the four columns in the routing table, ’Via(src)’,

’Via(dst)’, ’Source Activation’ and ’Destination Activation’. ’Via(src)’ is the source

side request buffer of the Tx for the channel while ’Via(dst)’ is the destination side

request buffer. Therefore, depending on those two, RB4 may know that it is RB1

that RB4 must activate if activation is needed. Also, RB1 knows that, to implement

c0, it should remotely activate nothing else but RB6 over bus1 as far as activation

itself is necessary. ’Source Activation’ and ’Destination Activation’ is for the source

side request buffer and the destination request buffer, respectively. For c0, the former

is for RB4 while the latter is applied to RB1. For c1, the former is applied to RB5

and the latter to RB4. Each of the columns defines the following two.

• Whether the applied request buffer must locally activate the next request buffer

inside the same Tx

• Whether the applied request buffer must remotely activate the next request
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buffer over the bus

Based on the six columns, ’To’, ’From’, two ’Via’s and two ’Activation’s, every request

buffer may figure out whether it has to activate another request buffers or, if it has

to, which request buffers it should activate.

Like UBC, Tx models can have a different wait statement in each primitive operations.

For now, our Tx models have the amount of time to wait hard-coded. In the future,

it can be improved by having the primitive operations to refer an overhead table.

3.4 Transaction Level Model Generation

Figure 3.23: Two Types of Information for TLM Generation

As depicted in Figure 3.23, the generated TLM has two types of information; one is

from EDS and the other from ESE DB. Information from EDS is dynamic information

and those from ESE static.

Static information is invariant from design to design. The information mainly con-

sists of code templates and timing databases. Timing databases includes processing

unit models used for timing annotation of user processes [26], bus protocol models

to estimate UBC primitive operations [29] and RTOS overhead tables [25]. Code

templates are the common part of each TLM components.

Dynamic information includes the followings. Platform structure, configuration and
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mapping. Platform structure is selection of platform components and their connec-

tivity. Examples of configuration are the frequency of a selected PE, cache sizes,

caching policies and so on. Mapping has been discussed in this report. It includes

PE-process mapping, channel-route mapping, channel-memory location mapping, bus

address space, Tx routing information and FIFO configuration and so on.

As a prerequisite, our style in instantiation of TLM components needs to be ex-

plained. That is probably helpful to understand how dynamic information and static

information are added to each TLM components as well as the entire TLM.

1 // user f un c t i o n s p1 , p2

2 extern void p1 ( ) ;

3 extern void p2 ( ) ;

4

5 // two HW, HW1 and HW2 running p1 and p2 r e s p e c t i v e l y

6 c l a s s HW1 : pub l i c SCMODULE {

7 // . . .

8 SC THREAD( p1 ) ;

9 // . . .

10 } ;

11

12 // note that HW2 type must be d i f f e r e n t from HW1

13 c l a s s HW2 : pub l i c SCMODULE {

14 SC THREAD( p2 ) ;

15 // . . .

16 } ;

17

18 c l a s s TopModule : pub l i c SCMODULE {

19

20 TopModule ( )

21 {

22 // bind ing HW, CPU, Tx with UBC
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23 // . . .

24 }

25

26 HW1 hw1 ;

27 HW2 hw2 ;

28 // . . .

29 } ;

Listing 3.1: Static Instantiation in The Previous Versions of ESE

Listing 3.1 shows a typical example of static instantiation used by the previous ver-

sions of ESE. In the example, two HW, HW1 and HW2 run different processes p1

and p2, respectively.

The key observations are the following two. First, as we can see at line 8 and line

14, every information is statically given. In other words, the information is known to

TLM before execution of the TLM. HW1 already knows it should run p1 even before

execution of the TLM. Second, HW1 and HW2 in our system specification must have

different types(classes) in TLM. Each type must include a line such as line 8 and line

14. Those lines, however, cannot be determined until we have system specification

including HW1, HW2, p1, p2 and their mapping. Therefore, it is hard to define a

single HW class shared by all HW instances in advance. In addition to that, for

example, if HW is completely instantiated at generation time, it cannot be scalable.

That is, even in case that the two HW with exactly same functions running exactly

same process, two different types(classes) should be introduced if they are different

in the number of bus ports.

Using two different classes for two instances makes TLM generation more complicated

and less maintainable. When the characteristics of C/C++ are taken into consider-

ation, we can infer that not only the objects themselves but also the codes that use
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the objects often require different codes. For example, assume that HW1 and HW2

have a run function. Also, assume that we want to write a C function to call the run

function. Then, since the types of HW1 and HW2 are different, we must write two

slightly different functions.

1 // inc lude modules

2 #inc lude <HW. h>

3

4 // user f un c t i o n s p1 , p2

5 extern void p1 ( ) ;

6 extern void p2 ( ) ;

7

8 c l a s s TopModule : pub l i c SCMODULE {

9

10 TopModule ( )

11 {

12 // two HW, HW1 and HW2 running p1 and p2 r e s p e c t i v e l y

13 // Note that HW c l a s s i s shared by HW1 and HW2

14 p HW1 = new HW( p1 ) ;

15 p HW2 = new HW( p2 ) ;

16

17 // bind ing HW, CPU, Tx with UBC

18 // . . .

19

20 }

21

22 HW ∗p HW1, ∗p HW2;

23 // . . .

24 } ;

Listing 3.2: Dynamic Instantiation in The Current Versions of ESE

Listing 3.2 shows an alternative approach, which the current version of ESE adopts.
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We keep the common parts between HW1 and HW2 in a single class, HW. The parts

that are not common to HW1 and HW2 are added during instantiation phase at

runtime as well as generation time. The runtime instantiation is done inside the top

module constructor.

First of all, line 6 - 16 and line 26 - 27 in Listing 3.1 have been changed to the code

at line 2, 14 and 15. In Listing 3.2, HW.h included at line 2 defines a single, common

HW class. The class has a pointer to process, which is void (*)() type. Instead of

hard-coding which HW runs which process, line 14 and 15 inside the constructor of

the top module, the single HW class is instantiated twice for HW1 and HW2 objects,

respectively. Note that there is neither HW1 nor HW2 in TLM before the line 14 and

15 are executed. Also, note that the HW class can be instantiated with any process.

Those two are the main difference between the previous static instantiation and the

current dynamic instantiation.

In addition to that, dynamic instantiation also allows scalability. For example, an

RTOS model may run a couple of processes and the number may vary. If we should

statically generate the RTOS model, as we reviewed in Listing 3.1, a single class

cannot be shared by two RTOS models different only in the number of the running

processes. Also, if two PEs with exactly same functionality and running exactly the

same set of processes are different in the number of bus ports, the two PEs should be

most likely in different types(classes). On the contrary, dynamic instantiation allows

such scalability.

Since two different objects, for example, two PEs, share the same class, the code using

the objects does not need to be different. The code being common means that the

code can be written in advance and stored in ESE DB. That makes TLM generation

much more simpler and far more maintainable.
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Why the current implementation is adopting dynamic instantiation rather than static

one has been explained. Since instantiation can be done dynamically, what TLM gen-

eration does is mainly the following; It produces the top module code that instantiates

the TLM components in system specification and connects them together. Simula-

tion starts only by the function, sc start, being executed. Before sc start is called,

instantiation of TLM components are completely done inside the constructor of the

top module. Note that what we call ’TLM Generation’ includes not only production

of the generated TLM code but also execution of the instantiation parts of the TLM

code.

In this Section, we will see how TLM generation is done based on both of static

information and dynamic information component by component.

3.4.1 Transaction Level Model Generation : PE

Figure 3.24: PE Generation

Figure 3.24 shows CPU generation. PE can be either a CPU or a HW type. We
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starts with CPU generation. Note that all red-lined shapes with gray color come

from ESE DB while blue-lined shapes in light gray come from EDS. Figure 3.24

depicts generation of PE0, to which two processes, p1 and p2 are mapped.

Figure 3.24 shows a big picture. The original, untimed user processes such as p1

and p2 are annotated with timing by performance estimation. That requires PUM in

ESE DB. At the same time, RTOS overhead table is made and the pointer is added

to an instance of RTOS template stored in ESE DB. The common codes among

all RTOS instances are packed in the template. The template is actually a single

SystemC class. Communication API will be explained later on. However, note that

the required and right set of functions in communication API needs to be accessible

by the processes. RTOS0 manages the resources of PE0 so that communication API

is added to RTOS. The selection of communication API and the processes to be

executed on RTOS0 should be done based on EDS. TLM generation process choose

the right processes and communication API for RTOS0 and add them to RTOS0

during dynamic instantiation. Also, the CPU template, which is a c++ class, is

instantiated with the RTOS model, RTOS0.

Note that TLM generation for a custom HW component is simpler. A HW template,

which is a SystemC SC MODULE, is instantiated with the process and the right

communication API during runtime instantiation. Communication API selection will

be explained later on in this section.

Figure 3.25 shows RTOS generation in great details. Above all, it shows what the

RTOS template is. It is a SystemC(C++) class where all functionality of RTOS

primitive operations are already implemented. It has an empty overhead table and

an empty process list. RTOS primitive operations such as scheduling or services of

communication API refer the overhead table and the process list. They will be filled

out during RTOS generation.

77



Figure 3.25: RTOS Model Generation

Figure 3.26: Communication API Selection

Figure 3.13 showed the same channel interface must be implemented in different ways

depending on the platform and the locations of the communicating processes. The

number of cases are limited and usually less than ten for a given function such as
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send. In addition to that, unlike the previous versions of ESE, the current ESE has

a single type for PEs, a different but single type for UBC instances and so on.

Therefore, the entire set of communication API can be implemented and stored in

ESE DB. As depicted in Figure 3.26, depending on PE-Process mapping, platform

connectivity and so on, all of which are given in EDS, the TLM generation process

selects the right communication API. The selected communication API is added to

the RTOS model if the processes using the API are mapped to a CPU. Otherwise,

the communication API is directly added to the PE, which is a HW type. In the

Figure, communication API2 is selected depending on EDS and added to RTOS0.

Note that, even though we adopted static instantiation as before, the bodies of com-

munication API should be written at least once inside the TLM generation code.

Also, TLM generation code must include the entire set of communication API some-

where, anyway. Therefore, implementing the entire set of API and storing them in

ESE DB do not require any extra work at all.

3.4.2 Transaction Level Model Generation : UBC

UBC models a bus by defining primitive operations and providing estimation on the

operations.

All UBC instances share a large portion of common code. That is stored in ESE

DB and called UBC template. UBC template includes the bodies of UBC primi-

tive functions such as send, receive, read, write and so on. Those functions need

data, which varies from instance to instance. Examples of the data are bus address

space, synchronization table, global memory, arbitration policy and so on. Except the

communication delays, EDS has all the necessary data for bus0. The communication
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Figure 3.27: UBC Generation

delays are different from instance to instance. To estimate the delays without PCAM,

we need protocol models [9] [29] in ESE DB.

In Figure 3.28, UBC template is drawn compared to UBC. That is a SystemC object,

where all UBC functions are already implemented. The functions will refer synchro-

nization table, address table, communication delay table, the list of memories and so

on. Those are not common to the UBC instances. The UBC template initially has

empty list and tables. A UBC model is a template with the tables and list filled out.
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Figure 3.28: UBC Template

3.4.3 Transaction Level Model Generation : Tx

Tx generation is similar with UBC generation. Tx primitive operations are common

to all Tx instances. Therefore, they can be implemented and stored in ESE DB as

Tx template. As depicted in Figure 3.29, generation of Tx0 begins with retrieving

Tx template from ESE DB. However, configuration for the internal FIFO, number of

request buffers, the number of request buffer entries in each request buffer and routing

table may vary. The information is already included in EDS. For example, since Tx0

is connected to two buses, four request buffers are needed. The connectivity is given

in EDS. TLM generation produces four instances of request buffers and add them to

Tx template.
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Figure 3.29: Tx Generation

Note that communication delays cannot be given in EDS. They will be computed

based on Tx delay models stored in ESE DB. As a result, a small data structure con-

taining the estimated delays for the given Tx instance, Tx0, is added to Tx template.
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Chapter 4

Hierarchy-Aware Mapping of

Pipelined Applications

c© 2014 IEEE. Reprinted with permission from Kyoungwon Kim and

Daniel Gajski, Hierarchy-Aware Mapping of A Pipelined Application, 2014

This dissertation offers mapping techniques for general computation models. As

pipelined execution of the given application on a heterogeneous platform is a practical

solution for several application domains such as streaming applications [58], mapping

of a pipelined applications to the given platform is a problem worth solving. A gen-

eral computation model may have explicit representation of pipelined execution of the

application. Mapping techniques for such a model must exploit pipeline parallelism.

This chapter describes mapping of a pipelined application captured while optimizing

execution time. The applications we target are executed in a pipelined manner and

can be captured in a general computation model with explicit representations for

pipelined execution. Such a model can be decomposed into one or more pipeline stages
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or, interchangeably, stages. Each stage consists of a set of sequential and/or parallel

tasks, each of which may also be decomposed, recursively, into sequential/parallel

tasks. Balancing the delays of the pipeline stages, the aim of which is to make

the execution time of each stage approximately the same, significantly impacts the

execution time of the system. Ideally, the execution time of the system is close to

that of the stage with the critical delay.

The contribution of this dissertation is, by being aware of hierarchy, to balance

pipeline stages. Previous works [39, 49, 42, 40, 41] have assumed that hierarchy in

the computation model is flattened so each period of execution can become an acyclic

directed graph. However, in general models, a stage can have a complex hierarchy

that does not easily allow such flattening. For example, in Program State Machines

(PSMs) [9], a stage can be decomposed into ten program-states, over which are defined

very complex state transitions depending on the data. Hierarchy-Aware mapping we

present saves additional PEs by merging consecutive small stages, re-assigning the

saved PEs to the large and hierarchically described stages, repartitioning the large

stages and carrying out a remapping of the stages.

4.1 Application Model and Platform

The entire computation model is a pipeline, which can be decomposed into one or

more pipeline stages, or stages. Any two tasks in different stages run concurrently.

Any two tasks in adjacent stages may communicate through FIFO channels. Each

stage is a single program-state. As Stage1 in Figure 4.1 exemplifies, a program-state

can be either decomposed into sequential program-states, decomposed into parallel

program-states or a leaf program-state we call a process. A process contains codes

written in high level languages such as C/C++. Sequential decomposition implies
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Figure 4.1: Application Model, Platform, and Mapping

there is a finite set of hierarchical sub program-states in the program-state; a set of

state transitions is defined as well. A state transition may be affected by data. Parallel

program states in a single stage run in parallel with their sibling program-states. Any

two states may communicate through channels. For example, in Figure 4.1, p0, p1,

p4, p5 and p6 are executed concurrently in a pipelined manner. p1 is decomposed

into two parallel program states: p2 and p3 running in parallel with each other. p2 is

sequentially decomposed into two processes: p7 and p8. However, note that, according

to the data c and d, p7 and p8 can be executed any arbitrary times even in a single

cycle of the pipelined execution. Figure 4.2 shows a practical example of modeling

a pipelined application with a computation model with explicit representation for

pipelined executions.

A practical example of the applicatio model in Figure 4.1 is shown in Figure 4.2.

The code is a SpecC [30] pseudo code. SpecC is a system-level design language
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1: behavior Application() {
2: void main() {
3: /* nIter is the number of iterations */
4: pipe ( i = 0; i ¡ nIter; i++ ) {
5: p0(); // Stage
6: p1();
7: p4(); // Stage2
8: p5(); // Stage3
9: p6(); // Stage4
10: }
11: }
12: }
13: behavior p1() {
14: void main() {
15: par { p2(); p3(); }
16: }
17: }
18: behavior p2() {
19: void main() {
20: fsm { p7(); p8(); }
21: }
22: }

Figure 4.2: Modeling Example: SpecC

developed by Center for Embedded Computer Systems at University of California,

Irvine. SpecC provides the pipe keywords for pipelined execution, which can be found

in line 4. From line 4 through line 10 define pipelined execution of five hierarchical

program-states: p0, p1, p4, p5, and p6. Any program-state executed in a pipeline

stage can be hierarchical. P1 is decomposed into two parallel program-states, p2 and

p3. P2 has a sequential decomposition of p7 and p8 from line 18 through line 21.

The platforms we target are combinations of general purpose processors (GPPs), DSP,

FPGA and other processing elements.
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4.2 Problem Definition

The optimization goal is to minimize the execution time of the system. It is assumed

that the execution time of the system depends on the execution time of the stage which

has the longest delay. To minimize the execution time, small consecutive stages can

be merged and each large stage can be partitioned into pieces. Each piece can be

mapped separately. The application model is mapped to the given, fixed platform

while the execution time is minimized under cost constraints.

This dissertation offers formalization for the problem. A partition is defined as either

a subset of program-states in a single stage or the stage itself. V , S and P (si) are the

set of Processing Elements (PEs), stages and partitions in a stage si, respectively.

For a partition pj , T (pj) is execution time of pj. T (si) is the execution time of stage

si and defined as follows:

T (si) = max{T (pj)} for pj ∈ P (si) (4.1)

Our goal is to find the set of stage S and mappingM : V → S, wheremax{T (si)}forsi ∈

S is minimized. Note that S changes during mapping and that T (si) may be reduced

by partitioning si and assigning more PEs to the stage.

4.3 Hierarchy-Aware Mapping

4.3.1 Algorithms

Heuristic-based approaches can be justified as follows; If even a stage can be divided

when it is hierarchically described, the complexity is not polynomial.
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The number of PEs ‖V ‖ can be initially less than, equal to or greater than the number

of stages ‖S‖. Figure 4.3 covers the case in which ‖V ‖ = ‖S‖. The other two are

very similar.

Figure 4.3: Hierarchy-Aware Mapping: ‖V ‖ = ‖S‖

In Figure 4.3, ‖S‖ is or has become equal to ‖V ‖. S is sorted by the execution time

given in the execution profile. V is sorted by speed. Following that, the one-to-one

mapping in Box 1 Figure 4.3 is performed in order. One-to-one mapping has room

for improvement since a set of stages are too small while another set of stages are too

large. The quality of the design can improve if we save extra PEs by merging more

consecutive small stages and assign the saved PEs to the stages with longer delays.

In Boxes 1 through 5, Hierarchy-Aware mapping algorithms repeat merging stages,

saving a PE, assigning the PE to the stage with the longest delay and testing whether
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there is improvement. Once the saved PEs are added to a stage, the stage should

be repartitioned and remapped. Heuristics for repartitioning and remapping will be

explained in the next section.

(a) ‖V ‖ < ‖S‖ (b) ‖V ‖ > ‖S‖

Figure 4.4: Hierarchy-Aware Mapping: ‖V ‖ 6= ‖S‖

Figure 4.4a describes the algorithm that is applied when ‖V ‖ is less than ‖S‖. An

intuitive way to map starts with merging several small consecutive stages so that ‖S‖

becomes ‖V ‖. The total number of ways to reduce S is ‖S‖C‖V ‖. In addition, for each

reduced S, there are ‖V ‖! ways of mapping. Nonetheless, ‖S‖, and thus ‖V ‖ in this

specific case, are not large in practice, so an exhaustive search could be reasonable.

In Figure 4.4b, the algorithm for the case that ‖V ‖ is greater than ‖S‖ is explained.

The basic idea is to reduce the problem to the “‖V ‖ = ‖S‖” case. S is sorted by

computation. V is sorted by speed. Sorting is followed by injective in-order mapping
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from S to V . The same procedures in Figure 4.3 follow except that Box 2 is skipped

whenever there is any remaining PE.

4.3.2 Heuristics for Repartitioning and Remapping

When a saved PE is added to a stage, the stage should be repartitioned. Repar-

titioning is followed by remapping. Even finding the local optimal that minimizes

the execution time of the stage takes exponential time. Therefore, heuristics giving

suboptimal solutions are required.

In the heuristics, a process and a PE to which the process is moved is selected. The

process is moved to the PE until there is no improvement. We formalize the problem.

The algorithm takes three inputs: 1) a graph G, which is the subgraph of the given

computation model representing the stage under concern 2) the set of the PEs given

to this stage s Vs and 3) the execution profile. The output is Ps which is a set of

non-overlapping subgraphs of G and one-to-one mapping f : Ps → Vs where the

ExecT ime(G) is minimized.

Figure 4.5 is the algorithm to compute ExecTime. If the state is a leaf process,

the execution time of the leaf process on the currently mapped PE is given from

the execution profile. If the decomposition is sequential, delay of each sub program-

state should be accumulated. It is complicated to compute ExecTime function with a

program-state decomposed into parallel program-states. If each parallel sub program-

state is mapped to different PEs respectively, ExecTime returns the maximum exe-

cution time. However, several sub program-states can be mapped to the same PE.

Moreover, each sub program-state is hierarchical. For example, sub program-state0

and sub program-state1 can be partially mapped to PE v0. The execution time of

program-state0 is affected by PE configurations, bus arbitration, RTOS scheduling,
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1: double ExecTime(G) {
2: if G is a leaf node then
3: return the execution time of G on the mapped PE
4: end if
5: if G is a set of sequential sub program-states SubGseq then
6: return Σ ExecT ime( sub g ∈ SubGseq )
7: end if
8: if G is a set of parallel sub program-states SubGpar then
9: max := −∞
10: for all v ∈ VG where VG is the set of PEs running part of G do
11: delay := 0
12: for all sub g ∈ SubGpar do
13: if sub g or its part is mapped to v then
14: delay+ = ExecT ime( sub g )× α, 0 < α ≤ 1
15: end if
16: end for
17: max = MAX( max, delay )
18: end for
19: return max

20: end if
21: }

Figure 4.5: ExecTime(G) Function

RTOS overhead and many others so is not predictable at this design stage. There-

fore, approximation is required. As seen from lines 11 through 19, to compute the

execution time of the sub graph of G mapped to v, we sum up ExecTime of all sub

graphs, each is entirely or partially mapped to v. Before summation, we multiply α.

The best value of α in Figure 4.5 could vary. We used 1, which encourages mapping

parallel program-states separately.

4.4 Case Study

The case study is performed with two streaming applications: Canny Edge Detec-

tor [59] and JPEG encoder. The platforms are randomly generated with different cost

constraints. In the platform library, there are MicroBlaze processors, three different
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types of custom hardware and DSP models. We capture Canny Edge Detector in

PSM following the modeling style of Han et al [60]. We modeled the JPEG encoder

on our own. The application is decomposed into four stages. The first two stages

are decomposed into several hierarchical sequential/parallel sub program-states. The

rest are leaf program-states. The platforms are randomly generated. The number

of PEs varies from 2 to 4. The simulation framework in [61] is used to measure the

execution times. Note that the framework reflects the impact of resource sharing and

communication overheads.

Table 4.1: Canny Edge Detector: Average Execution Time per Frame
Randomly
Generated
Platforms

Exhaustive
Hierarchy-
Unaware

Hierarchy-
Aware

Execution
Time Re-
duction

1 50.62 ms 38.68 ms 23.59%
2 50.32 ms 38.27 ms 23.95%
3 189.65 ms 110.45 ms 41.76%
4 39.5 ms 32.89 ms 16.73%
5 39.5 ms 23.87 ms 39.57%

Table 4.2: JPEG: Average Execution Time per Frame
Randomly
Generated
Platforms

Exhaustive
Hierarchy-
Unaware

Hierarchy-
Aware

Execution
Time Re-
duction

1 20.09 ms 14.14 ms 29.62%
2 19.03 ms 13.07 ms 31.32%
3 15.15 ms 14.14 ms 6.67%
4 19.03 ms 13.57 ms 28.69%
5 19.03 ms 17.03 ms 10.51%
6 15.15 ms 14.26 ms 5.87%
7 47.98 ms 40.99 ms 14.57%
8 41.93 ms 32.79 ms 21.80%
9 16.39 ms 16.18 ms 1.28%
10 15.15 ms 14.14 ms 6.67%

Tables 4.1 and 4.2 compare, respectively, Hierarchy-Aware mapping to an exhaustive

Hierarchy-Unaware Mapping in the average execution time of Canny Edge Detector

and JPEG encoder. The latter is the optimal as long as hierarchy is not taken into
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account. Hierarchy-Aware mapping decreases the execution time by the average of

23.3%.

93



Chapter 5

N-Way Clustering and Mapping

Due to design complexity, in any design methodology, one must address productivity.

In traditional design methodologies, the design process is not efficient enough, the

main reason being the lack of HW/SW co-design. Virtual Platform (VP)-based de-

sign methodology allows HW/SW co-design since VP, which is a model of hardware

platform, is used for software development before the prototype is ready. However,

every change in the platform must be manually implemented and thus VP-based

design is not flexible enough for new embedded applications.

One alternative that researchers have proposed is Transaction Level Model-based

design. The design begins not with platforms but with a Model of Computation

capturing the system’s functionality. Designers map computation models to Model of

Architecture (MoA), which is an abstract model of the selected platform. Transaction

Level Model (TLM) is automatically generated for cycle-approximate evaluation so

that the design quality can be evaluated without the prototype board [9].
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In Transaction Level Model-based design, mapping is still intuitively done by experi-

enced designers. Manual mapping is becoming infeasible regarding that the realistic

systems are already too complex. A solution to tackle this problem is to automate

mapping.

Due to trade-offs between different metrics, no single algorithm can optimize all of

metrics at the same time. Designers may choose among different algorithms, each

optimizing its own set of the metrics. In this dissertation, execution time is minimized

under other design constraints such as cost. In optimization of execution time process

scheduling plays a crucial role.

Optimization in mapping also depends on the computation model. Although Trans-

action Level Model-based design could starts with any computation model, this dis-

sertation focuses on general computation models such as Program State Machines. A

general computation model is complete so it can describe the entire system. Moreover,

there have been well-established automated design flow for such a general computa-

tion model.

In a general computation model, processes run in an asynchronous manner and process

scheduling is affected by the dynamic data-oriented behavior limited by the flow of

data and data dependencies across computations. Therefore, process scheduling is

not highly predictable in a general computation model. Nonetheless, the impact

of process scheduling must be considered as well as communication overhead and

computation. Thus, approximation for process scheduling are required.

In this chapter, N-Way Clustering and Mapping (NWCM) is proposed. NWCM is

a mapping technique for a general computation model, and takes into consideration

altogether communication, computation, and process scheduling. NWCM conducts

clustering based on its closeness function, to which communication overhead, compu-
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tation, and process scheduling are put together. Clustering is followed by one-to-one

mapping. The clusters are sorted by computation and PEs by speed. Mapping is

performed in order.

The case study performed with Canny Edge Detector and an application running

MP3 decoder and JPEG encoder in parallel shows that NWCM outperforms any

competitive algorithm by at least 24.4%.

5.1 Problem Definition

We add automatic partitioning and mapping to a Transaction Level Model-based de-

sign as depicted in Figure 5.1. In Transaction Level Model-based design, the design

process begins with capturing the system’s functionality in an computation model.

Modeling the system’s functionality and specification of the design constraints are

followed by platform selection and mapping. We call the result system description.

From the system description, a Transaction Level Model (TLM) is automatically gen-

erated so that fast cycle-approximate estimation can be conducted by simulating the

TLM. If the design constraints are not met, mapping and/or platform selection are

performed to improve the design. Or, computation model itself can be modified. Once

the design constraints seem to be met according to the TLM-based cycle-approximate

estimation, the back-end design procedure will refine the TLM down to the imple-

mentation.

First of all, there are trade-offs in selecting an computation model for a given appli-

cation. For example, there is a trade-off between expressive power and analyzability.

In this paper, we focus on general computation models and use Program State Ma-

chine (PSM) [9].
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Figure 5.1: Design Flow in Model-Based Design

“The Program-State Machine (PSM) unifies the concepts of hierarchical concurrent

finite-state machines, dataflow graphs and imperative programming languages in a

single model of computation.” (Grütter & Nebel, 2008 [62]).

A program-state can be either of the following. First, it can be further decomposed

into concurrent program-states. Second, it can be decomposed into sequential states.

Third, it can be a leaf program-state, which we call a process. Fourth, it can be

a pipeline: several sub program-states are executed in a pipelined manner. We do

not cover the last case: the functionality of the entire system is captured in a single
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pipeline. Nonetheless, in reality, many computation-intensive applications modeled

in such a way that we cover in this paper (e.g. [63] [64]).

Our target platforms are a combination of processing elements (PEs) such as general

processors, DSP, custom hardwares, hardware IPs, etc, as they are in [39]. We assume

that a MPSoC platform is provided. In addition, the execution profile, which is the

power consumption, cost and execution time of each process on each PE, is given.

Optimal partitioning and process mapping are to be constructed. Our optimization

goal is low latency while meeting all the other constraints such as power consump-

tion and cost. We use latency as defined in [65]: latency in transformative systems

indicates the average time that a system takes to transform an input from the input

stream to the output stream.

The assumptions made for the rest of this paper are as follows: the size of the local

memory of each PE is large enough. A single type of RTOS is used for every processor

and its scheduling policy is priority-based scheduling. All tasks mapped to a processor

have the same priority. Channel mapping is given, once process mapping has been

completed. Each process is statically mapped to a single PE. Two or more parallel

processes can be mapped to a PE without any RTOS only when static scheduling of

the processes is possible.

5.2 Motivation of N-Way Clustering and Mapping

Mapping processes in Transaction Level Model-based designs has been conducted

manually. Designers may initially map the entire computation model to a single host

processor. Then, the designers may find task-level parallelism to move some processes

from the host processor to other PEs. As we see in Figure 5.2, process scheduling may
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(a) PSM and Platform (b) Mapping Based on Computa-
tion

(c) Timeline of (b)

(d) Mapping Based on Computa-
tion and Scheduling

(e) Timeline of (d)

Figure 5.2: Simple Mapping Example with and without Considering Process Schedul-
ing

greatly impact the latency of the system. In the example, p0 and program-state1 run

sequentially, while p1 and p2 run in parallel to each other. HW0 is assumed to execute

only a single process in this example and to complete every operation twice as fast as

CPU0 does. Without considering scheduling, Figure 5.2b is the optimal. However, in

Figure 5.2b, there is no parallelism. The latency is even reduced in Figure 5.2d.

In addition to finding task-level parallelism, designers often consider the processing

time of each PE defined by C. Erbas et al [18] and communication overhead. If the

communication overhead between two parallel or sequential tasks is very large, de-

signers may map the two processes to the same PE. Besides, designers are always
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aware of various design constraints. Especially for real-time constraints, the process-

ing time of each PE must be smaller than the real-time constraints. Finally, when

the mapping seems to be infeasible, the designers may change some PEs to better

ones and/or use additional PEs under cost constraints.

Based on these observations, we propose NWCM. NWCM performs partitioning by

N-Way clustering without violating design constraints, where N is the number of PEs

in the platform. For this purpose, we develop the closeness function in which com-

munication overhead, computation, and approximatly estimated impact of process

scheduling are taken into account. In addition, we formulate the constraints.

5.3 Closeness Function of NWCM

The problem is that process scheduling in PSM mostly depends on dynamic behav-

ior. There is only limited knowledge on process scheduling available in PSM at static

time; any pair of processes are either sequential or parallel to each other. However,

two parallel processes may run sequentially due to complicated data/control depen-

dency. State transitions can entirely depend on runtime behavior so that the order

of execution of two sequential processes is often limitedly predictable.

Nonetheless, there are still multiple ways to take process scheduling into consideration.

One is N-Way clustering based on our new closeness function, to which two boolean

variables, bp and bs, are added. The boolean variables show, respectively, whether

the pair of sets of processes are running in parallel and whether the pair can run

sequentially.

In general, to exploit parallelism and to reduce the system’s latency, a mapping

algorithm may as well map two processes to the same PE if there is a intensive/large
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data transfer between them and separate the processes if the sum of the estimated

execution delays is large. In addition, there are two more basic observations. A

mapping algorithm may as well:

• separate two parallel processes especially if the overall execution delay is large,

• map two sequential processes to the same PE especially if the processes run

back-to-back.

In addition, multiple sequential processes can be mapped to a single HW but not

multiple parallel processes. Therefore, by considering the basic observations, we can

improve HW utilization and as a result exploit parallelism even further.

Since our work is targeting computation-intensive applications, mapping is finalized

as follows: the N clusters are sorted by the order of execution delay and the N PEs

are sorted by speed. One-to-one mapping between PEs and clusters is performed in

order.

5.4 Algorithm

We propose N-Way clustering based on our new closeness function C of process p0

and p1 in Equation 5.1. In the Equation, bs and bp show, respectively, whether p0

and p1 may run back-to-back and whether p0 and p1 run in parallel. De and Dt

present, respectively, estimated execution delay of the two processes and estimated

communication overhead.

C(p0, p1) = (c0 + c1 ∗ bs) ∗Dt + (c2 − c3 ∗ bp) ∗De (5.1)
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(a) PSM and Platform (b) Clustering and Mapping

(c) Process Mapping Done

Figure 5.3: N-Way Clustering and Mapping Example

We can extends the closeness function to take two clusters, each of which is a mutually

exclusive set of processes. For two clusters, Cl0 and Cl1, bs indicates whether all

processes in the two clusters can run sequentially or not and bp shows whether all

processes in the two can run in parallel. Dt and De are, respectively, the sum of

estimated execution delays of the two clusters and overall communication overheads

between the two. Equation 5.2 shows the extended closeness function of the two

clusters.

C(Cl0, Cl1) = (c0 + c1 ∗ bs) ∗Dt + (c2 − c3 ∗ bp) ∗De (5.2)
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(a) Flowchart of Algorithm (b) Replacement Example

(c) PE Addition Example (d) Repartitioning Example

Figure 5.4: N-Way Clustering and Mapping (NWCM) Algorithm

After N-Way clustering completed, one-to-one mapping between clusters and PEs are

performed. Since our approach is mainly targeting computation-intensive applica-

tions, clusters are selected one by one in order of the total estimated execution delay

of the cluster and PEs are selected in order of speed.

Mapping is an NP-hard problem, resulting in several approaches based on many

different algorithms. Taking into consideration process scheduling, we can apply
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ILP or meta-heuristic-based approaches to our problem as well. However, ILP is

not scaling well to large problem sizes and meta-heuristic based approaches offer no

assurance that the required design quality is reached in a finite time. Putting this

aside, we can start with a simple algorithm that works.

Figure 5.3 shows how the algorithm works. The input PSM and the initial target

platform are given. From the input PSM, all leaf processes are enumerated. In this

example, program state0 is not a leaf. Instead, from process p0 to process p7 are leaf

processes. Between any of two processes, an edge is added and the closeness function

is used as the weight of the edge. Note that edges with a zero or negative weight

are omitted for simplicity. N-Way clustering is performed and what is following is

one-to-one mapping depending on execution delays of the clusters and speeds of the

PEs. The result is shown in Figure 5.3c.

Figure 6.3 shows the flow chart of the N-Way Clustering and Mapping Algorithm.

The algorithm is decomposed into three phases, the N-Way clustering, mapping, and

fixing phase, each of which is indicated by a different color.

Initially, each process constructs its own cluster. The N-Way clustering phase is a

loop from box 1 to box 4 and colored dark gray. In the N-Way clustering phase, the

following process is repeated;

• Update closeness function values for all pairs of clusters.

• Sort the pairs by closeness function.

• Select a cluster with the closeness function value as large as possible while

keeping power/cost constraints met.

The one-to-one mapping process from box 5 to box 7 follows N-Way clustering. The
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PEs are sorted by speed. The N clusters are sorted by estimated delays. One-to-one

mapping is performed in decreasing order.

The last phase is to fix mapping if any of the design constraints are not met. Note

that any heuristic algorithm may fail for many reasons. One reason is that the given

constraints are too tight for any heuristic or are even impossible to meet. In the

third phase of the proposed algorithm, the given mapping is fixed or the algorithm

returns failed with the best design explored. The three ways to fix the mapping

are depicted in Figure 6.3. Three options are selected by decision making schemes.

In Figures 5.4b, 5.4c, and 5.4d, the real-time constraint is violated as an example.

Other design constraints may be also violated. The first option is to replace PE.

For example, in Figure 5.4b, HW0 is overloaded but replacing HW0 with IP1 solves

the problem while meeting cost and power constraints. The algorithm replaces HW0

with IP1. As a result, the ordered list of PEs may change so that the one-to-one

mapping process may need to be applied again. The second option is to add a new

PE. For example, in Figure 5.4c, the real-time constraint is violated. Therefore, a new

PE, DSP0 is added. In this case, 4-Way clustering is needed instead of the 3-Way

clustering already completed. In general, after PE addition, with the updated N,

N-Way clustering is performed again. The third option is to select a victim process

and move the process to another cluster.

There are various ways to decide which option is selected to fix mapping. Also, there

are multiple ways to select PE to replace or add. In addition, a number of ways exist

to select both a victim process and the new cluster to locate the process. In this work,

we try to replace PE first. If that fails, PE addition follows. The option selected last

is repartitioning. The victim process is selected based on the closeness function at

the first iteration of N-Way clustering. The cluster to which the process is moved is

selected based on the constraint violated.
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5.5 Case Study

(a) Platform w/ 1 CPU, 1 DSP, 3 HW (b) Top Level View of Sys-
tem’s Functionality

(c) Expanded MP3 Decoder (d) Expanded JPEG Encoder

Figure 5.5: Application and Platform for Experiment

5.5.1 MP3 Decoder And JPEG Encoder

We have chosen a computation intensive multimedia application running, in parallel,

an MP3 decoder and JPEG encoder. Figure 5.5a shows the given platform including

1 general purpose processor (GPP), 1 digital signal processor and 3 different pieces

of custom hardware. The GPP is connected to bus0 and the others to bus1. A

transducer bridges two buses. Figure 5.5b describes the top level view of the system’s

functionality. Two program states, MP3 decoder and JPEG encoder, are running in
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parallel. Figure 5.5c and Figure 5.5d expand each program state, respectively. Shared

variables accessed by sequential processes are omitted for simplicity. The frequency

of each component is between 200 MHz and 400 MHz.

To prove our contribution, it is necessary to compare it to different approaches with

similar algorithms and different closeness functions. For this purpose, we use CBB,

LB and LPT as competitive algorithms. CBB is a modification of N-Way cluster-

ing [66]. CBB is similar to NWCM but uses a different closeness function, which

includes only the number of bytes transferred between the two processes. We may

compare NWCM to N-Way clustering and mapping algorithms with the closeness

function taking only computation and/or communication. However, LB and LPT

assure shorter latency than do the algorithms since LB and LPT considers PEs and

the capacity of communication routes. Therefore, we compare NWCM to LB and

LPT.

These comparisons are not sufficient to assert the quality of NWCM is acceptable.

Therefore, NWCM also needs to be compared to previous, realistic approaches as

well. We choose a modified version of SPEA for this kind of comparison. SPEA

finds pareto optimal solutions in terms of power consumption, cost and maximum

computation. For a fair comparison, we apply SPEA with a single objective function,

maximum computation. The modified SPEA optimizes latency based on evolution-

ary algorithms. For SPEA, the number of generations, population size, crossover

probability and mutation rate are kept the same as [18]. The input PSM is manually

translated to a Khan Process Network and the Tx is used as a single FIFO memory.

In the platform, nothing but Tx0 can be used as a shared memory.

Any of the five algorithms—NWCM, LB, LPT, CBB and modified SPEA—produces

a single mapping between the given platform and the given computation model. The

result of the mapping process is a system model, which is refined to a TLM. The

107



TLM is simulated to evaluate the design quality.

Table 5.1: Total Execution Delays on Each PE
Algorithms CPU HW DCT IMDCT DSP Delay

NWCM 8.5 ms 2.8 ms 2.3 ms 3.2 ms 5.9 ms 22.7 ms
SPEA 9.3 ms 1.3 ms 1.4 ms UNUSED 8.9 ms 20.9 ms
LPT 8.5 ms 1.2 ms 2.0 ms 1.7 ms 14.0 ms 27.4 ms
LB 0.9 ms 1.2 ms 2.0 ms 1.5 ms 12.7 ms 18.3 ms
CBB 21.6 ms 0.1 ms 0.1 ms 0.1 ms 19.8 ms 41.7 ms

Table 5.2: Overall Latency
Algorithms CPU HW DCT IMDCT DSP Latency

NWCM 8.5 ms 2.8 ms 2.3 ms 3.2 ms 5.9 ms 16.8ms
SPEA 9.3 ms 1.3 ms 1.4 ms UNUSED 8.9 ms 24.2ms
LPT 8.5 ms 1.2 ms 2.0 ms 1.7 ms 14.0 ms 20.9ms
LB 0.9 ms 1.2 ms 2.0 ms 1.5 ms 12.7 ms 22.6ms
CBB 21.6 ms 0.1 ms 0.1 ms 0.1 ms 19.8 ms 24.2ms

In TABLEs 5.1 and 5.2, the simulation results are enumerated. Each row shows the

simulation result of the TLM obtained by each algorithm, respectively. Note that

communication overhead is far smaller than latency so that it is omitted. Each row

shows the distribution of the total execution delay in addition to the latency. The

total execution delay is the sum of the execution times from each process, during

which the process is actively running. Latency is the overall response time to process

a given set of inputs.

First of all, communication overhead in this application was very small. Therefore,

NWCM outperforms CBB in terms of both total execution delay and latency since

CBB mainly optimizes communication.

Compared to LB, which optimizes computation only, we can point out the following:

• Execution delay is more evenly distributed in NWCM than it is in LB.

• The total execution delay of LB is, nonetheless, smaller than that of NWCM.
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• Overall latency of NWCM is smaller than that of LB.

Multiple sequential processes can be mapped to an HW but multiple parallel processes

cannot in general. Therefore, NWCM can map more processes to HW instead of SW

and, as a result, improve HW utilization. In spite of this fact, LB usually finds better

PEs to the given processes so that the total execution delay of LB is smaller than

that of NWCM. However, the latency of LB is larger than that of NWCM, which

implies latency does in fact depend on process scheduling. Interestingly, between

LB and CBB, the difference in latency is much smaller than the difference in total

computation delay. In this given application, sequential processes usually perform

a large amount of communication to each other via shared variables. Therefore,

CBB often binds sequential processes together. It is also proof of impact of process

scheduling.

Since communication overhead is miniscule, LPT produces similar mapping to that of

LB. However, LPT exploits parallelism more than LB does due to process scheduling.

Thus, the latency of LPT is shorter than that of LB. In the same sense, NWCM is

better than LPT.

SPEA was originally applied to Process Network Models. Therefore, it does not

consider process scheduling. Therefore, as shown in TABLEs 5.1 and 5.2, even though

SPEA shows lower total execution delay than NWCM does, the overall latency of

SPEA is worse than that of NWCM.

In summary, the proposed algorithm, NWCM, is better than any other by at least

24.4% in terms of latency although its total execution delay is not the shortest. The

reason is process scheduling and HW utilization.
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Chapter 6

Cycle-Approximate Estimation

Based Mapping

This chapter describes Cycle-Approximate Estimation-Based Mapping (CAEBM) of

a computation model to the given multi-processor/core platform. In previous work,

estimation precedes mapping, while cycle-approximate estimation follows mapping.

Therefore, the estimates given by the existing estimation techniques is not vey ac-

curate, lowering the quality of mapping. Cycle-approximate estimation improves the

mapping process but requires changes to it.

CAEBM is driven by recent changes in estimation technologies that allow fast cycle-

approximate estimation. With an initial mapping, CAEBM iteratively uses cycle-

approximate estimation and heuristics to improve the mapping in terms of execution

time. A case study is performed with a multimedia application, in parallel, an MP3

decoder and JPEG encoder. We use two different algorithms to find the initial map-

ping for CAEBM. CAEBM reduces the execution time by at least 36.3%.
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6.1 Application Model

In this paper, we use a Program State Machine (PSM) [9] to capture the applica-

tion. A general computation model should have concurrency, the concept of states,

imperative programing languages, dynamic data-oriented behaviors, structural and

behavioral hierarchy, etc. PSM is one such general computation model.

An application is a hierarchical program state. Each program state can be recursively

defined as either a leaf program state called a process, a decomposition of parallel

program states, or state transitions among sequential program states. Any pair of

program states may communicate over one or more channels.

Figure 6.1: Application Model

Figure 6.1 shows a simple PSM example. The PSM is sequentially decomposed into

two program states: p0 and program state1. P0 is a process, or, interchangeably, a

leaf program state. A process is a function written in an imperative programming

language such as C. Program state1 is also decomposed into two parallel processes:

p1 and p2. P1 and p2 communicate over a channel. Likewise, in general, p0 and p1

can also communicate over a channel such as a memory channel.
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(a) Platform and computation model (b) Actual Execution Order Due to Data
Dependencies

(c) Estimation Ignoring Data Depen-
dencies and Mapping

(d) Improvement by CAEBM

(e) Estimated Timeline of Map-
ping (c)

(f) Actual Timeline of Mapping
(c)

(g) Estimated/Actual Timeline
of Mapping (d)

Figure 6.2: CAEBM
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6.2 Cycle-Approximate Estimation Based Mapping

6.2.1 Overview

Figure 6.2 describes how CAEBM works. Figure 6.2a is the input PSM and the

platform with two processing elements. DSP0 is twice as fast as CPU0. The numbers

on each process is the execution time of the process on CPU0. In this example, the

major problem is to select PE to locate p2.

The assumption in this example is as follows: Although p2 seems to be in parallel

with the others, p0, p2, and p1 run sequentially due to the data dependency. In this

simple example, the actual order of execution may be easily known ahead of time.

However, in general, there are at least several tens of processes and channels. The

execution order may vary depending on RTOS scheduling policies, communication

routing, bus arbitration policies and many others. Thus, the actual execution order

is not predictable before cycle-approximate estimation.

Figure 6.2c shows a mapping based on estimation that ignores data dependencies. The

mapping compares Figure 6.2e and Figure 6.2g, although Figure 6.2e is different from

the actual timeline of Figure 6.2c. Even though the mapping algorithms resulting in

Figure 6.2c is the optimal, the wrong estimation misleads the design decisions. The

estimated execution time of mapping in Figure 6.2c is 150, while the actual execution

time is 250.

CAEBM fails to see every possible mapping. However, CAEBM compares mapping

near the initial mapping depicted in Figure 6.2c based on cycle-approximate esti-

mation. Thus, CAEBM makes a decision based on the right timelines: Figures 6.2f

and 6.2g. Since these three processes are completely sequential, running all of them

on the same PE is optimal in terms of execution time. Therefore, CAEBM move p2
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to DSP0.

6.2.2 Algorithm

Figure 6.3: Flow Chart of CAEBM

Figure 6.3 describes the algorithm of CAEBM. An initial mapping is given. Cycle-

approximate estimation is performed on the initial mapping. CAEMB uses heuristics

and this cycle-approximate estimation to construct a set of candidates for the map-

ping that is fed to the input of the next iteration. From the constructed set, CAEBM

identifies the best candidate. This decision is based on the cycle-approximate esti-

mation on each candidate in the set.

The loop terminates if the given time is elapsed. In addition, the loop terminates if

two local optimums are found. A local optimum is defined as the mapping satisfying

the following two properties:

• A local optimum found at ith iteration is better than the mapping constructed

at (i− 1)th iteration.
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• A local optimum found at ith iteration is better than any other mapping in the

candidate set S constructed at ith iteration.

The local optimum that comes first may not be sufficiently close to the global optimum

in many applications. Thus, CAEBM finds ith local optimum instead of the first local

optimum. i could vary depending on the given applications and we use 2 in this

paper. The size of the candidates set S is k. The greater k is, the smaller the number

of iterations. k could also vary and we use 2 for it.

In construction of the candidate set S, heuristics are necessary. If P is the set of

processes and V is the set of PEs, the number of different mappings can be as high as

‖P‖‖V ‖. The ‖P‖‖V ‖−1 mapping excluding the current mappingM could be elements

of S. Performing cycle-approximate estimation on all of these mapping is not feasible.

Therefore, we use heuristics using the cycle-approximate estimation onM , choose only

k candidates among the ‖P‖‖V ‖ mapping and perform cycle-approximate estimation

on the selected candidates only.

Since CAEBM is a local search, we construct each element of S by selecting a single

process and move it to an other PE. Therefore, the objective function f is defined

with domain P and codomain V as follows:

f(pi, vj) = w0

∑

p∈vjU{pi}

ExecutionT ime(p)

+w1

∑

p∈vj

CommOverhead(pi, p) + w2Par(pi, vj),

where pi ∈ P, vj ∈ V, w0, w2 ≥ 0, and w1 ≤ 0

(6.1)

A small f indicates pi is recommended to be mapped to vj . The idea is to balance

computational loads, to map the processes together if there is large data transactions

between the processes, and to exploit parallelism. Thus, w0 and w2 is a positive
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coefficient, while w1 is negative.

We compute f for all pairs of processes and PEs, and finds k pairs of pi and vj that

have the smallest possible f and meet the following conditions as well:

• pi is not now on the vj.

• Moving pi to vj does not fall into the mapping already visited.

Execution time of each process is in a table given ahead of CAEBM. We modified [26]

to print the execution time of each process on each PE by a single TLM simulation.

To compute the communication-overhead function, we record the total number of

bytes in the transactions for every pair of processes respectively. This procedure can

be completed by the same single TLM simulation as well. We divide the number of

bytes by the bandwidth of the best route between pi and vj .

Communication and computation must be taken into consideration and that is what

ExecutionT ime and CommOverhead functions are for. However, we include the Par

function in the objective function f .

Par function represents approximately how much the process pi can be executed

in parallel with the processes on vj . To define Par, we define ParProcesses first.

For any given two different processes p and q, ParProcesses(p, q) is the minimum

execution time of the processes if they are parallel processes in the PSM. Otherwise,

it is the sum of the execution time of p and that of q. Par is defined as follows:

Par(pi, vj) =
∑

q∈vj

ParProcess(pi, q) ,

where pi ∈ P and vj ∈ V

(6.2)
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6.3 Case Study

6.3.1 MP3 Decoder And JPEG Encoder

We have chosen a computation-intensive multimedia application running a MP3 de-

coder and JPEG encoder in parallel. The PSM capturing the entire application is

decomposed into two parallel program states. Two program states, MP3 decoder and

JPEG encoder, are running in parallel. The number of levels of hierarchy is up to

3. There are 13 processes and 17 channels. A platform is randomly given under cost

constraints. The platform consists of five different PEs and two buses.

For comparison, we choose two different algorithms to find the initial mappings for

CAEBM. CAEBM starts each initial mapping, respectively. The first algorithm is

Load Balancing (LB) [9]. LB is a heuristic that optimizes computation only. We also

modify SPEA. SPEA [18] performs multi-criteria optimizations including approxi-

mation of execution time. We changed it to have a single optimization: execution

time.

For each initial mapping, firstly, we measure the execution time by TLM simulation

and compare the execution time to the estimate that each mapping uses. The ob-

jective function of SPEA is the maximum processing time, which is named by the

authors. The processing time of a PE v is the sum of fv
e and fv

c. fv
e is the sum of

execution time of each process on the PE. f c is the sum of the delays due to data

transactions in which any PE on the process is involved. The objective function is the

maximum of fv
e + fv

c. The objective function of LB excludes fv
c from the formula.
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Table 6.1: Errors in Estimation: SPEA and LB
Mapping Estimate Execution Time Error Percentage Time

SPEA 90.77 ms 112.17 ms 19.5%
LB 12.39 ms 65.71 ms 81.1%

TABLE 6.1 shows the estimates and the execution times. The estimates are different

from the execution time by 19.5% and 81.1%. In addition to communication and

computation, process scheduling due to data dependencies and control dependencies

also greatly impacts the execution time but is not included in either objective function.

Therefore, the errors are not small, which indicates there is room for improvement.

Figure 6.4 shows the changes in execution time during the improvement process of

CAEBM. In Figure 6.4a and Figure 6.4b, the initial mapping is LB and SPEA.

CAEBM iteratively improves each of these initial mapping. The execution time is

recorded at every iteration. The ratio of the execution time over the initial mapping is

depicted in Figure 6.4a through Figure 6.4b. The X-axis is the number of iterations,

while Y-axis represents the ratio of the execution time over the initial mapping. The

CAEBM improvement process stops since the second local optimum is found. In all

cases, there are improvements in execution time. The execution time is reduced at

least by 36.3% compared to the initial mapping.

SPEA basically targets applications captured in a process network. In a process net-

work, every task is assumed to run in parallel even though the tasks run sequentially

due to data dependencies. In the estimation used by LB, niether communication over-

head nor control flow of the application is considered. On the contrary, the heuristics

used by CAEBM has a tendency to separate parallel tasks. Thus, the execution time

is reduced during iterative iterations.

118



(a) Initial Mapping: LB

(b) Initial Mapping: SPEA

Figure 6.4: Changes in The Ratio of Execution Time over The Initial Mapping During
CAEBM’s Process on MP3 + JPEG Application
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Chapter 7

Trace-Driven Performance

Estimation of Multi-core Platforms

c© 2014 IEEE. Reprinted with permission from Kyoungwon Kim and

Daniel Gajski, Trace-Driven Performance Estimation of Multi-core Plat-

forms, 2014

In Transaction Level Model-based design, a crucial role is played by Transaction

Level Model estimation. One type of such estimation that is as fast as native sim-

ulation, cycle-approximate and applicable to both software and custom hardware is

simulation-based Transaction Level Model (TLM) Estimation that depends on TLM

simulation. For every platform selection and mapping, however, the entire platform

must be simulated. The simulation overhead is reduced by Trace-driven estimation

but such estimation is not applicable to custom hardware and often requires Cycle

Accurate Models (CAMs), which may not available for the whole platform.

In this paper, we present Trace-Driven Performance Estimation (TDPE) of multi-
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processor/core designs. TDPE is a trace-driven estimation but applicable to both

software and hardware and requires no CAM. Since TDPE includes a mere single

functional simulation, it is orders of magnitude faster than TLM Estimation. TLM

Estimation is cycle-approximate by considering the data path of each Processing Ele-

ment (PE), memory hierarchy, RTOS scheduling and overheads, bus arbitration and

overhead. TDPE takes all of them into account so is as accurate as TLM Estimation.

7.1 Trace-Driven Performance Estimation

7.1.1 Assumptions

We assume that inter task communications are conducted by calling communication

APIs. We assume that the order of communication API calls of each task depends

on the data only. These assumptions are valid for multiple applications such as

multimedia applications captured in SDF.

7.1.2 Definitions: Execution, Communication Events and Traces

A communication event of a task is defined as the interval between calling and re-

turning from a communication API call. Each communication event is coupled with

the number of bytes transferred. The length of a communication event is computed

during alignment according to the bus protocol model. An execution event of a task

refers to the execution of the task between any two of the following: the start of the

task, the end of the task and communication events. An execution event is coupled

with (1) all possible optimistic scheduling delays [26] for the event, (2) the number of

branches, (3) and the total amount of local memory accesses. Optimistic scheduling
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delay of an execution event is the delay estimate where there is no branch prediction

failure and no cache miss. The impact by branch prediction failures and cache misses

will be added in the alignment step. The number of cache misses is computed by

multiplying the total amount of local memory accesses and the probability of cache

miss. The penalty of a branch prediction failure and a cache miss is given as a part

of the PE configuration. The trace of a task is an ordered list of the communication

and execution events of the task. The order depends on the execution path of the

task, which is affected not by the platform or mapping but by the data.

(a) Platform and Mapping (b) Traces

(c) Alignment

Figure 7.1: Alignment Example w/ RTOS Model and Bus Protocol Model
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(a) Application Model (b) Code of p0 and p1

(c) Platform and Mapping (d) Traces of p0 and p1

(e) Alignment Example

Figure 7.2: Trace-Driven Performance Estimation

7.1.3 Trace-Driven Performance Estimation

Figure 7.2 shows the basic idea of TDPE. Figures from 7.2a through 7.2c show the

application, the code of each task, the platform and mapping. In Figure 7.2b, do p0 1

is not called and do p1 is called. Thus, the trace of each task is as it appears in

Figure 7.2d. The alignment engine must place each event in the traces on the global

time line. A trace defines the order of its events. Moreover, inter task communications

defines the partial order of events in different traces. In this example, p1 executes

recv first and yields CPU. CPU is now in idle state. Since the communication is

assumed to be synchronized, send and recv must be end at the same time. Send
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is called after completion of the execution event do p0 0. Thus, the order of the

execution events and communication events must be as in Figure 7.2e. Between

do p1 and recv, there may be RTOS overhead.

Figure 7.3: Design Flow with Trace-Driven Performance Estimation

Figure 7.3 shows the design flow with TDPE. Each basic block of the application

source code is annotated with all possible delay estimates. During this annotation,

small codes are instrumented to profile local memory accesses and branch operations.

Our trace generation reuses the source code annotation described in [26]. Each basic

block goes through the abstract data path of each PE. Following that, the optimistic

scheduling delay estimate of each basic block is given. Performed with this timed ap-

plication is a single functional simulation.Inside the communication APIs are recorded

the traces and their performance metrics. After system definition, which is basically

platform selection and mapping, the generated traces are aligned and the performance

metrics given. Note that there is no simulation. Even if either the platform or map-

ping changes by design optimization, trace alignment provides performance metrics,
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making simulation unnecessary.

7.1.4 Abstract RTOS, Memory Hierarchy, Processing Ele-

ment and Bus Protocol Models

As Hwang et al [26] did, we compute the impact of cache based on statistics. Func-

tional simulation profiles the amount of memory accesses. TDPE multiplies this by

the cache miss rate. A PE can have such configurations as cache sizes and frequency.

The alignment engine takes all of these into account when computing the length of

each execution event.

Figure 7.1 describes RTOS models and bus protocol models. Figures 7.1a and 7.1b

show the platform, mapping, and traces. Note that cp1 and cp2 are read/write opera-

tions to the global memory MEM. The core of abstract RTOS models of TLM is the

abstract RTOS operations such as scheduling with the proper RTOS overheads [25].

Likewise, the core of the abstract bus models in TLM [61] is abstract bus operations

and their overhead estimates. In our TDPE, those are emulated during alignment.

In this example, the RTOS on DSP is preemptive and priority based. p1 is assumed

to have the highest priority. Thus, at T0, the first event of the task p1 is selected.

Once p1 yields DSP at T1 for communication, p0 is selected by the scheduler and

thus the first event of p0 ep0,0 is placed on the global time line following ep1,0. Note

that a proper RTOS overhead is prepended to ep0,0 so ep0,0 is placed at T3 instead

of at T2. The alignment engine can also take into account preemption. At T4, the

communication event cp1— which is a communication API call by p1—is finished.

However, ep0,0 is not completed yet. Thus, the alignment engine shortens ep0,0 and

preempts. The first of the remaining events of p1 is ep1,1 and the event is placed at

T6. The rest of ep0,0 is placed at T8 after ep1,1 is finished.
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Table 7.1: Comparison in Estimation Time
TLM TDPE

Target CAM Estimation Estimation
Platform Estimation Annotation+ Annotation+

Simulation Simulation

SW 15.93h 31.262s+0.004s x+0.076s
SW+1 17.56h 49.986s+0.217s x+0.077s
SW+2 17.71h 47.290s+0.254s x+0.081s
SW+4 18.06h 71.131s+0.357s x+0.084s

x = 93.56
N

sec is the average estimation time for a platform selection&mapping if we need N

platform selection&mapping to find the solution that meets all design constraints.

Table 7.2: Accuracy Results: Error % against TLM Estimation (SW, SW+1)
I/D Cache SW SW+1

Size TLM TDPE Error TLM TDPE Error
0k/0k 291.05ms 290.19ms 0.29% 308.88ms 308.44ms 0.14%
2k/2k 104.58ms 100.17ms 4.22% 93.07ms 92.75ms 0.33%
8k/4k 65.34ms 63.73ms 2.47% 59.47ms 59.28ms 0.31%
16k/16k 58.64ms 57.39ms 2.14% 50.25ms 48.95ms 2.58%
32k/16k 58.46ms 56.36ms 3.60% 58.09ms 57.27ms 1.40%

The application is an MP3 decoder. MicroBlaze has a priority-based non preemptive RTOS.

Table 7.3: Accuracy Results: Error % against TLM Estimation (SW+2, SW+4)
I/D Cache SW SW+1

Size TLM TDPE Error TLM TDPE Error
0k/0k 253.05ms 248.25ms 1.89% 225.92ms 221.55ms 1.94%
2k/2k 82.31ms 81.20ms 1.36% 83.16ms 81.48ms 2.02%
8k/4k 267.70ms 266.99ms 0.26% 52.53ms 51.91ms 1.18%
16k/16k 51.45ms 50.95ms 0.97% 49.41ms 49.03ms 0.77%
32k/16k 52.92ms 51.67ms 2.34% 48.02ms 46.97ms 2.19%

The application is an MP3 decoder. MicroBlaze has a priority-based non preemptive RTOS.

The alignment engine emulates the abstract bus protocol models. In this example, p1

and p2 request, at the same time, the global memory access through Bus0. In the bus

protocol model, these requests must be sequentialized according to the arbitration

policy. Since DSP has the highest priority, p1 on CPU gets the bus first at T2.

Note that there is an arbitration delay between T2 and T1. The length of each

communication event is equal to 20 ms. The length is computed by the alignment
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engine according to the bus protocol model.

7.2 Case Study

We compared TDPE to TLM estimation [26]. In this case study, we reused the appli-

cation, platform, mapping and configurations used by the authors. The application

is MP3 decoder. In the platform, there are 3 types of PEs: MicroBlaze processor,

custom HW and IMDCT. SW, SW+1, SW+2 and SW+4 are the platform with 0, 1,

2 and 4 hardware components. Instruction/Data cache size of MicroBlaze processor

was configurable. The experiments with CAM were taken from [26].

TABLE 7.1 compares, in terms of estimation time, TLM Estimation, estimation

using CAM and TDPE. Estimation using CAMs is accurate but, compared to the

rest, orders of magnitude slower. TLM Estimation time is the sum of annotation

time and simulation time. Accordingly, TDPE time is the sum of annotation time

and alignment time. As expected, alignment time was much shorter than simulation

time. Moreover, ifN -system definitions are required for an optimal design to be found,

annotation time of TDPE is shortened inversely proportional to N since annotation

is conducted once regardless of N . Therefore, TDPE time was 18.84% than TLM

Estimation when N is 10 and 2.03% when N was 100.

We are grateful to the authors of [26, 25], who allowed us access to the internals

of their implementation. We implemented TDPE so that it emulated the authors’

framework. During alignment, TDPE emulated the RTOS operations with their

overhead values and bus operations with their overhead values. The operations and

overhead values were almost the same as the framework of [26]. TDPE reused the

authors’ annotation engine to compute the optimistic scheduling delays. Once the
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platform was selected and mapping given, the right optimistic scheduling delay was

chosen. Following that, TDPE computed the branch prediction and cache miss delay

in the same way as [26] and added the computed delay to the optimistic scheduling

delay. Therefore, as TABLEs 7.2 and 7.3 show, the accuracy of TDPE is almost the

same as that of the TLM Estimation.
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Chapter 8

Conclusion

8.1 Summary

To cope with the dual obstacles of design complexity and the pressure of a short time-

to-market, the paradigm of embedded system design has shifted to platform-based

design. The platform-based design is able to maximize post-fabrication reuse of the

verified components. Moreover, this platform-based design tends to be software-

centric. Otherwise, the design process would not be able to handle the high design

complexity. However, software-centric design may encounter performance issues. To

cope with this design challenge, designers have traditionally resorted to frequency

scaling. Frequency scaling, however, has become infeasible. Indeed, power consump-

tion is proportional to the square of frequency; embedded systems often have power

constraints, and battery technology has advanced only gradually. Thus, the de facto

standard for tackling the performance issues in software-centric platform-based design
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is the use of multi-core/processor platforms. These multi-core/processor platforms,

however, burden embedded system design with more design challenges. Heightening

even further the design complexity of embedded systems have been ever-increasing

user demand and the exponentially increasing rate of chip density. Thus, every major

technological roadmap addresses the productivity gap.

Researchers have proposed as a way to close this productivity gap Transaction Level

Model-based design methodology. Transaction Level Model-based design defines three

different models: Transaction Level, Pin-Cycle Accurate, and the Behavioral model,

which is purely functional. At Behavioral Level, the design space is given with regard

to hardware-software partitioning, platform selection, and mapping. Designers ex-

plore the design space to make such design decisions. Based on the design decisions,

TLM is automatically generated so as to evaluate them. Once the design constraints

are met, PCAM is generated from the TLM. In Transaction Level Model-based de-

sign, major design decisions have been moved to the system level, where the design

complexity is much lower than any other level of abstraction.

Although the design space is dramatically narrowed in Transaction Level Model-

based design, it is still a must that there be automation in design space exploration.

Contemporary embedded systems are already too complex, making the design space

too broad. Manual design space exploration is fast becoming infeasible.

In automatic design space exploration, there exists a conflict that gives rise to a

“chicken-or-the-egg” type of dilemma: the design decisions need estimation, yet ac-

curate estimation cannot be fed to the input of the design process. Previous works

mostly assume that estimation is given. However, such estimations cannot be accu-

rate. Cycle-approximate estimations such as Transaction Level Model estimation can

hardly be coupled with existing automatic design space algorithms. Hence, a new

approach to automation in design space exploration is called for.
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This dissertation completes Transaction Level Model-based design methodology by

adding new approaches to automatic design space exploration. The basic idea is to

divide the design space exploration process into two phases: initial design decision-

making based on rough estimation and iterative improvements based on Transaction

Level Model estimation. In addition, as the iterative improvements phase depends on

TLM estimation, it is crucial to provide fast, accurate, and general TLM estimation.

Thus, the problems that are solved by this dissertation can be summarized as follows:

• algorithms for the initial design decision-making phase

• algorithms for the iterative improvements of the given design

• fast, accurate, and general TLM estimation

Any automatic design space algorithm is based on the computation model. In select-

ing computation models, this dissertation considered the following two tenets:

• Computation models should be complete so as to describe the entire system.

• Computation models should serve not only for simulation but also for synthesis.

A general computation model such as a PSM is complete. There exist well-established

design methodologies and tools that offer synthesis flow for the computation model.

Thus, in this dissertation, general models are used as computation models.

8.2 Initial Mapping

As a portion of initial mapping algorithms for general computation models, this dis-

sertation addresses mapping for pipelined applications–in multimedia applications. It
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is crucial here to balance each stage’s execution time especially so as to minimize that

of the whole system. Previous work assumed each period of the pipelined execution

could be flattened to an acyclic directed graph. However, a period in general models

can hardly become an acyclic directed graph. Therefore, this dissertation proposes

Hierarchy-Aware mapping. This type of mapping also divides large stages/tasks into

pieces while being aware of complex hierarchy in the stages/tasks. The case study

is performed with JPEG encoder and Canny Edge Detector to compare Hierarchy-

Aware mapping to the optimal pipeline-aware mapping that is unaware of hierarchy:

the exhaustive hierarchy-unaware mapping. The execution time is decreased on av-

erage by 23.3%.

It is also valuable to address the impact of process scheduling. As ways to solve the

problem, several previous works have already offered their own algorithms. However,

since process scheduling is less predictable in general models, these algorithms are

not applicable. This dissertation presents N-Way Clustering and Mapping. The opti-

mization goal is to minimize the execution time of the system under all other design

constraints such as cost. NWCM starts a greedy algorithm-based clustering and the

closeness function takes as parameters process scheduling as well as communication

and computation. Clustering is followed by one-to-one mapping between N clusters

and N PEs based on execution delays and speeds of PEs. NWCM is compared to

Load Balancing Algorithm, Longest Processing Time algorithm, and Strength Pareto

Evolutionary Algorithm. The case study performed with a computation-intensive

multimedia application running an MP3 decoder and JPEG encoder at the same

time shows that NWCM outperforms the competitors by at least 24.4%
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8.3 Iterative Improvement

In Transaction Level Model-based design, iterative improvements based on TLM es-

timation is crucial. This dissertation proposes Cycle-Approximate Estimation-Based

Mapping (CAEBM) to address the problem. With an initial mapping given by any

previous work and its cycle-approximate estimate, CAEBM, to meet the design con-

straints, conducts a local search by using iterative cycle-approximate estimation and

heuristics. The optimization goal is to minimize execution time. The case study is

performed with a multimedia application running an MP3 decoder and JPEG en-

coder. According to the case study, when we compare CAEBM to Strength Pareto

Evolutionary Algorithm and Load Balancing Algorithm [9], CAEBM improves the

design (i.e. execution time) by 36.3%.

8.4 Transaction Level Model Estimation

The speed of Transaction Level Model estimation limits the design space that can

be explored during the iterative improvement phase. Although existing simulation-

based TLM estimation is fast, cycle-approximate, and general, there is still room

for improvement especially regarding speed. This dissertation presents Trace-Driven

Performance Estimation (TDPE). TDPE is complementary to simulation-based TLM

estimations. For a portion of applications, TDPE provides TLM estimation that is

faster by orders of magnitude than simulation-based TLM estimation. And yet TDPE

is still as accurate as TLM estimation and as general.

TDPE does not simulate the entire platform model from scratch when there is any

change in mapping and/or the platform. Instead, TDPE generates traces once at

Transaction Level and places the traces on the global timeline. The alignment phase
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takes into account mapping, the data path of each PE, abstract RTOS, bus protocol,

and memory hierarchy models. The case study performed with the MP3 decoder

and four different platforms with five different configurations shows that TDPE is,

without losing accuracy, 49.34 times faster than TLM Estimation when the number

of required mapping and platform selection is 100.
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Chapter 9

Future Work

In this dissertation, automatic design space exploration focuses on optimization of

execution time. Recently, in many embedded system designs, power consumption is

no more a secondary issue. Therefore, in the long run, automatic design space explo-

ration algorithms must take into consideration power consumption. In the framework

of TLM-based design methodology, early power estimation at Transaction Level is

mandatory. The speed of power estimation will also limit the design space that can

be explored. What is thus needed is fast power estimation at the Transaction Level.

This dissertation mainly focuses on mapping. However, for the system-level synthesis,

platform selection also has to be, as much as possible, automated. Therefore, future

work also should include automation in platform selection.
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