Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Immunohistochemistry and mass spectrometry for highly multiplexed cellular molecular imaging

Abstract

The role of immunohistochemistry (IHC) in the management of cancer has expanded to provide improved diagnostic classification, as well as guidance on disease prognosis, therapy, and relapse. These new tasks require evaluation of an increasing number of protein targets; however, conventional multiplexing, usually achieved using serial tissue sections stained for a single analyte per slide, can exhaust small biopsy specimens, complicate slide-to-slide protein expression correlation, and leave insufficient material for additional molecular assays. A new approach, mass spectrometry immunohistochemistry (MSIHC), compatible with high levels of target multiplexing and suitable for use on formalin-fixed, paraffin-embedded samples can circumvent many of these issues. The strategy employs antibodies that are labeled with elemental mass tags, such as isotopically pure lanthanides not typically found in biological specimens, rather than with typical fluorophores or chromogens. The metal-labeled antibodies are then detected in tissue using lasers or ion beams to liberate the tags for subsequent mass spectrometry detection. Within a given multiplexed IHC panel, the metal labels are selected so that their respective masses do not overlap. More than 30 antibodies have been imaged simultaneously, and up to 100 antibodies could potentially be detected at once if the full available mass spectrum is deployed. MSIHC has a number of advantages over conventional IHC techniques. Background due to autofluorescence is absent and the dynamic range is 10(5), exceeding immunofluorescence and chromogenic IHC by 100-fold and 1000-fold, respectively. Detection of labeled primary antibodies improves assay linearity over both chromogenic and fluorescent IHC. Multiplexed mass-tagged antibodies incubated simultaneously with tissue do not appear to cross-interfere, and because the mass tags do not degrade, samples are stable indefinitely. The imaging resolution of multiplexed ion-beam imaging can be better than light microscopy. With appropriate instrumentation, MSIHC has the potential to transform research and clinical pathology practice.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View