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Abstract—The brain is a thermodynamic system operating 
far from equilibrium. Its function is to extract microscopic 
sensory information from the volleys of action potentials 
(pulses) that are delivered by immense arrays of sensory 
receptors, construct the macroscopic meaning of the 
information, and store, retrieve, and update that meaning 
by incorporating it into its knowledge base. The function is 
executed repetitively in the action-perception-assimilation 
cycle. Each cycle commences by a phase transition, in 
which the immense population comprising each sensory 
cortex condenses from a gas-like state to a liquid-like state. 
It ends with return of the cortex to the expectant gas-like 
state. We have modeled the microscopic thermodynamics 
of the cycle using quantum field theory. Our new result is 
modeling cortical macroscopic thermodynamics with the 
generalized Carnot cycle, in which the energy required for 
the construction of knowledge is supplied by brain 
metabolism and is dissipated as heat by the cerebral 
circulation. What makes the application possible is the 
unprecedented precision with which spatial patterns of 
ECoG are measured, thus providing precise state variables 
with which to represent energy vs. entropy. We present 
experimental evidence that these isothermal processes are 
coupled by adiabatic cooling and heating. We postulate 
that the action-perception-assimilation cycle comprises 
minimally three consecutive Carnot cycles required for 
basic perception, assimilation, and decision, and more 
cycles with greater complexity of cognitive tasks at hand.  

Keywords-: action-perception cycle; Carnot cycle; 
dissipation; electrocorticogram; entropy; Hebbian assembly; 
non-equilibrium thermodynamics; oxygen debt; phase 
transition; reinforcement learning; self-organized criticality 

I.  INTRODUCTION 
Brains are adept in detecting minute but highly significant 
pattern fragments embedded in rich and varied contexts. We 
propose a dynamical model for the perceptual process [1], 
which is based on studies of brains as thermodynamic systems 
that operate far from equilibrium and dissipate metabolic 

energy as heat [2]. Brains create knowledge through 
reinforcement learning of conditioned stimuli (CS) and store it 
in the form of landscapes of basins and their attractors  [3]. 
Brains do this by forming Hebbian nerve cell assemblies in 
cortex by increasing the synaptic connection strength between 
co-excited neurons over repeated trials.  

Each assembly categorizes each presentation of a CS by 
generalization over equivalent receptors [4]. The entire assembly 
is ignited by sensory stimulation of any of its members, so it can 
direct the cortex to the basin of an attractor. Retrieval by the 
attractor of the fragment of stored knowledge about that CS is 
done by a phase transition from a background receiving phase of 
cortex to an active transmitting phase [5]. The requisite 
transition energy is provided by the ignition of the Hebbian 
nerve cell assembly, which requires the delivery to the sensory 
cortex of a CS that is recognized on the basis of prior learning.  

The pre-stimulus background cortical activity resembles 
Rayleigh noise [6]. It contains non-periodic null spikes at which 
analytic amplitude nears zero. Phase transitions in perception 
begin at the null spikes [4], because the drop in background 
activity in the pass band of a preceding burst of oscillation 
destabilizes the cortex at the null spikes [7]. The sign of the real 
part of the exponential envelope of the cortical impulse 
responses reverses from negative to positive, causing cortex to 
converge to a singularity [7]. That enables capture of cortex by 
even a very weak stimulus, when it ignites a Hebbian assembly 
that selects an appropriate basin of attraction. Previously we 
modeled this operation at the microscopic level in terms of 
quantum field theory using the time-dependent Ginzburg-
Landau equation [1]. Here we address the macroscopic level, 
using non-equilibrium thermodynamics. We adapt the concepts 
of spontaneous symmetry breaking (SBS) and the emergence of 
unitarily inequivalent ground states [8, 9] to phase transitions in 
water. The output of cortical activity patterns constitutes the 
mobilization of knowledge. Patterns are newly constructed and 
broadcast repeatedly at theta rates from the cortical memory. 
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II. CHOOSING THE STATE VARIABLES FOR THE 
THERMODYNAMIC CYCLE 

There is no question that brains are open thermodynamic 
systems operating far from equilibrium. They do the work of 
constructing and storing knowledge by burning glucose to make 
glycogen and adenosinetriphosphate (ATP). Most of the energy 
is stored in transmembrane ionic concentration gradients. They 
dissipate free energy in driving ionic currents that generate the 
electric and magnetic fields, which mediate the action-
perception cycle. We detect them with the electrocorticogram 
(ECoG, Figure 1). We can measure calories in and out as 
chemical energy and heat, but we cannot now estimate the 
energy needed for neural pattern formation or pinpoint the 
amounts of energy actually used in performing the tasks. As a 
first attempt to grasp the problem we adapt the Carnot cycle as 
a framework in which to describe the thermodynamics of 
perception. The Carnot cycle is an idealized heat engine with 
four stages. In a steam engine heat is used to do work in one 
stage and dissipated in another stage. In a refrigerator the work 
is done followed by heat dissipation. The two ideal stages are 
isothermal (fixed temperature despite heat exchanges). They are 
coupled through two other stages: adiabatic compression and 
expansion (changes in temperature with none in heat content).  

We find it convenient to replace the pressure-volume 
diagram with a temperature-entropy diagram, in which we use 
two time-varying scalar variables that we can calculate from 
measurements of multichannel 8x8 ECoG recordings (Figure 
1). Corresponding to pressure and temperature we use scalar 
mean power, A2(t), the square of the analytic amplitude of the 
time-dependent vector specifying the rates of energy dissipation 
at the multiple sites of recording. Corresponding to volume and 
entropy is our order parameter, which we represent by the 
normalized (n x 1) feature vector specifying the spatial pattern 
of amplitude modulation of a carrier frequency. The vectorial 
order parameter designates a point in n-space (n = 64 electrodes 
in an 8 x 8 array, Figure 2), designating an AM pattern which is 
constructed by cortical dynamics. 

 The feature (n x 1) vector serves to classify bursts of 
oscillation with respect to behavior by clusters of points in n-
space [3] but not for graphic display of the thermodynamic 
cycle, so we represent it with a scalar index: the rate of change 
in the spatial pattern of amplitude modulation (AM), which we 
measure by calculating changes in Euclidean distance, ΔDe(t), 
between successive points, De(t), in n-space for each beta or 
gamma carrier wave [10, 11]. Low values reflect the degree of 
order that is imposed to form, hold and transmit the AM 
pattern. High values reflect disorder (high entropy).  

III. THE NEUROBIOLOGICAL BURST OF OSCILLATION 
The main work of cortex is done by the dendrites, which 
generate the electric synaptic currents that control the pulse 
density in each local area. The currents in the cortex also 
sustain fields of dendritic potential (the electrocorticogram, 
ECoG, Figure 1). The alignment of the cortical neurons in 
palisades and layers facilitates summation of the synchronized 
dendritic potentials of the interactive neurons, giving the 
mesoscopic state variable, Vx,y(t), that represents the ECoG 

amplitude at each time point and cortical location, x,y. When 
subjects are at rest, the activity is unstructured with 1/f spectra 
(Figure 3, A). Because of the lack of classifiable AM patterns, 
we infer resting is the equivalent of a symmetric vacuum state 
in which no work is being done (Figure 1, B). Upon arousal 
(Figure 1, A) the ECoG reveals AM patterns in bursts formed 
by spontaneous breaking of symmetry (SBS). Between bursts 
the cortex returns to the unpatterned background activity, 
which manifests a domain of self-organized criticality (SOC) 
[12], in which the cortex holds itself near threshold for a phase 
transition by myriad ‘neural avalanches’ having scale-free 
distributions of frequency and duration [13] that dissipate the 
energy released by random background pulse input. 

 
Figure 1. ECoG recordings from olfactory cortex. Above. A food-
deprived cat at rest is aroused by an odor of fish and searches for it by 
sniffing. Below. After feeding to satiety there is no arousal. The upper and 
lower signals were recorded from the surface and depth of the olfactory 
cortex; the middle signal is the difference across the dipole field of the 
cortical pyramidal cells. (From Fig. 7.17 p. 442 in [7]). 

When subjects are aroused (Figure 1, A), bursts of narrow 
band oscillation emerge, reflecting increases in both pulse 
density and pulse coherence that manifest intermittent increases 
in use and dissipation of free energy. The ECoG measured with 
an 8x8 array of electrodes reveals a spatial pattern of amplitude 
modulation (AM) of the carrier wave of each burst (Figure 2). 
The spatial AM patterns reflect the perception of familiar 
sensory stimuli (CS) given to subjects. They reveal the order 
that the subjects create from chaotic background oscillations, 
using the energy stored in transmembrane ionic gradients.  

 
Figure 2. Spatial patterns of wave packets in ECoG. Left: Example of AM 
carrier wave in one frame. Right: Contour plots of AM patterns from 8x8 



electrodes (3.5x3.5 mm) in frames showing differences that were correlated 
with conditioned stimuli (CS) by means of pattern classification [3]. 

Power spectral density (PSD) calculated long term (>1 s) 
gives 1/f relations of log power to log frequency. Short term 
(<100 ms) gives multiple peaks with narrow pass bands (Figure 
3, A). Band pass filtering encompassing the peaks in the short 
term PSD reveals the beats corresponding to the bursts that are 
triggered by conditioned stimuli (Figure 3, B). Usually there 
are multiple overlapping frequencies of oscillation as shown in 
Figure 3, B, only one of which may be correlated with the CS.  

The frequency modulation observed from each burst to the 
next enjoins use of the Hilbert transform [14]. The optimal 
spatiotemporal resolution of the activity density for pattern 
classification is given by the analytic power of the signal at 
each electrode, Ax,y

2(t), which is the square of the analytic 
amplitude from the Hilbert transform (Figure 3, C) of each 
band pass filtered ECoG signal, Vx,y(t) [11]. 

 
Figure 3, A. Short-term power spectral density (PSD) reveals multiple 
overlapping components with differing center frequencies and pass bandwidths. 

 
Figure 3, B. Band pass filtering reveals the beats (a, c, j, k) in two frequencies 
in Vx,y(t) due to band pass filtering. Beat intervals are set by pass bandwidth 
[6]. Onset of one is at c, offset at k; onset of the other is at c, offset at k. The 
scale is in microvolts. 

Thereby the AM pattern of the ECoG gives us the vectorial 
order parameter in a matrix, A2(t), which indirectly reveals the 
intensity of synaptic interactions at high feedback gain among a 
population of neurons constructing a percept [7]. For purposes 
of graphic display our scalar index of power shown by the 
ECoG is the log10 mean power, A2(t), derived from 64 signals 
(Figure 3, C) at each time step. The analytic phase, φ(t), after 
unwrapping is measured with respect to phase at an arbitrary 
starting point. The analytic frequency, ω(t), is calculated in 
rad/sec by dividing the difference between successive phase 
values by the duration of the digitizing interval, Δt (Figure 3, 
D). Bursts usually began with a discontinuity in φ(t) [11].  

 
Figure 3, C. Log10 analytic power feature vector of an AM pattern (a-k). The 
signals from two bad channels were deleted. 

Division by 2π gives the frequency in Hz. The minimal 
spatial SDX(t) of the 64 values of ω(t) in the interval between 
beats (d-i) serves to evaluate the width of the pass band of the 
carrier frequency [4]. The width of the pass band determines 
the interval between successive beats [6]. 

 
Figure 3, D. The analytic frequency, ω(t), shows high coherence (d-i). 

IV. THE CLASSIC CARNOT CYCLE 
An example of a sequence of bursts is shown in Figure 4 after 
filtering in the high beta range. There is a dominant stationary 
frequency band in each burst, which is most likely to have an 
AM pattern. Frame A shows 1 s recording of 64 superimposed 
ECoG signals filtered in the pass band 20-28 Hz. Frame B 
shows the 64 time series of analytic power. Frame C shows 
log10 analytic power. Frame D shows the 64 time series of the 
analytic frequency, ω(t). The arrows  indicate the minimum in 
each frame of the SDX(t) of the 64 frequencies, which we used 
to evaluate the pass bandwidth of the carrier frequency [4].  



 
Figure 4. A.B. Decomposition of 64 ECoG signals with the Hilbert Transform. 

 

 
Figure 4, C, D. Decomposition of 64 ECoG signals with the Hilbert Transform. 
Log10 analytic power © reveals null spikes that we use as markers for frame 
onsets. The mean at the arrows gives the carrier frequency, The minima in 
SDX(t) (arrows) give the width of the carrier pass band [4]. 

We adapt the Carnot formalism to cortex by conforming to 
the four processes that comprise the ideal Carnot cycle, which is 
illustrated in a temperature-entropy diagram (Figure 5). We start 
our cycle at minimal temperature and maximal disorder (1). 
Free energy is dissipated as matter compresses into a highly 
ordered state (A), which decreases the entropy [15] without 
increasing the temperature or pressure (2). The temperature 
increases by adiabatic compression (B) to maximal power 
without change in order (3). Upon introduction of energy as heat 
the matter undergoes isothermal expansion (C) to a disordered 
state (4), and it returns to its initial state (1) by cooling with 
adiabatic expansion without further change in energy (D).  

 
Figure 5. The classic Carnot cycle for fluid is shown as temperature vs. entropy. 

On translating the properties of the cycle into neural terms, 
we conceive the cycle as beginning with the minimum of A2(t), 
at which pre-existing structure is expunged from the cortical 
dynamics on returning to the background state of symmetry (1). 
Burst onset is manifested in a null spike (Figure 4, C). In this 
stage (1-2 in Figure 6) the pulse density of activity is sustained 
by input of pulses from many sources in the brain (denoted by 
neurobiologists as centrifugal) and from sensory receptors. If 
the input contains pulses from a CS, the pulses ignite a Hebbian 
assembly formed by prior learning. The local high density of 
firing in the assembly triggers a global change in activity, which 
is not expressed by an increase in the number of pulses per unit 
volume but by an increase in the coherence of neural firing at 
the carrier frequency, which increases A2(t). This means that the 
released energy is not distributed among the system degrees of 
freedom in the form of thermalizing kinetic energy [1]. Instead 
it is used to promote the collective long-range correlation modes 
among the interacting neurons. Each cortical neuron connects 
with 104 others, then 108, 1012, and so on, leading in very few 
serial synaptic steps to the condensed state (2), in which every 
neuron contributes directly to cortical output, whether its firing 
rate is low or high. It is the recruitment of all neurons into the 
dense phase that provides the richness of context required to 
express knowledge. 

We conceive that the dense phase is the prerequisite for the 
expression of knowledge about a stimulus at immediate expense 
of the potential energy in ionic gradients that is converted to 
kinetic energy of ionic flows and then to heat, which is removed 
by the circulation. The energy mobilizes an attractor landscape, 
ignites a Hebbian assembly, guides the cortex into one of the 
basins of attraction, and organizes the spatial AM pattern of the 



carrier wave. Energy expenditure continues in stage (2-3) 
(Figure 6), with increases in pulse density as revealed by further 
increase in A2(t) to (3). We conceive that the main work of 
constructing knowledge is done in stage (1-2), when the AM 
pattern forms, and the cortex exits the basin of a non-zero point 
attractor that governs the background activity [7, 16] and 
converges to a limit cycle attractor that governs the burst [17]. 
The compression expresses the strength of synaptic interaction 
from having a feedback gain that exceeds unity [15]. 
Amplification and transmission of selected AM patterns occur at 
high pulse density in stage (2-3).  

 
Figure 6. The coordinates are expressed in terms of two variables that can 

be measured using the ECoG replacing temperature or pressure by pulse density 
(measured by A2(t)) and entropy by volume or coherence (measured by the rate 
of change in spatial AM pattern of the feature vector, ΔDe(t)).  

All these processes dissipate substantial metabolic free 
energy and incur what biologists refer to as an oxygen debt, 
meaning an expenditure of free energy that must be repaid by 
oxidative metabolism. In other words, neurons immediately 
converge to an attractor by dissipating free energy (cooling, 
condensing) and later replenish it by burning glucose to make 
ATP and restore the transmembrane ionic gradients. 

The density of phase-locked, spatially coherent pulses 
contributes to A2(t) in two ways: the number of pulses per unit 
volume, and the degree of synchrony in firing. Both tend to 
fluctuate together. In our idealized first approximation we define 
the temperature in neural terms as the pulse density per unit 
volume (space) and the pulse density per unit time as the degree 
of coherence and inversely to the degree of disorder, entropy. 
An empirical measure of the degree of order is provided by the 
rate of change in the nx1 feature vector that defines AM 
patterns. This variable is the rate of change in the Euclidean 
distance, ΔDe(t), between each pair of successive points in n-
space [11, 18]. When the step size is small, we infer from the 
relative stationarity of the AM pattern that the degree of order is 
high. Both A2(t) and De(t) are derived from the ECoG. They 
differ in that A2(t) is the spatial mean of the analytic power at 
each step, while De(t) is the step-wise temporal difference of the 
feature vector after normalization of each frame (subtracting the 
frame mean and dividing by the spatial standard deviation). One 
indexes the rate of consumption of free energy, and the other 
indexes the rate of decrease in order (increase in entropy).  

From stage (2) the rise in A2(t) continues to stage (2-3) (B 
in Figure 5), owing to an increase pulse density to peak values 
that are commonly seen in transient bursts of pulse activity at 

the microscopic level. The synaptic interaction carries the 
cortical populations to a peak in wave power, A2(t) (3), all the 
while transmitting the AM pattern. We regard the transmission 
(B in Figure 5) as a form of adiabatic heating with further 
depletion of potential energy and increase in the oxygen debt, 
but with no further increase in order.  

The decline in A2(t) from the peak value (3) in stage C is by 
reduction in both pulse density and pulse coherence with return 
to microscopic sparse coding. The extreme density diminishes 
along with the strength of synaptic interaction, leading to a 
phase transition with no discontinuity in the analytic phase, φ(t) 
[1, 15]. The energy expended in generating coherence and 
order in the neural activity is repaid. The payment of the 
oxygen debt is revealed by BOLD (blood oxygen level 
depletion) and fMRI (functional magnetic resonance imaging) 
[19, 20]. We conceive that the reduction in A2(t) manifests 
uncoupling as a passive process from (3-4) that requires no 
metabolic energy. The payment of the oxygen debt to replenish 
the energy store is done at rates up to 2 or 3 orders of 
magnitude slower. A similar mechanism of “act now, pay later” 
is well known in muscle, in which the expenditure of metabolic 
energy by breakdown of ATP is required during muscle 
relaxation, not contraction.  

Stage (4-1) is reduction in density corresponding to 
adiabatic cooling. This was demonstrated at the single neuron 
level in a little known but remarkable tour de force, in which 
Bernard Abbot demonstrated cooling of an axon upon the 
expansion of sodium ions into the interior with each action 
potential [21]. As the neurons uncouple, they become again 
receptive to input from sensory receptors (“reception”). We 
attribute the continuing decline in A2(t) to the statistical 
properties of the background activity of cortex [4] as modeled 
by the Rice distribution of extreme values [6], giving rise to the 
beats seen in Rayleigh noise (Figure 3). The beat frequency is 
determined by the width of the pass band around the center 
frequency of each beta or gamma burst elicited by input (Figure 
1). The distribution of times of onset of the null spike initiating 
the next phase transition is predicted by Rice statistics. The 
uncertainty imposed by the unpredictability of onset latency 
shows that the symmetry breaking is spontaneous. Hence we 
infer that stage D is passive adiabatic cooling not involving a 
change in energy. It is the release of cortical neurons from the 
tight binding in the condensed state that allows them to respond 
to sensory and centrifugal inputs [15]. 

V. THE GENERALIZED CARNOT CYCLE 
We again adapt the four stages around the cycle, this time 
addressing some properties introduced by phase transitions 
(Figure 7). We use the phase portrait that portrays the phase 
space for mixtures of gas and liquid water such as vapor [22], 
in which a steady state prevails in a domain of criticality [1, 
15]. In doing so we begin at stage (1), the minimum of pressure 
(sparseness of pulse density) and maximum volume (maximum 
disorder, entropy). In water the temperature and pressure are 
almost constant during condensation afforded by an outflow of 
energy as heat, QC (1-2). An adiabatic increase in pressure 
results from energy used to compress the mixture (2-3), which 
carries the mixture to maximum power and order (minimal 



volume). Upon evaporation (3-4) energy input is required, QH. 
In the last step an adiabatic decrease in pressure results in 
cooling (4-1) (no change in pattern despite decrease in power).  

 
Figure 7. The four segments that comprise the generalized Carnot cycle are 

shown embedded in a domain of criticality, in which the gas and liquid phases 
coexist in varying degree. We conceive the operation of cortex as taking 
information from stage 1 and constructing and transmitting knowledge by stage 
3. Energy flows in as metabolic chemical energy, QH, and flows out as heat, QC. 
Adapted from [22] 

In stage (1) we conceive the cortical population as existing 
mainly in a gas-like phase of maximal disorder with aperiodic 
firing and minimal coherence. We attribute the initial rise in 
power, A2(t) (A in Figure 6) to cortical neurons released from 
prior binding and firing in response to a broad range of 
centrifugal and sensory input. If the sensory input carries 
information in a CS, the ignition of a Hebbian assembly 
facilitates the formation of an intense burst of narrow band 
oscillation, which sets the stage for selection of a basin of 
attraction (1-2). During this early increase in A2(t) the AM 
pattern emerges (2), and the accompanying spatial pattern of 
phase, φ(t), is laid down. The emergence of the AM pattern 
selected by the Hebbian assembly precipitates spontaneous 
breaking of symmetry [9].  

In this stage the energy given to the system by diminution 
of ionic gradients is not in the form of kinetic energy 
distributed among the neurons, but it is given to collective 
modes responsible for the long-range coherent oscillations 
among the neurons. Entropy is accordingly decreasing, since 
order is thereby constructed. In the field model this is depicted 
as the isothermal increase in the runaway excitation of neurons 
leading to the coherence of firing in the condensed ground 
phase (cf. Eqs. B.7, 9 and 33 in [8], [9] and [1] respectively). 
The onset is marked by a discontinuity in the analytic phase, 
φ(t) [4]. The sequestration of energy in the coherence also 
corresponds to the lower energy state into which the cortex is 
‘attracted’.  

The gate for further input to cortex is shut. The receiving 
phase ends, and the transmitting stage (B) begins. Mutual 
excitation in positive feedback at greater than unity gain 
increases the rates of firing with no further increase in 
coherence or reduction in entropy. The increase in firing rate 
with runaway excitation manifests an increase in temperature 
and further increase in oxygen debt. In stage (C) A2(t) falls as 
the refractory periods of the neurons saturate the firing rates, 

and the neurons uncouple as by evaporation. At this stage the 
repayment is begun of the energy deficit carried, initially by 
depletion of energy stores in ATP and glycogen, and more 
slowly by oxidative metabolism. In the final stage (D) the 
interference from Rayleigh noise causes A2(t) to fall to near 
zero in null spikes, manifesting maximal disorder and entropy 
but without further decrease in energy dissipation, which we 
treat as adiabatic cooling,. 

VI. CONCLUSIONS 
The value of the Carnot formalism in the 19th century was the 
clarification it brought to solving the problems of developing 
efficient steam engines, which required advances in technology 
but equally in the emergence of a new branch of physics. It 
served as a crystal from which grew the concept of entropy and 
the first and second laws of thermodynamics. In the present 
century it may again serve to bring in to focus a core concept, 
which is to understand how cortices so efficiently select and 
integrate fragments of information acquired through 
experience, store it as knowledge, and deploy that knowledge 
in the action-perception-assimilation cycle. We emphasize that 
the Carnot formalism requires varying each state variable in 
turn while fixing all others. By virtue of that separation of 
variables the formalism enables us to bring into focus the 
several disciplines of EEG and ECoG research [11], 
neuropsychology [3, 23], brain imaging as measured by fMRI 
[19, 20], computational models of information processing in 
intentional robotics [24], neuropercolation in random graph 
theory [25], and quantum field theory [1, 2]. The Carnot 
formalism is consistent with models that define ‘free energy’ as 
uncertainty [26] yet avoids the difficulties incurred in applying 
Shannonian theory to semantics when attempting to measure 
knowledge.  
      We emphasize that our application of the Carnot formalism 
to non-equilibrium thermodynamic brain processes requires us 
to define state variables that serve as representations for the 
rates of change in energy and entropy in each segment of the 
cycle. We have derived variables that we have calculated from 
measurements of multidimensional neural activity patterns with 
unprecedented precision in time, space and frequency. In other 
words, the physics is 200 years old; the techniques for making 
estimates of the work done by the brain to create knowledge 
are very new. Moreover, the cycle is not a closed loop. It is the 
projection into a plane of a helix in time, which allows for the 
continual incremental growth of knowledge in the brain.  

On the one hand the ideal Carnot cycle (Figure 5) treats 
cerebral cortex as metastable [27], as it shifts across a 
continuum between sparse activity at low density and intense 
activity at high density. On the other hand, the generalized 
Carnot cycle (Figure 7) treats cortex as bistable [28], because 
there is a qualitative difference between an evaporated phase 
and a condensed phase. Condensation by phase transition 
requires an irreversible convergence to an attractor, which 
expresses a collective mode that has been modeled at the 
microscopic level using the time-dependent Ginzburg-Landau 
equation [1]. This success opens the way to explication of the 
transition at the macroscopic population level in terms of 
thermodynamics, for which preliminary approaches using 
classical equilibrium [29, 30] and pseudo-equilibrium 
thermodynamics [15] have already been undertaken.  



An issue that we leave unresolved is whether in the 
transition (1-2) from the sparse mode to the high-density mode 
there is any form of energy taken up that is equivalent to the 
latent heat of vaporization of water, which is released as heat 
(3-4). We cannot resolve the issue experimentally until we have 
devised better methods for distinguishing and measuring 
changes in pulse density due to firing rates or to firing 
coherence, and until we have devised tools for measuring the 
local fluctuations in cortical temperature that we predict will be 
found in association with AM pattern formation [1]. 

The importance of thermodynamics for brain science is 
underscored by the fact that brains dissipate free energy at rates 
ten times greater than any other organ, at rest in maintenance 
and repair, and at work in all types of intentional planning, 
predicting and acting. The all-inclusive, macroscopic method is 
to measure BOLD and fMRI [19, 20]. What is needed is a 
scale-free formalism that can apply both at the microscopic 
cellular level [1] and at the mesoscopic population level [15], 
as well as the macroscopic behavioral level [23]. We believe 
that the Carnot formalism might catalyze recognition of the 
existence of a liquid-like phase of cortical neuropil and the 
phase transitions by which cortex enters from and returns to a 
gas-like phase.  

In its present form the Carnot formalism has been adapted 
to the mesoscopic level at which the cortex uses the sensory 
information delivered by conditioned stimuli (CS) to select a 
percept and transmit it as an AM pattern. Looking upwardly we 
propose that this same neural mechanism repeats at the 
macroscopic level, when the percepts from all of the sensory 
cortices combine in the limbic system into concepts and 
gestalts, and then in the motor cortices during the selection and 
implementation of intentional action. We cite evidence that the 
same mechanism holds in higher cognitive functions that 
require coherence of neural oscillations over the entire brain 
[31-33]. Looking downwardly we see the possibility of 
applying the same Carnot formalism through the mesoscopic 
Hebbian assemblies to the microscopic assemblies of water 
molecules in solutions, through which ions move in electric 
currents that execute the basic neural functions of integration 
and transmission [1]. This clarification may be necessary to 
define the state variables needed to draw a phase diagram for 
cortex resembling but differing from that for water (Figure 7). 

The Carnot formalism fits only qualitatively to our ECoG 
data. On the experimental side this is mainly because the data 
were not collected with the overt aim of testing thermodynamic 
models, and because the spatial, temporal and spectral 
resolutions that were available at the time of collection were 
not fully adequate to resolve the fluctuations in power, phase, 
and frequency that will be required to thoroughly test new 
hypotheses. On the theoretical side a key unsolved problem is 
posed by the fact that changes in power, A2(t), occur by 
changes in the number of neurons contributing and by the 
degree of synchronization of their pulse probabilities. 
Development of theory is needed to define new state variables 
that, on the one hand, adequately represent temperature and 
entropy and, on the other hand, can be evaluated unequivocally 
by calculations from experimental data. Theory may be crucial 
also in the design of new experimental techniques needed to 
measure local fluctuations in temperature [21, 31] and in 
multiunit recording of action potentials in order to estimate 

pulse density directly instead of by inference from the ECoG. 
We think that the greatest challenge we face is in the 
development of new signal processing procedures [18, 321] 
with which to decompose and measure the individual bursts 
that overlap in the raw ECoG (cf. Figure 3, B). 

We speculate that this non-equilibrium thermodynamic 
cycle emerged in the evolution of reptilian brains to service 
olfactory perception, and that it was adapted thereafter in all 
sensory systems on emergence in mammals of neocortex and 
then as a key mechanism for gestalt and concept formation in 
the limbic system. Because of its scale-free dynamics it was 
extended to levels of higher cognition that encompass vast 
areas of the cerebral cortex in the construction and activation of 
knowledge [31-32].  

Today as in the 19th century the stakes are very high for the 
development of brain theory that suffices to meet the needs for 
applications in new forms of machine intelligence and brain-
machine interfacing. An initiative that is very bold indeed is 
required to link knowledge to the firing of neurons in a system 
that knows what it is doing, whether it is biological or artificial.  
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