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Abstract

Energy Efficient Memory Speculation with Memory Latency Tolerance Supporting

Sequential Consistency Without A Coherence Protocol

by

David Alexander Munday

Modern out-of-order processor architectures focus significantly on the high perfor-

mance execution of memory operations. Because memory instructions pose ordering require-

ments, their execution becomes a significant bottleneck for out-of-order execution, particularly

slow executing loads.

Many high-overhead structures such as StoreSets, Load Queues and Store Queues are

included in these processors to support memory speculation in an attempt to relax these ordering

hazards whereever possible. However, each of these structures presents a new and significant

source of energy consumption and design complexity to processor architects.

The execution of memory instructions becomes further complicated by the introduc-

tion of multi-core processors. Memory coherence is needed which often requries a coherence

protocol and interconnection network. Additionally, the timing and ordering of memory instruc-

tions’ execution between cores can have critical impacts on program functionality and output

which programmers must concern themselves with in the form of a memory consistency model.

This work proposes a decoupled memory execution verification mechanism that sup-

ports memory speculation without costly, complex, and scaling limited structures. This in-order

verification can reduce the average energy dissipation by over 16% with a simpler design that

removes the Load and Store queues, StoreSets, and even invalidation-based cache coherence

protocols. These benefits are realized by a system providing the straight-forward and intuitive

Sequential Consistency memory consistency model.
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Chapter 1

Introduction

This dissertation is focussing on re-designing the memory subsystem of a SuperScalar

Out-of-Order processor with energy consumption as the primary design consideration. The

contributions of this work are as follows:

• An out-of-order core memory execution path that is optimized for energy efficiency.

• A high performance, energy-efficient architecture that supports Sequential Consistency.

• A simple mechanism to avoid excessive memory replay and costly decoupled memory

execution checks.

• Several simplifications removing the coherence network from the memory hierarchy, ig-

noring memory ordering instructions, eliminating StoreSets, and removing the Load and

Store queues.

1.1 Memory Speculation is Costly

Out-of-order processors extract instruction level parallelism by speculatively execut-

ing instructions out of program order while respecting their data dependencies (read after write

etc.). Often, the execution of memory instructions can bottleneck out-of-order processors due to

those dependencies. Memory speculation allows increased instruction-level parallelism (ILP)

extractaction by attempting to alleviate some of that potential bottleneck. Processors with mem-

ory speculation execute load and store memory operations without resolving their data depen-
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dencies which must then be verified before commit time. This increased ILP extraction can lead

to increased execution performance.Baseline Power 

L1 DCACHE LSQ Store Sets TLB Mem_Hier Rest

Figure 1.1: L1 data cache and LSQ, represent
40% of the energy per instruction for a typical
4-way core.

Perhaps the most central challenge for current processor designers is to provide in-

creased processor performance without increasing energy consumption. One of the major con-

tributors to processor energy consumption is the memory subsystem. Particularly for Super

Scalar out-of-order processors, memory instruction execution is very costly in terms of energy

consumption. Processors that issue multiple instructions to the execution pipeline in parallel

are commonly referred to as “Super Scalar” processors. As Super Scalar processors increase

the number of parallel instructions they attempt to execute, the probability of more in-flight

memory instructions increases.

Modern Super Scalar processors extract instruction level parallelism by speculatively

executing instructions out-of-order while respecting their data dependencies. Memory specula-

tion allows extraction of additional ILP; processors with memory speculation execute load and

store memory operations without resolving their data dependencies. Traditionally, out-of-order

processors track and solve memory speculation using fully associative load and store queues

commonly referred to jointly as the Load Store Queue(LSQ). The Load Queue(LQ) is respon-

sible for detecting data dependency violations between already executed store instructions and
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currently executing load instructions. The Store Queue(SQ) orders stores in program order

and commits stores to the data cache in program order. Additionally, the SQ is also associa-

tively searched for every executed load for forwarding opportunities by stores that have not yet

committed to the data cache, but have resolved their address and data. Because of their fully

associative structures, the LQ and SQ present significant scaling challenges to Super Scalar out-

of-order processors. As processors seek to support more inflight instructions for greater ILP,

the energy consumption of the LQ and SQ increase as a result of adding more entries requir-

ing more fully associative look-ups and more priority logic to carry out additional comparisons

which also take longer.

In traditional out of order processors, when the LQ detects that a store instruction

has executed too early (by scanning the SQ), it triggers a pipeline flush (replay) and restarts

execution from the triggering load. Because the SQ only commits store instructions to the

memory hierarchy at commit time in program order, there is no need to repair the state of the

cache. Address translation can be another challenge for Load Store Queues. To reduce Load

Store Queue access latency as much as possible, Load Store Queues are often accessed using

the lower bits of instructions’ virtual addresses thus avoiding the need to access the Translation

Lookaside Buffer (TLB) to resolve the physical address for each access. However, using the

virtual address to detect memory ordering violations can lead to false positives due to virtual

aliasing in the lower virtual address bits. Without a full physical address translation, the Load

Store Queue cannot differentiate completely between independent addresses.

Another memory operation phenomena that can impact Load Store Queues are silent

stores. A silent store is a memory write operation that updates the memory hierarchy with the

same value already stored in the target memory location. In [46], Lepak and Lipasti found that

20%-60% of dynamic stores are silent. If the Load Queue searches the Store Queue and finds

that a store that was younger than the current load executed out of order, the Load Queue will

trigger a replay regardless of whether the store was a silent store or not. If the store was silent,

the load would have consumed the correct data and the replay would have been unneeded.

Previous work has proposed replacing LSQ Content Addressable Memories (CAMs)

with indexed SRAMs, FIFOs or other structures that consume less energy [18, 61, 67]. These

proposed structures perform similar functions to the SQ or LQ, but must generate an index

to allow for accessing a single entry or small group of entries in the non-associative replace-

3



ment structures. The challenge of generating such an index is overcome by using a variety of

prediction tables, heuristics, and other dependency prediction mechanisms requiring additional

implementation complexity and power.

Memory speculation for the purposes of this dissertation is defined as attempting

to relax the requirements for memory disambiguation and forwarding opportunities. Many

memory speculation techniques have been introduced to increase processor execution speeds.

Previous work in this area has focused on allowing loads to issue past stores speculatively. Their

proposed architectures then rely on load re-execution techniques to verify if a load consumed the

correct data. If a load consumes incorrect data, a pipeline flush is triggered. Forward progress

is guaranteed by restarting execution from the mis-speculated load instruction.

One of the main challenges for load re-execution based memory speculation, is that

every load instruction must be executed twice: once in the speculative execution path, and once

in the verification execution path. There are several implications to executing each load twice.

First, data cache pressure can increase which can in turn increase total power dissipation as well

as constrain memory bandwidth. Also, the verification path requires some type of correctness-

enforcement mechanism capable of determining when a load has consumed incorrect data. This

disseration classifies correctness verification into two types: always correct verification and es-

timated correctness verification. Always correct verification refers to a correctness verification

mechanism that can unambiguously determine when a load has consumed incorrect data. Esti-

mated correctness verification refers to a correctness mechanism that cannot precisely determine

if a load has consumed incorrect data, but can detect when a load may have possibly consumed

incorrect data.

Whatever structures are utilized to facilitate the verification path for loads will expe-

rience additional back pressure as loads wait to receive their correct data from the proposed cor-

rectness enforcement mechanism. For example, some proposals have used the re-order buffer

or register file to support load verification. In those proposals, additional back pressure on those

structures was found and additional ports or other support structures were added to alleviate

those stresses.

A different approach allows stores to speculatively update the data cache hierarchy

out-of-order [29]. This eliminates the need for a SQ but necessitates rolling back the archi-

tectural and memory hierarchy state in the event of a mis-speculated store. Architectural and

4



memory hierarchy rollback is supported by keeping tables storing the architectural state of the

processor for every retired instruction and memory hierarchy checkpoints for each retired mem-

ory instruction. In the case of a mis-speculation, the processor and cache memory hierarchy are

rolled back to the point before the mis-speculation occurred and the load is allowed to execute

again.

To avoid the need to forward data from in-flight stores to executing loads, in-window

register file communication has been explored [62]. Using modifications to the rename logic

in an out-of-order processor, store-load forwarding was accomplished by renaming the load’s

destination register to the store’s input register. This technique eliminates the need for explicit

load-store forwarding and thus an associative Store Queue search for stores, but still requires

a structure for in-order commit of stores to the memory hierarchy and must still perform cor-

rectness verification. These requirements have significant power ramifications due to increased

register file pressure, which necessitates extra register file read ports and TLB read ports.

For any memory speculation technique, energy dissipation is a central concern. The

traditional Load Store Queue works well by detecting memory ordering violations, but as dis-

cussed above, presents significant latency and power scaling issues. Any solution to replace the

Load Store Queue must not only detect memory ordering violations as well as the Load Store

Queue, but must also be more capable of scaling up the number of supported in-flight memory

instructions (size) with more efficiency (energy) than the traditional Load Store Queue. Replac-

ing the Load Store Queue with more scalable structures has been shown possible, but nearly

every proposed solution adds additional structures in addition to the newly proposed Store and

Load Queues enabling indexing, prediction, correctness verification, or re-execution filtering.

Energy is a chief concern when targeting the Load Store Queue.

Energy efficiency has become as critical as performance. It is a key parameter from

data centers to mobile devices. Figure 1.1 shows the breakdown of dynamic energy con-

sumption per instruction (EPI) for a typical 4-way out-of-order core, similar to Intel’s Sandy

Bridge [32], running several SPEC 2006 applications. Both the LSQ and L1 data cache are

main sources of energy consumption with over 27% and 13% respectively, but the TLB and the

StoreSets are also not negligible with 4% of the total energy consumption each.

Execution of memory operations is costly, and most of the resources in modern pro-

cessors are specifically built to support it. Processors implement multiple cache levels, Trans-

5



lation Lookaside Buffers (TLB), Load Store Queues (LSQ), and StoreSet predictors to increase

memory operation execution efficiency. Most of these resources are on the critical path for load

operations. Slow execution of load operations significantly affects overall system performance.

As a result, architects invest area, energy, and additional complexity to support low latency load

operations. If load operations were not as critical, it would be possible to design much simpler

and more energy efficient systems.

With tighter power budgets due to shrinking technology size and increased integration

in the same die area, the LSQ has become a significant source of energy consumption as well.

This work proposes a decoupled memory execution verification like the L0 Cache [27]

and other works [13, 30]. In a decoupled memory operation, the loads and stores execute spec-

ulatively, independent of correctness. Then they are re-executed in-order at retirement to verify

correctness. This solution has been shown to be efficient for performance, but there has been no

work on designing an energy efficient decoupled memory execution. Intuitively, re-executing

all the loads and stores should double the data cache energy consumption for loads and stores.

Additionally, previous works propose additional structures to reduce the memory replays that

need to be accessed for every memory operation.

The micro-architecture presented in this work is known as the e-PDEMI architecture:

the Efficient-Power Decoupled Execution of Memory Instructions architecture.

The e-PDEMI verification of the memory operations is not in the critical path. Instruc-

tions waiting for in-order verification hold a reorder buffer (ROB) entry which can potentially

slowdown the core. Nevertheless, increasing the retirement phase is less performance sensitive

than adding delays to the execution phase.

This work’s contribution is to develop an energy efficient memory speculation mech-

anism that removes some critical structures from the critical path, providing an opportunity to

optimize these structures for energy efficiency. The proposed architecture performs decoupled

memory execution, and it does not implement an LSQ or StoreSets. e-PDEMI removes the TLB

from the speculative execution and it is accessed only at retirement. As a result, e-PDEMI uses

a virtually indexed and virtually checked cache-like structure called Virtual Predictive Cache

(VPC) instead of the L1 data cache.

Since verification is not in the critical path, e-PDEMI proposes a small but efficient

Filter cache [41] that dissipates almost 50% less energy per access than a costly L1 cache.
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e-PDEMI also makes use of a small 64 entry direct-mapped VPC Buffer to avoid frequent

replays and filter speculative data pollution from the VPC. These two buffers improve memory

speculation efficiency.

The fact that the VPC is speculative by nature also allows several energy consumption

optimizations with little performance impact. For example, e-PDEMI does not perform write

allocation and drops VPC write accesses that miss in the VPC. e-PDEMI also reduces VPC

accesses by 10% on average by first accessesing the smaller (and more efficient) VPC Buffer.

A naive memory decoupled execution has several replays which significantly affects

processor performance and as a result, energy efficiency. Previous work [56] has proposed

structures like Bloom Filters or other mechanisms to avoid frequent replays. A StoreSets-like

structure could enforce memory dependences but it would be energy intensive. e-PDEMI in-

cludes a novel mechanism that serializes memory operations when two memory replays are

detected in close temporal proximity. This effectively avoids memory speculation for a sub-

set of the program execution. Sections 4.1 and 5.1 present results from experiments carried

out where e-PDEMI serializes 60 memory operations when two replays have less than 200 re-

tired instructions’ temporal distance. This simple mechanism provides an efficient and simple

implementation.

This work differs from the existing literature due to its focus on energy efficiency. e-

PDEMI focusses not only on the LSQ but the StoreSets, the TLB, and its energy consumption.

For a 4-way out-of-order core, e-PDEMI achieves 16.4% average energy per instruction savings

while improving the performance by up to 6.4%. These results are achieved with a novel de-

coupled memory execution architecture that implements a trivial mechanism to avoid memory

replays and costly decoupled memory execution checks. e-PDEMI introduces a simple virtu-

ally indexed, virtually checked predictor cache (VPC), an L2 filter cache structure, and move

the TLB out of the critical path. This work then evaluates several optimizations to improve the

energy efficiency of the VPC.

1.2 Multiple Cores Introduce Shared Memory Complexity

As frequency scaling has proven to be infeasible, architects have turned to designing

processors with increased capacity for thread-level parallelism to further increase processor

performance. One common model for multi-core processors is the Shared Memory Model. In
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this model, all threads belonging to a particular process share the same memory space. This

allows applications to be written as a group of threads that can perform parallel computation on

common data. In order for threads to be able to read and write common memory locations in

parallel and maintain program correctness, the shared memory must be kept coherent. Memory

Coherence refers to the arbitration and tracking of memory location updates by multiple writers

to guarantee that all readers receive the most up-to-date copy of common data. Code Listing 1.1

outlines a particular multithreaded algorithm that requires memory coherence. Threads 1 and 2

read the value of Address A at the beginning of execution. Next, Thread 1 writes to Address A,

which means that Thread 2’s copy of Address A is now stale and not the most recent version of

the data stored at Address A. Later, when Thread 2 reads Address A again, it must read the new

value stored at address A instead of the value it read previously. Thread 2 cannot know that the

data at Address A has changed until it reads it from memory.

One solution to this problem would be to have each of the cores running each thread

share a memory element such as a Level 1 data cache. In this design, the coherence challenge

above is solved because as soon as Thread 1 (Core 1) writes new data to Address A, it is

immediately visible to any read coming from Thread 2 (Core2). However, in practice this design

can be infeasible for high performance processors because such a shared memory structure

would have to be larger than a typical Level 1 cache to adequately provide storage space for

both threads. Modern Chip Multi Processors (CMP) often have many more cores than two, and

as the number of cores grows, the size of such a shared structure could become untenable due to

energy consumption and latency scaling challenges. Further, the access latency associated with

such a large and heavily contested Level 1 Data Cache could significantly diminish processor

performance, thus negating the parallel advantage originally sought.

1 Thread1 :
2 Read Address A;
3 Wr i t e Address A;
4 Read Address B ;
5 Thread2 :
6 Read Address A;
7 Wr i t e Address B ;
8 Read Address A;

Listing 1.1: Example of Shared Memory Data Contention Between Threads

More commonly, each core of a CMP is given a private memory hierarchy that typ-
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ically is backed by a larger shared hierarchy. One example might be a CMP where each core

has a private L1 and L2 cache, with the L2 cache being backed by a common L3 cache shared

amongst all of the cores. In such a system, the coherence challenge presented in Listing 1.1

is complicated. When Thread 1 writes Address A, the new data will be stored in Core 1’s L1

data private cache. When Thread 2 attempts to read from Address A, it will execute a load in-

struction on Core 2 which does not have access to Core 1’s private L1 data cache. A coherence

mechanism is requried to support maintaining coherence across these private caches. Many

coherence protocols and mechanisms have been proposed in the literature [14, 23, 53, 54, 63],

each of which relies fundamentally on passing the information that Core 2’s copy of Address

A becomes invalid after Core 1’s modification of Address A (an invalidation-based protocol).

Commonly, these protocols are implemented using an interconnection mechanism between the

private caches on a CMP die. As core counts increase in CMPs, the design and verification of

such coherence mechanisms becomes particularly complex. Specifically, the number of edge

cases that must be verified and the complexity of scaling interconnect topologies as core densi-

ties continue to increase becomes difficult. It has been shown that scaling of these technologies

is possible, but it is also commonly accepted that the design and verification of such mecha-

nisms at large scales is complex. Additionally, the energy consumed by the various structures

and logic required to maintain coherence states and arbitration adds to overall CMP energy

consumption as core counts increase.

The e-PDEMI architecture evaluated in this dissertation is able to tolerate longer

latencies in the memory hierarchy. This latency tolerance capability allows the removal of

invalidation-based cache coherence with the replacement of a shared address mapped cache hi-

erarchy. The multi-core e-PDEMI system’s memory hierarchy is implemented as a single, large

shared, address-mapped, banked memory hierarchy system. In such a system, there is only

ever one copy of a given cache line. Thus, a memory coherence protocol is not needed by the

e-PDEMI system and is removed. The e-PDEMI system could work with traditional cache co-

herence, but evaluation shows a negligible performance impact which does not seem to justify

the additional associated complexity.
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1.3 Memory Consistency Impacts System Programmability

A Memory Consistency Model is a contract between programmers and a multi-processor

system specifying rules that if followed will guarantee that memory operations will be executed

in a predictable fashion. There are many memory consistency models. Derek Hower [35] pro-

posed the following descriptive comparison for discussing various memory consistency models:

A memory consistency model is considered weaker than another if it allows a memory instruc-

tion ordering that another does not. Conversely, a stronger memory consistency model is one

that does not allow a particular memory instruction ordering that another does allow. To support

multiple platforms, programmers must write applications that properly execute on the weakest

memory consistency model of the targetted platforms.

The most intuitive of such models is called Sequential Consistency. The Sequential

Consistency memory model specifies that the memory operations of a given processor in a

multi-processor system appear in program order to that processor. This model is the most

intuitive because it means that a programmer writing a thread in a multi-threaded application

can assume that each memory operation in the thread is executed in the sequence in which it

was written.

Sequential consistency is usually avoided in most modern commercial systems [20,

21,37,70] because although it is very intuitive, it can introduce severe performance degradation

[7, 20, 24, 28, 35, 37, 40, 65, 70]. To support Sequential Consistency, systems composed of out-

of-order cores might need to delay memory instructions to ensure program order execution,

or support a speculation mechanism that can detect if Sequential Consistency is violated, then

correct and reset the architectural state, and re-execute the offending instructions. Instead, many

processors use a Release Consistency model.

Release consistency is the memory consistency model supported by the well-known

pthreads library [3]. Release consistency allows reordering of memory instructions’ execution.

To guarantee that a particular set of memory instructions on a given CPU executes before a

different set of memory instructions, special synchronization instructions must be inserted into

the program. These synchronization instructions are often referred to as a Memory Barrier or

Memory Fence. When a CPU encounters these instructions, it cannot execute any additional

memory instructions until all inflight memory instructions are retired. Although this memory

consistency model can slightly slow performance during memory instruction synchronization
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related instructions, the flexibility to reorder memory instructions inside of barrier or fence in-

structions allows out-of-order processors to typically run faster. One drawback to the Release

Consistncey model is that programmers must be more accutely aware of the underlying sys-

tem they are programming and deeply consider the implications of possible thread interactions

and other system environmental factors. Because without barrier or fence instructions, memory

operations could be reordered which may or may not execute in the way the programmer in-

tended. The extreme alternative would be to guard every load and store with a fence or barrier

instruction which would then make the execution behavior very predictable for the program-

mer, but would significantly restrict the out-of-order pipeline’s ability to reorder instructions for

maximum ILP.

The e-PDEMI architecture verifies all memory operations off of the critical path, in-

order, at retirement. This, in addition to an address mapped shared cache hierarchy effectively

means that each e-PDEMI core provides a Sequential Consistency memory model for a multi-

core e-PDEMI system. Notice that the in-order verification also allows further simplifications

like the elimination of all memory ordering instructions (e.g., Memfence, MemBarrier, etc.)

that are required for correct execution on a release consistency system.

As discussed in Chapter 5, e-PDEMI provides this much more intuitively programmable

architecture without any significant performance impact. In multithreaded applications with

heavy synchronization usage, e-PDEMI can provide up to a 14% performance improvement,

and on average reduces energy dissipation by 10%.
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Chapter 2

Related Work

2.1 Memory Speculation

The main distinguishing feature of e-PDEMI compared to related works is that it

redesigns the micro-architecture with energy efficiency as the primary design parameter.

2.1.1 Store Queue Index Prediction

SQIP [61] addresses the scaling challenges associated with maintaining the fully asso-

ciative Store Queue(implemented with CAMs) in traditional out-of-order processors. They pro-

pose a mechanism for speculative indexing of the Store Queue to avoid full structure lookups.

For each load, a single Store Queue entry is predicted for data forwarding. The indexed store

in the Store Queue is then checked for an address match and its absolute age in program order

is interrogated to determine if it is younger than the requesting load. If these conditions are

met, data is forwarded. To support indexed access, two predictors were introduced. First, a

StoreSet-like [19] PC indexed table identifies likely forwarding of Store Queue entries. Second

a predictor based on the Exclusive Collision Predictor [71] predicts whether loads should be

delayed until their producer stores commit, due to forward table mispredictions. e-PDEMI in

contrast removes the LSQ, and relies on value prediction and replay.
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2.1.2 NoSQ

In NoSQ, Sha et al. [62] extend their work to remove the store queue. Their proposal

uses Speculative Memory Bypassing [51] to speculatively predict loads to either “bypass”

the traditional out-of-order pipeline, or to execute as normal through the pipeline. Bypassed

loads receive data from their producer stores through an additional read port on the register

file rather than a fully associative Store Queue. Issued dynamic stores’ target addreses are

tracked in a Store Sequence Bloom filter, which is accessed by every load at rename. If a load’s

producer store is predicted to be in-flight, it’s output register mapping is set to the physical

register corresponding to the predicted bypassing store’s data input.

This re-mapping is achieved using extensions to the proposed pipeline’s rename and

register allocation logic to properly perform the rename and track all in-flight register references

(to avoid recycling a register that has been re-mapped due to load bypassing). The register for re-

mapping is retrieved from a Store Register Queue that is added to track and properly index all in-

flight stores’ data input registers. To capture path-dependent bypassing patterns, NoSQ uses two

parallel tables to predict load bypassing. The first table simply replies upon load PC addresses

while the second table uses load PC addresses and path history bits. To reduce possible bypass

misprediction due to narrow-store/wide-load communication, as well as pathological paths that

the above predictors are unable to capture, NoSQ adds a confidence counter to each predictor

entry. Confidence counters are updated as correct and incorrect predictions occur.

The removal of the Store Queue requires the re-order buffer to perform store address

generation and to retrieve store data from the register file. NoSQ adds read ports to the register

file and TLB for this purpose. For the re-execution verification of bypassing loads, the re-order

buffer also uses an additional register file read port for this purpose. The proposed architecture

in this work does not introduce any additional ports on critical structures such as the register

file.

2.1.3 Fire-and-Forget

Fire and Forget [61] builds on Store Queue Index Prediction by removing the Store

Queue completely [67]. Instead of a Store Queue, stores are kept in program order as normal

in an out-of-order processor using the Re-order Buffer. Store results are kept in a result register

added to the ROB, which facilitates the complete removal of the Store Queue. Loads never
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access the store queue in any way and stores use three added prediction tables to speculatively

forward their data to one and only one load in the load queue. Mis-forwards and non-forwards

are resolved by re-executing loads at commit time to verify their consumed data in-order against

the data cache which is also updated in-order. Once a store has forwarded its value, it is allowed

to “forget” the value and the load queue is obligated to store the forwarded value. It is pointed

out that memory cloaking [51] could further enhance this work. While the architecture proposed

in this work relies on ROB to hold the speculatively run memory instructions before they are

verified, it does not add extra logic to the ROB.

2.1.4 SMDE: L0 cache

A different approach to providing a scalable memory disambiguation scheme was to

remove the Load Store Queue altogether and replace it with a speculatively updated and ac-

cessed cache. Garg et al. proposed this approach with an “L0” cache [27]. This technique

allows memory instructions to issue speculatively to the L0 cache out-of-order. Program cor-

rectness depends on in-order back-end execution whereby the speculative data consumed by

load instructions is checked against data obtained in the re-execution path that is guaranteed

to be correct. A fully associative fuzzy disambiguation queue is also proposed to reject loads

from executing to the L0 cache if there are any older in-flight stores matching its address that

have not yet executed. In this way, potential load-triggered replays are avoided. Additionally,

an age ordered Memory Operation Sequencing Queue is proposed to keep the address and data

for speculatively executed loads, and the address and data for stores waiting to be executed in-

order in the back-end execution. These additional structures support the L0 cache in allowing

memory speculation without the need for complex heuristics or various support tables to track

and detect memory order violations. Because the verification path in the L0 cache is a data-

based verification, spurious replays are avoided. While this is the most closely related work to

e-PDEMI, SMDE does not consider energy efficiency in its proposal. For example, e-PDEMI

removes the fully associative fuzzy disambiguation queue, and implements a different mecha-

nism to avoid excessive replays. Section 4.3.2 in Chapter 5 further compares and evaluates the

distinct differences between SMDE and e-PDEMI.
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2.1.5 Other Related Work

Sethumadhavan et al. approached the area and power efficiency of CAM-based Load

Store Queues by proposing late-binding [60]. Under late binding, entries in the Load Store

Queue are allocated when memory instructions issue rather than when they are dispatched in

the out-of-order pipeline. Akkary et al. proposed two-level store buffers where stores issue

into the first level buffer and then are displaced into the second level buffer when the first level

overflows [26]. Stores always commit from the second level buffer, but both buffers are fully

associative and support forwarding. Stone et al. investigated partitioning the Load Store queue

into three structures, distributing and address interleaving across all three [66]. These struc-

tures were an address indexed time stamp table for memory verification, a set associative cache

for forwarding, and a non-associative FIFO for commit. Delayed memory dependence check-

ing was investigated by Castro et al. in [15], using filters to delay memory verification until

commit, and avoid many associative searches by store instruction age information in auxiliary

registers. Sethumadhavan et al. further investigated filtering techniques using Bloom filters to

avoid associative searches in the Load Store Queue [59].

2.2 Simplifying Memory Coherence

As modern multi-core architectures scale to tens or hundreds of cores, hardware based

cache coherence can become prohibitively expensive and difficult to design and verify [5, 44].

Hence, the simplification or removal of coherence hardware has been studied in several works.

There are many papers dealing with cache coherence and software cache coherence. These are

the most related works.

2.2.1 Thread Migration Prediction

Shim et al. [64] approached simplification of memory coherence mechanisms by

considering thread migration at instruction-level granularity to keep shared data local from

thread perspective. The authors evaluate their proposal in the context of a Non-Uniform Cache

Architecture (NUCA). In a NUCA based system, the address space is divided amongst the

cores in the system such that every valid address is assigned a home node which is responsi-

ble for caching the related data. In order to read or write data in a remote core, the accessing
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core must send a request over an interconnection network. The authors of the thread migration

work instead propose to send the context of a thread which includes that thread’s architectural

state when a thread requests a remote memory access to the home node to begin executing that

thread as a guest of that home node. They allow for every core to have a native thread and a

guest thread. Native threads must be evicted to allow execution of a guest thread, and if guests

are evicted they must return to their native core. This mechanism prevents threads from having

to access remote memory structures, however the authors note that moving cores’ architectural

states across the interconnect can introduce significant latency overheads. They thus propose a

decision making algorithm relying on a direct-mapped structure that tracks the PC address of

potentially migratory memory access instructions which can determine when a thread migra-

tion is feasible from a performance standpoint. They then investigate potential thrashing cases

in their migratory predictor and suggest additionally keeping track of how many times a core

has contiguously accessed a set of remote memory locations. They present their best case aver-

age results as a 24% speedup when waiting for a core to make 3 contiguous accesses to a remote

memory structure before migrating its thread. The energy consumption of the proposed system

was not evaluated.

2.2.2 Synchroniztion Based Cache Coherence

Lin et al. [48] described a system that uses specialty cache policies with mem-

ory lock and barrier instructions to support cache coherence and Release Consistency without

the traditional cache coherence protocol. The system uses blocking caches supporting a sin-

gle outstanding cache miss with a write-through policy for cache hierarchy synchronization

to avoid coherence messages. The system relies on memory barrier instructions to guarantee

value propogation to a shared L2 data cache coupled with the Scope Consistency memory model

ScC [36], which requires programmers to specify shared or private scopes for data segments.

Energy consumption was not considered in their presented results.

2.2.3 Software Managed Cache Coherence

Zhou et al. [72] advocated that a software-based coherence scheme is a more prac-

tical approach for design, verification, and implementation flexibility. They point out that

hardware-based cache coherence can be prohibitively expensive and very difficult to verify

16



when core counts increase to several tens of hundreds of cores [5, 44]. They note many emerg-

ing workloads have low data sharing and hardware coherence may be overkill. They also argue

that future architectures will be designed for execution of multiple operating systems at once.

As such, these architectures would benefit from having independent coherence domains. Since

most hardware mechanisms do not support independent coherence domains, the authors suggest

that a software based coherence mechanism would better be able to support the dynamic allo-

cation needs of multi-workload executions, as various processes could dynamically need more

or less memory, effectively increasing or decreasing the size of their respective coherence do-

mains. They propose a hypervisor-like layer that intercepts system calls to provide independent

coherence domains. A given coherence domain provides coherence at the virtual page level.

One thread is responsible to maintain a “golden copy” of a given page while sharer threads

update local copies. At synchronization points, those copies are merged back into the golden

page. Traditional virtual memory protection mechanisms and access modes (Invalid, Read-only,

Read-Write) are relied upon for coherence. The authors add an additional type qualifier key-

word shared to the standard C/C++ languages to inform the proposed system of data that the

proposed coherence mechanism should manage. By default, all data is considered private unless

specified otherwise by the programmer. The authors compare their software-based coherence

proposal with the hardware coherence in a 32-core system for the well-known Blackscholes and

Art benchmarks. They find relative slowdowns for software-based cache coherence to be only

12% and 7% for those benchmarks respectively. Energy consumption of their proposed system

was not evaluated.

2.2.4 OS-Based Cache Coherence

Fensch and Cintra [25] proposed integrating coherence into the operating system. A

hybrid hardware/software approach using a NUCA cache organization was suggested where a

cache line can only exist in one memory structure. Cores could be required to make remote

accesses, but coherence was not needed. The authors then added ports to the L1 data cache and

TLB to support remote accesses. The proposed system evenly partitioned the virtual memory

space across the system and sent requests to the L1 data cache and TLB as well as to a “MAP”

structure that functioned like a directory. The OS and system page tables were modified to

support tracking of where a given virtual page was located on the system. Each memory request
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on a given processor would be simultaneously sent to the local TLB and L1 data cache as well

as the MAP. If the MAP indicated a remote access, the local TLB and L1 Data cache accesses

were cancelled. Global visibility of stores was guaranteed using memory barrier instructions

and an L1 write back policy. The OS intercepted store instructions, marking the first write

to given virtual pages. Subsequent reads of a page from other processors were allowed, but

writes would be stalled by the OS and create a new MAP entry. MAP entries were required

to be invalidated on lock acquires, and caches had to be invalidated on memory barriers. The

authors note that lock or barrier intensive benchmarks such as raytrace and ocean respectively,

experienced significant performance overheads. On average, the authors found their proposed

coherence scheme to have a performance degradation of 16% with respect to an aggressive

directory-based coherence mechanism which the authors found impressive given the aggressive

directory-based baseline and their proposal’s simple hardware support. Energy consumption

was not evaluated for this system.

2.3 Supporting Sequential Consistency

Sequential Consistency is the most intuitive memory consistency model. Most pro-

grammers implicitly assume sequential consistency when they design their applications by con-

sidering that each successive line of code is executed after the line before it. Since out-of-order

processors strive to extract instruction level parallelism (ILP) from the program by executing

instructions out-of-order, this assumption is not always correct. Data races, livelocks, and dead-

locks are some of the potential problems that can result from assuming Sequential Consistency

on a system with a more relaxed memory consistency model. Programmers must then add addi-

tional complexity to their multi-threaded programs such as locks, memory fences and memory

barriers to guarantee their programs’ proper execution. The following works attempt to abstract

that complexity away from the programmer so that systems appear Sequentially Consistent.

2.3.1 How to Make a Multiprocessor Computer That Correctly Executes Multi-
processor Programs

Leslie Lamport is credited with first defining Sequential Consistency [45], using the

code segment shown in Listing 2.1 to illustrate the concept. Lamport noted that as long as only
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1 P r o c e s s 1 :
2 a := 1 ;
3 i f b = 0 t h e n c r i t i c a l s e c t i o n :
4 a := 0 ;
5 e l s e . . .
6 P r o c e s s 2 :
7 b := 1 ;
8 i f a = 0 t h e n c r i t i c a l s e c t i o n :
9 b := 0 ;

10 e l s e . . .

Listing 2.1: Mutual Exclusion Example Algorithm

one of the processes’ critical sections is executed at a given time, then the multiprocessor system

running both processes is considered sequentially consistent. He first pointed out that if process

1 were allowed to execute the “a:=1” and “fetch b” memory operations in swapped fashion

with respect to program order, although execution on processor 1 would still be correct due to

no read after right dependency between those operations, both processes could enter into their

critical sections simultaneously and Sequential Consistency would not be maintained. Lamport

thus first required that memory operations from a particular processor be issued to the memory

hierarchy in program order. A multiprocessor system executing the code in listing 2.1 could

also violate Sequential Consistency if memoy elements did not process memory requests in the

order in which they were received. Lamport shows the following sequence of steps:

1. Processor 1 sends the “a:=1” request to its port in memory module 1. The module is

currently busy executing an operation for some other processor.

2. Processor 1 sends the “fetch b” request to its port in memory module 2. The module is

free, and execution is begun.

3. Processor 2 sends its “b:=1” request to its port in memory module 2. This request will be

executed after processor 1’s “fetch b” request is completed.

4. Processor 2 sends its “fetch a” request to its port in memory module 1. The module is

still busy.

At the end of the steps above, there were two operations pending execution. If processor 2’s

“fetch a” operation was performed first, then both processes could have entered their critical

sections at the same time which would break Sequential Consistency. This error could only
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occur if the two requests pending in module 1 were executed out of the order in which they

were received. Lamport thus proposed the second requirement for Sequential Consistency:

memory elements must only process requests to the same datum in the order in which they

were received. Thus it was shown that a multiprocessor system following the two requirements

defined by Lamport would be Sequentially Consistent.

2.3.2 BulkSC

BulkSC was proposed by Ceze et al. [16] to utilize the Bulk [17] set of hardware

mechanisms that were originally proposed to support Transactional Memory(TM) and Thread-

Level Speculation(TLS) by adding checkpointing hardware to cores in a multi-core processor.

By checkpointing architectural state and memory accesses, Bulk is able to commit groups of

dynamic instructions known as “Chunks”. Chunks can then speculatively write cache lines in

a seperate memory structure that holds checkpoint state until a Chunk is determined safe for

commit.

A Bloom Filter-based Bulk Disambiguation Module (BDM) checks unique Chunk

signatures that were composed of accumulated addresses for memory collisions between Chunks.

If a collision was detected, a Chunk could be squashed and re-executed. The authors extended

the Bulk mechanism to support Sequential Consistency by enforcing two rules: 1. Updates

from Chunks were not visible to other Chunks until Chunk committment. 2. Loads from a

Chunk must return the same value as if the Chunk was executed at its commit point. These

rules ensure that cores on the system all observe the global memory state update in the same

order, and Chunks from individual cores maintain program order. The author’s proposal al-

lowed individual cores to reorder instructions in any way they are able just as in a uniprocessor

system. Sequential Consistency in the proposed system relied upon Bulk’s supporting arbitra-

tion structures to determine any possible collisions that if committed could violate Sequential

Consistency.

In addition to the BDM, the authors also added an Arbiter module to determine the

commit ordering of chunks from various cores. For small core counts, a single arbiter was found

acceptable, but for larger systems a distributed arbiter was proposed. The authors also noted,

that their proposal required extensions to a traditional cache coherence directory mechanism

to support BulkSC’s Chunk signatures for collision detection. These extensions enabled cache
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directories to expand signatures into their constituent addresses, forward signatures to relevant

caches for address disambiguation, and to conservatively disable directory entries of all lines

written by a committing Chunk until the new Chunk values were visible to all cores on the

system to preserve Sequential Consistency. The authors proposed optimizing their signature-

based collision detection by excluding statically private data in a given core from generated

signatures by adding an attribute to virtual memory pages in software. They further optimized

for private data by considering dynamically private data updated between Chunks on the same

core. Dynamically private data was managed using an additional dedicated signature for private

data, and a Private Buffer in the BDM that could keep track of older copies of cache lines.

In this way, dynamically private data could be updated in the data cache while maintaining

Sequential Consistency, and core local data coherence amongst dynamic inflight instructions

was maintained by keeping the older copies of cache lines available in the Private Buffer when

needed. The authors found that their most optimized proposed system performend equivalently

to a baseline Release Consistency system. The authors did not evaluate the energy consumption

of the proposed system.

2.3.3 Sequential Consistency in Distributed Systems

Mizuno et al. Developed an analytical framework to test systems for sequential con-

sistency and then proposed and verified a new protocol of their own supporting Sequential

Consistency. [49] The authors first pointed out that previous works [9, 10, 12] all relied on a

broadcast-based invalidation protocol to support sequential consistency. Mizuno et al. proposed

a new protocol that did not rely on broadcast invalidations and instead relied on a combination

of shared global memory and private local memory. Additionally, the proposed system added

a bit vector to each cache line indicating whether the values stored in that cache line should be

read locally or globally by a particular processor. In this way, global visibility of write opera-

tions was controlled such that Sequential Consistency was preserved. The ePDEMI architecture

does not add any additional information to cache lines or cache state data, nor does it need to

track the global visibility of writes in order to provide Sequential Consistency.
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2.3.4 Implementing Sequential Consistency in Cache Based Systems

Sarita Adve and Mark Hill [8] disproved previous assertions that Strong Ordering [24]

guarantees Sequential Consistency because propagation of memory write operation updates

across a multiprocessor system could experience non-uniform latency. They further pointed

out that the additional assertion that Sequential Consistency could only be achieved with one

at a time memory access designs proposed in [57, 58] was too conservative. Those previous

works proposed issuing accesses in program order, and no memory access was issued until the

previous access was globally visible to all processors in the system. Adve and Hill relaxed

that requirement to allow overlapping of some memory requests by introducing six memory

operation conditions:

1. Accesses are issued in program order.

2. All processors observe writes to a given location in the same order.

3. An access cannot be issued by a processor if a previous acccess from the same processor

has not been globally performed.

4. Write operations must be globally performed in sequence so that if two different processor

writes(1 and 2) go to the same cache line, and write 2 is waiting on previous writes from

its processor, write 1 must wait until write 2 completes. Similaly, if write 1 were instead

a read, it would still wait for write 2 to complete before returning its data.

5. If one processor issues a read while still having several outstanding writes, and another

processor issues a write to the same cache line as the read, the write must wait until all of

the first processor’s pending writes issued before the read are globally visible.

6. A read issued by a processor while some of its previous writes are not globally performed

should return the last value written on any copy of the accessed line, where last is defined

by the order ensured by condition 2.

The authors proposal was then further described based on a directory-based, writeback invali-

dation cache coherence protocol. For write operations, the proposed system relied on parallel

sending of a cache line to the requesting processor along with invalidation messages to the other
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processors in the system. Each processor was assigned a counter to record how many proces-

sors had received an invalidation message (indicating global visibility of the write), and each

cache line was augmented with a reserved bit indicating if the local cache should allow remote

processors to access a modified cache line. This additional tracking information supported the

prevention of remote processors consuming newly updated data too early with respect to Se-

quential Consistency. During the course of normal execution, if a processor issued a memory

access that resulted in the need to evict a cache line that was marked reserved, the processor

would be stalled until pending memory requests to that cache line had been globally performed

and the line was no longer marked reserved. Because of this potential need to stall processors,

the authors also noted that workoads with heavy data sharing could experience a slowdown due

to excessive outstanding remote writes. The authors concluded by offering a qualitative analysis

showing algorithmically where the one at a time memory access design would stall on remote

writes waiting for cache lines to return and thus where their proposal could overlap reads and

writes to other cache lines. ePDEMI provides Sequential Consistency without needing to stall

cores to guarantee global visibility of writes.

2.3.5 Is SC + ILP = RC

Gniady et al. [29] show a way for Sequential Consistency(SC) Memory Models to

achieve equivalent performance to Relaxed Consistency (RC) Memory Models. They argue

that SC Memory Models require: 1. “Full Fledged speculation” whereby loads and stores are

allowed to execute completely out of order with no constraints. 2. maintaining a large specu-

lative state allowing a processor to entirely replay both architectural and cache hierarchy state

back in the event of a mis-speculation. 3. A fast common case in which SC Memory Models

do not introduce considerable overhead to execution time on average. 4. Infrequent replays so

that SC Memory Models do not heavily rely on restoring processor state due to mis-speculation

thus eroding any performance advantage. They allow store instructions to speculatively retire

out of order by using a read-modify-write operation to the L1 data cache. To guarantee correct

processor and data cache state after a rollback, Store History Queue(SHiQ) and Block Lookup

Table structures are proposed to keep all relevant processor and memory hierarchy state includ-

ing physical register number, old register rename map, old value of destination register, etc.

for each retired instruction as well as the tags and previous state of any speculatively modified
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cache blocks. The authors also find that when the Re-order buffer is increased from 64 entries

to 1,024 entries, the number of rollbacks increases significantly causing the RC Memory Model

system performance to increase over the SC Memory Model system performance. In e-PDEMI,

all speculative data isstored in a value prediction cache (VPC) and a simple mechanism to limit

the number of replays is implemented.
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Chapter 3

Sequential Memory Consistency Alternatives

This chapter presents an overview of several memory consistency models as alter-

natives to Sequential Memory Consistency. Some of the consistency models presented can

support Sequential Consistency through the use of special synchronization instructions that en-

force serialization between different classes of memory instructions. Others violate Sequential

Consistency in an effort to provide compilers more flexibility to re-order instructions accessing

different addresses for performance optimization.

Relaxed memory consistency models that allow the re-ordering of memory instruc-

tions accessing different addresses can allow compilers not only to re-order those instructions

as needed, but also to overlap them to hide latency. One common design, that is usually ac-

companied by Release Consistency, allows an out-of-order processor in combination with non-

blocking caches [42] to issue multiple memory instructions even in the presence of outstanding

misses. This behavior is more detailed in Section 3.2, but the key point is the support for hid-

ing the latency of outstanding memory operations that may have missed in a given level of the

memory hierarchy is a major enabler of high performance in out-of-order processors. Finally,

it is important to note that the multi-core e-PDEMI implementation allows compilers total flex-

ibility to re-order memory instructions (assuming programatic correctness is preserved), and

relies upon non-blocking caches to sustain the high performance of the baseline architecture as

discussed in Chapter 5 Section 5.1.5.
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3.1 Weak Ordering

The Weak Ordering memory consistency model [24] was proposed by Dubois et al.

This memory consistency model classifies memory instructions into two classes: data opera-

tions, and synchronization operations. It is left to the programmer to identify which memory

locations (variables) belong to which class. Weak Ordering only enforces data memory opera-

tion ordering across synchronization memory operations. Any data memory operations occur-

ing between synchronization operations can be re-ordered in any way. Thus, a synchronization

memory operation may not execute to the memory hierarchy unless all previously issued load

and store instructions complete their execution in the memory hierarchy. Store memory instruc-

tions appear atomic to the programmer under Weak Ordering and as such, load instructions are

not allowed to consume data from loads that are pending memory hierarchy execution in any

local buffer (store forwarding disallowed).

3.2 Release Consistency

Release Consistency refers to a memory consistency model that relies upon a paradigm

of classifying memory operations into three categories. The first category is “normal” opera-

tions, and refers to most load and store operations. The other two categories of memory op-

erations are referred to as “acquire” operations and “release” operations. An acquire memory

operation prevents future normal memory operations from executing until the acqurie operation

is retired and thus the issuing processor has acquird ownership of the related memory space. A

release operation cannot retire until all previous normal memory operations have retired. Once

those previous normal memory operations have retired the release operation may retire, thus

releasing ownership of the related memory space from the issuing processor. When a processor

issues a load instruction to the memory hierarchy, the load instruction is allowed to bypass pend-

ing writes and releases but cannot bypass an aquire. When a processor issues a store instruction

to the memory hierarchy, the store intruction will only be stalled if the target memory element’s

write buffer is full, or another processor has aquired the related memory space. When a proces-

sor issues an acquire memory operation to the memory hierarchy, that processor cannot issue

additional memory instructions until that acquire operation retires. When a processor issues

a release memory operation to the memory hierarchy that release operation cannot be retired
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until all previous stores and releases are retired. In this way, a programmer writing a multi-

threaded application can enforce the ordering of memory operations between processors on a

multi-processor system by using the acquire and release operations as memory sychronization

operations.

Within the Release Consistency memory consistency model, there are two sub-classes

called RCsc and RCpc. These sub-classes of Release Consistency are differentiated by how they

execute memory instructions related to synchronization. RCsc enforces Sequential Consistency

among sychronization memory instructions, while RCpc provides Processor Consistency be-

tween sychronization memory instructions.

3.3 Processor Consistency

Processor Consistency [28] considers memory consistency from the perspective of a

single processor. Load instructions from a given processor are allowed to consume the data from

any local or remote store instruction that occurs, either before or after the load instruction, in

the program order, even before the store becomes globally visible. To enforce ordering between

memory instructions, Processor Consistency requires the use a of read-modify-write instruc-

tion. However, this technique only applies to load instructions because Processor Consistency

does not guarantee atomicity between the read and write in a read-modify-write instruction.

The main advantage of Processor Consistency is to hide the memory latency associated with

store instructions by allowing load instructions to execute out-of-program order with respect to

previous store instructions.

3.4 Total Store Ordering SPARC V8

The Sun Microsystems SPARC V8 processor implements a memory consistency model

known as Total Store Ordering(TSO) [2]. TSO applies to uniprocessor and multiprocessor vari-

ants of the SPARCV8. TSO guarantees that store, FLUSH, and atomic load-store instructions

are executed by memory serially in an order that conforms to the order that those instructions

were issued by all procesors. On a given processor, local load instructions are allowed to con-

sume local store instructions that have not yet become globally visible to other processors.

However, on the same given processor, local load instructions cannot consume data from re-
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mote store instructions before they become globally visibile. Also, load instructions block their

issuing processor until they are resolved. If the programmer for a TSO based system wishes

to enforce program order between a pair of load and store instructions, either the load or the

store muse be the read or write of a read-modify-write instruction. Alternatively, a dummy

read-modify-write instruction can be inserted between any two memory instructions to force

sequentiality between them. A dummy read-modify-write instruction would read a value from

memory and write the same value back to the same location.

3.5 Partial Store Ordering SPARC V8

The Sun Microsystems SPARC V8 also supports Partial Store Ordering (PSO) which

guarantees that store, FLUSH and atomic load-store instructions of all processors appear to

be executed by memory serially but not neccessarily in the order that they were issued from a

processor. Unlike TSO, PSO allows store instructions to different addresses to be overlapped

and potentially re-ordered. Local forwarding from stores that are not yet globally visible to

consumer loads is still supported, and outstanding loads still block their issuing processor. PSO

provides a STBAR instruction that functions as a Store Barrier. On encountering an STBAR

instruction, a processor cannot issue any additional store instructions to the memory until all

pending stores have completed execution in the memory hierarchy. This functionality can be im-

plemented using a FIFO structure to buffer all not-yet-issued stores and a counter. The counter

is incremented when a store instruction is issued to the memory hierarchy, and decremented

when its execution in the memory hierarchy is completed. When as STBAR instruction is en-

countered, if the counter value is non-zero, new store instructions are buffered in the FIFO

structure, but not issued to the memory hierarchy. Once the counter has been decremented to

zero, stores from the FIFO structure may be once again issued to the memory hierarchy. Store

instructions that occur between STBAR instructions may be re-ordered in any way. Atomic

load-store instructions such as SWAP and LDSTUB are treated by the PSO mechanism as both

a load and a store. The instruction is inserted into the store FIFO, but it also blocks the processor

like a normal load until it is resolved.
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3.6 Relaxed Memory Ordering SPARCV9

The Sun Microsystems SPARC V9 supports Relaxed Memory Ordering (RMO) [70]

which places no ordering constraints on memory instructions beyond uni-processor consistency

(programmatic correctness). SPARC V9 instead supports the MEMBAR instruction that func-

tions as a memory barrier. When a memory barrier is encountered, all memory instructions

issued prior to the MEMBAR must be completed. Memory instructions occuring between two

MEMBAR instructions may be re-ordered in any way. Further, the MEMBAR instruction can

be encoded with a 4-bit field to support any combination of specific memory ordering constraint,

such as ordering only loads with loads, or loads before stores, or stores before loads, or stores

with stores, or any union of those cases including all of them.

3.7 IBM-370

The IBM-370 system did not allow loads to consume the value of store instructions

before they were globally visible, meaning that store-to-load forwarding in the processor was

not allowed [1]. SYNC instructions were used much like compare and swap instructions to

enforce read after write dependencies. Sequential Consistency was achievable on the IBM-

370 by placing a serialization instruction after every memory instruction in a given program to

enforce program order execution of memory instructions. Even without enforcing Sequential

Consistency, the IBM-370 did not provide much flexibility to the compiler to reorder memory

instructions since loads could not consume store data until stores were globally performed.

3.8 Alpha

The Digital Alpha processor [65] did not explictly enforce any memory operation

order. Memory operations were free to be re-ordered in any way by the compiler or processor.

Such a relaxed memory consistency model allowed compilers flexibility to re-order memory

instructions for performance optimization. Additionally, the processor could re-order and/or

overlap memory instructions to hide memory hierarchy latency to further increase performance.

Programmers were given two instructions to force memory instructions’ execution order. The

first was the WMB or Write Memory Barrier instruction which functioned very similarly to
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the STBAR instruction from the PSO memory consistency model in the SPARC V8. Once

the Digital Alpha processor encountered a WMB instruction, no additional store instructions

could be issued until all outstanding store instructions’ execution in the memory hierarchy was

completed. The second memory ordering instruction the Digital Alpha processor provided was

the MB instruction or Memory Barrier instruction. Once an MB instruction was encountered,

no more memory instructions of any type could be issued to the memory hierarchy until all

outstanding memory instructions completed their execution in the memory hierarchy.

3.9 PowerPC

The PowerPC architecture provides the SYNC intruction which is similar to the

MEMBAR instruction from SPARC V9’s RMO memory consistency model. The SYNC in-

struction will guarantee that memory operations that occur on either side of it are executed in

sequence with one exception. Two reads to the same address can be executed out of program

order even if a SYNC instruction is placed between them. To enforce an ordering between two

load instructions accessing the same address on the PowerPC, a read-modify-write instruction

is required. Further write instructions are not guaranteed atomicity when executing in the mem-

ory hierarchy. As with load instructions, store instructions must become the write operation of

a read-modify-write instruction in order to guarantee atomicity of store instructions.

3.10 e-PDEMI Supports High Performance Sequential Consistency

Because e-PDEMI performs memory speculation with the VPC discussed in Chap-

ter 4 Section 4.1.3.1, it provides performance equivalent to Release Consistency. e-PDEMI is

designed to execute code compiled for the Release Consistency memory consistency model.

As such, the compiler is free to re-arrange instructions in any way to improve performance.

Further, e-PDEMI then executes memory instructions out-of-order to the VPC which enables

greater flexibility to hide memory latencies related to outstanding inflight memory instructions.

Finally, because each e-PDEMI core only commits store instructions and verifies load instruc-

tions to the memory hierarchy in program order, and each non-blocking cache processes each

memory instruction to the same address in the order they were recieved, e-PDEMI maintains

the high performance of Release Consistency while enforcing Sequential Consistency.
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Chapter 4

The e-PDEMI Architecture

4.1 e-PDEMI Single-Core Architecture

The e-PDEMI single-core architecture re-conceives of memory speculation with en-

ergy consumption as the first design consideration while preserving the high performance pro-

vided by a modern super-scalar out-of-order processor.
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Figure 4.1: Baseline and Proposed Architectures

4.1.1 Baseline Architecture

Figure 4.1 shows the baseline architecture that e-PDEMI is proposed to modify. The

baseline processor is an out-of-order processor with an instruction window that can dispatch

one load and one store instruction per cycle to dedicated load and store units. The load and
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store units can then each execute one instruction per cycle by accessing the traditional Load

Store Queue. The Load Store Queue orders store instructions to be committed to the mem-

ory hierarchy in order, performs appropriate store-load forwarding and detects memory order

violations resulting in replays. The Load Store Queue also supports forwarding of unaligned

store data to consumer load instructions. Additionally the Load Store Queue can issue one load

and one store per cycle to the L1 data cache and TLB. The L1 data cache is virtually indexed

and physically checked, meaning that the TLB is accessed in parallel with the tag bank and the

successive data bank access is serialized. Table 4.1 lists the sizes and other relevant parameters

for each of these structures.

4.1.2 Store Sets for Memory Speculation Correction

The baseline system uses StoreSets [19] to avoid replay loops resulting in slow for-

ward progress. Every load and store instruction in the baseline architecture is assigned to a

Store Set identified by its StoreSet ID. The StoreSets implementation requires the addition of

an Store Set ID table to hash load and store instruction PC addresses to StoreSet IDs. If a mem-

ory ordering violation is detected by the Load Store Queue, the store that executed too early is

identified by its StoreSet ID and the replayed load instruction’s PC address is statically mapped

to the store’s StoreSet ID. Because the instruction rename stage of the baseline architecture is

performed in program order, it is guaranteed that the rename logic will see the load instruction

before the store instruction during the ensuing replay. The rename logic will see that the load in-

struction’s PC address is already associated with a valid StoreSet ID and simply mark that load

as the last fetched instruction for that StoreSet ID in an additional table called the Last Fetched

Instruction table. The Last Fetched Instruction table is indexed by StoreSet ID. When the store

instruction enters the rename stage in the baseline architecture’s execution pipeline, the rename

logic will also see that the store instruction’s PC address also belongs to a valid StoreSet ID. The

Last Fetched Instruction table will be indexed with that StoreSet ID and the load instruction will

be found. The rename logic will then create a dependency chaining the store instruction to the

load instruction such that the store instruction cannot be executed in the out-of-order pipeline

until the load instruction has been retired. In this way, these instructions that previously caused

a replay due to a read-after-write dependency are forced to execute serially to avoid a recurrent

replay.

32



Store Instruction

Issue
(in-order)

Address Calculation
(out-of-order)

Write to VPC Filter

Retire in ROB
(in-order)

Write Data to L2 Filter
(in-order)

and update VPC if hit in 
VPC

Load Instruction

Issue
(in-order)

Address Calculation
(out-of-order)

Load from 
VPC Filter

Update Mem Spec 
Buffer with 

Consumed Data and 
Address

Hit

Trigger a Miss to the 
VPC, if Miss again, 
Trigger Miss to L2 

Filter

Miss

Verify data in 
MemSpec Buffer

with in-order updated 
L2 Filter Cache

Retire from ROB
(in-order)

Replay Next 
Instruction After 

This Load

Correct Incorrect

Figure 4.2: e-PDEMI Flowchart for Load and Store Instructions

33



4.1.3 Proposed e-PDEMI Architecture

The right side of Figure 4.1 illustrates the proposed architecture and Figure 4.2 shows

the pipeline flow of store and load instructions in the e-PDEMI architecture. e-PDEMI targets

an architecture that can reduce system power by completely removing the Load Store Queue

and StoreSets.

4.1.3.1 Value Prediction Cache

e-PDEMI includes a virtually indexed and virtually checked Virtual Predictor Cache

(VPC) which avoids the access time of the TLB. Memory instructions are allowed to issue di-

rectly to the VPC out-of-order without any intermediary memory disambiguation, forwarding

prediction, virtual to physical address translation, or other support logic. Stores are dispatched

from the Store unit out-of-order, and speculatively update a decoupled VPC Buffer. The VPC

Buffer does not ever displace data into the VPC. Loads are dispatched from the Load Unit

out-of-order to the VPC Buffer first. If the VPC Buffer hits on the load’s address, the load

speculatively consumes the data contained in the VPC Buffer. The VPC Buffer is able to for-

ward unaligned store data to consumer load instructions. If the VPC Buffer misses on the load’s

address, the load then accesses the VPC. If the VPC hits on the load’s address, the load spec-

ulatively consumes the data contained in the VPC. If the VPC misses on the load’s address, it

triggers a miss request to the L2 Filter cache and obtains the requested data. It is important to

note that the VPC replaces the L1 data cache and as shown in Section 4.2 is the same size as the

L1 data cache in the baseline architecture. The only additional structures added are the small

filter cache in front of the L2 cache and the small memory speculation buffer storing inflight

memory instructions’ addresses and data for off critical path verification.

4.1.3.2 L2 Filter Cache

The L2 Filter Cache is implemented as a phase cache [33] to provide energy savings

by alleviating the L2 cache of additional re-execution accesses. It is important to note that the

VPC never displaces speculative data to the L2 Filter cache. Further, the data in the L2 filter

cache is always correct. The correctness of the L2 filter cache and verification of the speculative

data consumed by loads are both handled off of the critical path. At retirement, stores are is-

sued in-order from the re-order buffer and update a small filter cache placed before the larger L2
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cache. This is to avoid accessing the big L2 structure for every store. The store also updates the

VPC. To avoid increasing register file pressure, or adding register file ports, e-PDEMI includes

a small memory speculation buffer that stores the data and address of each speculatively exe-

cuted memory instruction. The memory speculation buffer is indexed by memory instructions’

addresses.

4.1.3.3 No Write Allocation for VPC

Because store instructions are issued in order to the L2 cache through the filter cache,

the content of the L2 cache is always correct. Additionally, because store instructions update

the VPC in order at retirement, the VPC is considered mostly correct. To reduce the energy cost

of re-executing store instructions to the memory hierarchy, write-miss requests are not allowed

to be sent from the VPC to the filter cache. Therefore, when a store instruction is issued to the

VPC at retirement, if the associated cache line is not present in the VPC, the request is dropped

and no further action is taken. Because the VPC is merely used to predict values, it is not

necessary for the store to write its data into the VPC. If a consumer load executes speculatively

some time after the store such that the VPC Buffer no longer contains the store’s data, then the

VPC will trigger a miss request to the L2 filter cache and the correct, sequentially updated cache

line will be provided. As can be seen in Section 4.3.4, the performance impact of this policy

is negligible and the single-core e-PDEMI architecture is able to maintain the average energy

reduction of approximately 16.4% discussed in 4.3.1.

4.1.3.4 In-Order Verification

When load instructions are re-executed at retirement, the data retrieved from the L2

Filter cache is compared against the data the load speculatively consumed during out-of-order

execution. If the data matches, the L2 Filter Cache signals the re-order buffer that the load may

retire, and if the data does not match, it signals a flash clear of the VPC Buffer, and signals

the re-order buffer that a replay from the instruction immediately proceeding the load must be

triggered. Because the triggering load receives the correct data from the L2 filter cache, it does

not require replay. This is in contrast to Load Store Queue implementations where the load

itself would need to be replayed. As a result, the proposed architecture can guarantee forward

progress. As such, the StoreSet mechanism is not needed, and is therefore removed.
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4.1.3.5 Avoiding Excessive Replay

In the place of StoreSet predictors, e-PDEMI simply implements a counter that can

enforce periods of memory instruction serialization when replays begin to erode forward progress.

Note that in benchmarks such as bzip2 there are replay interactions, particularly in loops, where

a replay due to a particular load-store pair can trigger the replay of a nearby load-store pair, and

although forward progress is guaranteed, it becomes very slow. To quickly combat this prob-

lem, if the proposed architecture detects forward progress below a threshold (less than 200

instructions between replays), all memory instructions are serially executed to the VPC for a

set number of instructions. These simplifications may allow architects to easily scale up the

surrounding structures (Instruction Window, Load and Store Units, re-order buffer etc.) to ex-

tract increased instruction level parallelism by supporting more in-flight memory instructions

without complex scaling challenges. However, the focus of the ePDEMI architectural design

is to sustain performance equivalent to the baseline architecture with lower energy per instruc-

tion while removing the complexity of coherence and supporting the simplicity of a sequential

consistency memory model.

4.1.3.6 No Cache Checkpointing

Because store instructions are committed in-order and the VPC cannot displace spec-

ulative data to lower levels of the memory hierarchy, the e-PDEMI architecture does not pollute

lower cache levels. As a result, replays remain decoupled from the memory hierarchy and do

not require keeping checkpoints, or additional state based storage in order to repair the memory

state. Avoiding memory pollution saves the dynamic energy associated with accessing the mem-

ory hierarchy for cache line displacements as well as the more costly multiple writes required

to restore cache state during a replay.

4.1.3.7 Off The Critical Path

Because access to the main memory hierarchy is off the critical path, the e-PDEMI

architecture is able to tolerate longer memory latencies. e-PDEMI is thus able to tolerate the

additional latency associated with adding the small L2 Filter cache to the memory hierarchy,

implementing the L2 Filter cache as a phase cache [33], and verifying all memory instructions

at retirement. Section 4.3.6 presents performance results of varying L2 filter cache sizes and
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shows that the e-PDEMI architecture’s performance results are fairly insensitive to the size of

the L2 Filter Cache.

The e-PDEMI architecture simplifies the execution pipeline by removing the StoreSet

predictors and Load Store Queue. The VPC replaces the L1 data cache and only a small L2 filter

cache and memory speculation buffer are added.

4.1.4 Virtual Synonyms and Security

Unlike traditional caches, the VPC in the e-PDEMI architecture does not suffer from

classic problems implied by virtual indexing and virtual tag checking. Due to its function as

a predictor cache, the VPC is not required to handle virtual synonyms correctly. Consider the

following example: A single process is running on the e-PDEMI architecture and obtains two

virtual addresses that map to a single physical address. At an early point in time, the process

modifies the contents pointed to by the first virtual address in the VPC. Some time later, the

process modifies the second virtual address in the VPC. Finally, the process attempts to read

from the first virtual address and receives the original data from the first virtual address in the

VPC, however that data is now stale and not correct. Since each of the stores performed by

the process would have updated the virtually indexed and physically checked L2 Filter cache

at retirement in-order, when the load retires in the e-PDEMI system it would check the data

it consumed against the data in the virtually checked and physically indexed L2 Filter Cache

(where there are no virtual synonyms) and would find that it consumed the wrong data. The

correct data received from the L2 Filter cache would be committed to the architectural state

of the system and a replay would be triggered from the next instruction guaranteeing correct

forward progress.

Another challenge that the e-PDEMI system could face, due to virtually indexing and

checking the VPC, is process address space violations due to context switching. For example,

if an e-PDEMI system were running a process known to store a password in virtual address

100, a malicious process could attempt to access virtual address 100 in a running loop hoping

to aquire the first process’s password. The malicious process could then attempt a brute force

attack by continually accessing virtual address 100 and attempting to use the data loaded as the

password. If the password were accepted, the malicious process would branch. Interestingly,

in the e-PDEMI system, each time the malicious process attempted this load, it would fail
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Baseline Architecture

Issue Width 4 Instructions
Re-order Buffer 256 Instructions
Load Queue 48 Loads
Store Queue 32 Stores
Branch Predictor OGEHL
BTB 4K entries - 4-way
Integer ALUs 4 units
Floating Point ALUs 4 units
L1 TLB 64 entries / Fully Assoc. / 1 cycle
L1 Data Cache 16KB / 4-way / 4 cycles
L2 Cache 512KB / 16-way / 7 cycles
L3 Cache 8MB / 32-way / 14 cycles

Table 4.1: Baseline architectural parameters

verification at retirement, because the address would be translated to a physical address in the

L2 Filter cache, which would yield a value from the malicious process’s address space instead of

the first process’s address space. The malicious process could however read the branch predictor

performance counter in the e-PDEMI system, and if it found that the last branch had been taken,

then it would know the correct password had been found. In applications where such a security

challenge may be present, the OS could perform a flash clear of only the VPC Buffer and main

VPC on context switches.

4.2 Experimental Setup

This work used a simulation setup similar to TASS [38]. It modifies SESC [55], and

uses QEMU [11] as the functional emulator executing ARM instructions. It uses a modified

version of McPAT [47] for power estimation. Table 4.4 shows the TASS parameters used for

single-core evaluation of the e-PDEMI architecture. Table 4.1 lists the parameters used to sim-

ulate each core of the baseline architecture, and Table 4.2 lists the parameters used to simulate

each core of the proposed architecture. The single-core implementations of the baseline and

e-PDEMI architectures were evaluated by running approximately 5 billion instructions from 16

SPEC2006 [34] benchmarks shown in Table 4.3.
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e-PDEMI Architecture

Issue Width 4 Instructions
Re-order Buffer 256 Instructions
Branch Predictor OGEHL
BTB 4K entries - 4-way
Integer ALUs 4 units
Floating Point ALUs 4 units
L1 TLB 64 entries / Fully Assoc. / 1 cycle
VPC Cache 16KB / 4-way / 4 cycles
VPC Buffer 64 entries
Mem Spec Buffer 48 Load entries, 32 Store entries
L2 Filter Cache 4KB / 16-way / single-core 2 cycles
L2 Cache 512KB / 16-way / 7 cycles
L3 Cache 8MB / 32-way / 14 cycles

Table 4.2: Proposed e-PDEMI architectural parameters

Type Benchmark

Integer hmmer, astar, h264ref, sjeng
libquantum, omnetpp, gcc, bzip2

Float soplex, milc3, leslie3d, namd
povray, bwaves, lbm, dealII

Table 4.3: Simulated SPEC2006 Benchmarks

TASS Periodic Sampler Parameter Value

nInstSkip 3B
nInstSkipThreads 0
nSampleMax 480
nInstRabbit 2.53M
nInstWarmup 2.4M
nInstDetail 20K
nInstTiming 50K

Table 4.4: TASS Periodic Mode Sampler Parameter Values

4.3 Evaluation

4.3.1 Energy Per Instruction

Figure 4.3 illustrates the energy per instruction for each simulated benchmark run-

ning on both the baseline architecture and proposed e-PDEMI architecture as described in Sec-
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Figure 4.3: e-PDEMI has over 16% energy per Instruction savings

tion 4.1. The most important insight Figure 4.3 provides is that the e-PDEMI architecture

reduces energy per instruction across all benchmarks. The average energy per instruction re-

duction is 16.4%. The “Rest” of the core dissipates about the same energy per instruction in

both the Baseline and e-PDEMI systems due to the stall trading shown in Figure 4.8. This

may seem counter intuitive because instructions need to be verified and e-PDEMI increases the

amount of replayed instructions.

Verification does not impact the register file nor the re-order buffer energy consump-

tion per instruction with respect to the baseline. Is also does not increase register file energy

consumption per instruction because the instruction verification does not access the register file.

e-PDEMI stores load and store instructions’ out-of-order execution information in the memory

speculation buffer (shown in Figure 4.3 as “SPECBUFF”). Due to its relatively small size, the

memory speculation buffer does not significantly increase the energy per instruction on the e-
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PDEMI architecture. e-PDEMI also does not increase the re-order buffer energy per instruction

or other structures such as the rename logic because only a small percentage of instructions

need to be replayed and the amortized cost is negligible.

The energy per instruction savings the e-PDEMI architecture achieves is maintained

by carefully re-balancing other memory hierarchy structures to avoid increasing the energy

dissipated per instruction. Since the memory hierarchy is off the critical path, the e-PDEMI

architecture can tolerate longer latencies while maintaining performance similar to the baseline

system. As a result, it is able to use a lower power mode of the L1 TLB to increase its efficiency

at the cost of increasing its latency. The addition of a small L2 Filter cache avoids the potentially

costly L2 verification access.

Neither the baseline nor e-PDEMI architectures experience any significant energy per

instruction in the L2 or L3 caches (labeled “Mem Hier”).

The VPC is more energy efficient than the L1 cache even with the same size and or-

ganization. The VPC implements several optimizations only possible in a speculative cache.

Specifically, the VPC includes a small buffer to simultaneously minimize speculative data pol-

lution of the VPC, and to reduce the VPC’s energy consumption per instruction. As shown in

Figure 4.9, the VPC buffer is able to service a significant amount of memory accesses (over

20%), that would otherwise issue to the VPC and thus increase its activity rate. Additional

small energy savings are due to the fact that the VPC does not allocate cache lines on writes and

it never performs write backs to the next level of the memory hierarchy.

4.3.2 e-PDEMI Energy Comparison with SMDE

Figure 4.4 compares the average energy consumption by the memory hierarchy pro-

posed for the e-PDEMI architecture and the memory hierarchy proposed in the SMDE architec-

ture [27]. For fairness of comparison, each of the memory structures proposed in SMDE was

sized to be the same size as their counterparts in e-PDEMI. CACTI 5.3 [52] was used to esti-

mate the energy per access for each structure. Table 4.5 shows the structures from both SMDE

and e-PDEMI and their selected sizes. To compute average energy dissipation over the set of

benchmarks evaluated, the average activity rates for each memory structure were multiplied by

the energy per access as estimated by CACTI.

In Figure 4.4, the SMDE TLB dissipates substantially more energy than the e-PDEMI
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TLB. This is due to the need for the fully associative SMDE TLB to support virtual to physical

address translations for every L0 Cache access. Because of this requirement, the SMDE TLB

has a significantly increased energy consumption. Figure 4.4 also shows that because the VPC

buffer is a direct mapped structure compared to the fully associative Fuzzy Disambiguation

Queue used in SMDE, it dissipates less energy on average. Comparing the VPC with the L0

cache, the VPC dissipates slightly less energy than the L0 cache on average. This effect is due

to the filtering mechanism of the VPC buffer. The VPC buffer prevents some accesses to the

VPC which lowers the VPC’s activity rate and thus it’s average energy dissipation.

The most significant difference between e-PDEMI and SMDE in terms of energy

dissipation comes from e-PDEMI’s L2 Filter Cache. The SMDE L1 cache has the same activity

rate as the L2 Filter Cache, but the L2 Filter Cache dissipates almost 50% less energy per access

than the L1 cache in SMDE because it is much smaller. Finally, e-PDEMI’s L2 cache dissipates

slightly more energy on average than SMDE’s L2 cache due to a slightly increased activity rate.

This effect is attributable to the smaller L2 Filter cache, which has a higher miss rate than the

much larger L1 cache in SMDE. However, the average energy dissipation savings found in the

VPC and L2 Filter are enough to overcome this additional energy consumption, leading to an

overall average energy consumption savings in the e-PDEMI memory hierarchy of almost 44%

with respect to the SMDE memory hierarchy.
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Figure 4.4: e-PDEMI consumes less overall energy than SMDE
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e-PDEMI SMDE
VPC Buffer Fuzzy Disambiguation Queue
64 entry, direct mapped 16 entry fully associative
TLB TLB
64 entry 4-way 64 entry fully associative
VPC L0 Cache
16KB 4-way 16KB 4-way
L2 Filter Cache L1 Cache
4KB 16-way 16KB 4-way
L2 Cache L2 Cache
512KB 16-way 512KB 16-way

Table 4.5: e-PDEMI and SMDE Memory Hierarchies

4.3.3 Area Comparison

Using CACTI, the area required for the SMDE, e-PDEMI and Baseline memory hi-

erarchies is estimated. Because only the memory hierarchies differ between e-PDEMI and the

Baseline architecture, the same architectural parameters for SMDE are assumed, each architec-

ture’s memory hierarchy area cost is shown in Figure 4.5. The VPC and VPC buffer combine

to make up 22% less area than the L1 and LSQ combined from the Baseline architecture. Since

the VPC and L1 cache are the same size, this area savings is attributable to the large size of

the fully associative LSQ with respect to the smaller VPC buffer. Having both an L0 and L1

cache that are the same size causes SMDE to be much bigger in area than either e-PDEMI or

the Baseline architecture. e-PDEMI’s major area savings over the SMDE architecture is the

replacement of the full size L1 cache with the 62% smaller L2 Filter cache. Additionally, the

fully associative Fuzzy Disambiguation Queue requires almost 53% more area than the VPC

buffer. Additionally, e-PDEMI uses slightly less area than the Baseline architecture (about 2%).

4.3.4 Performance Analysis

Figure 4.6 shows the performance of the baseline and e-PDEMI architectures in terms

of uIPC. uIPC is the retiring rate of micro-operations (result of instruction crack). It can be seen

in Figure 4.6 that the e-PDEMI architecture performs at similar levels to the Baseline architec-

ture and in some cases can provide a speedup of up to 6%. Because the e-PDEMI architecture

does not rely on a Load Store Queue for memory disambiguation, it does not experience the
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related stalls that come with those structures.

4.3.4.1 Instruction Replay Impact

While the e-PDEMI architecture can increase replays, the proportion of instructions

that are actually replayed is small on average as shown in Figure 4.7. The soplex benchmark is

a good example of increased replays that do not necessarily slow performance. The e-PDEMI

architecture achieves a speed up of 9% for soplex, although there is an increase of 4 times

as many dynamic instructions executed due to replay with respect to the baseline architecture.

However, the absolute total number of dynamic instructions executed due to replays is only

1.58% for soplex running on the e-PDEMI system.

Another important observation can be seen in Figure 4.8 by looking at the pipeline

stalls due to the Store and Load Queues. Since the e-PDEMI architecture does not have a Load

or Store Queue, it cannot experience the pipeline stalls that the baseline architecture experiences

due to those structures. This behavior is shown in the case of the sjeng benchmark. It can be

seen that 3.5% of the execution time of sjeng on the baseline system is spent on stalls generated

by the instruction window. In contrast, the e-PDEMI system only spends 0.8% of the execution

time on stalls generated by the instruction window.

The additional instruction window stalls in the baseline system are due to the Store-

Sets’ serialization of memory instructions. The baseline system experiences relatively high

stalls while executing sjeng due to replays triggered by the Store Queue. Each time the Store

Queue triggers a replay the StoreSets structures are updated as described in Section 4.1.2. The

ensuing dependency chaining behavior limits the Instruction Window’s ability to freely issue

memory instructions into the out-of-order pipeline creating back pressure from the StoreSets

into the Instruction Window which thusly increases Instructions Window stalls as shown in

Figure 4.8.

Although the baseline can have fewer instructions replayed than the e-PDEMI archi-

tecture, it achieves its low replay frequency by over-serializing memory instructions that may

have triggered replays in the past, but were safe to execute out-of-order going forward. Because

the e-PDEMI architecture uses a simple serialization technique, it only serializes instructions

during periods of low forward progress (less than 200 instructions between replays) and thus

will return to speculatively executing memory instructions out-of-order after a fixed period of
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time. The impact of lessening the instruction window pressure in the e-PDEMI architecture can

provide more opportunity for the processor to extract increased ILP and thus mitigate the effects

of increased replays.
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Figure 4.7: e-PDEMI has less than 3.5% increase in instructions executed as
a result of memory replays

46



0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

Percent of Stall Clock Cycles 

St
al

l C
h

ar
ac

te
ri

za
ti

o
n

 

IW
in

R
ep

la
y

R
O
B

LD
Q

ST
Q

Fi
gu

re
4.

8:
e-

PD
E

M
It

ra
de

s
re

pl
ay

st
al

ls
fo

rs
to

re
qu

eu
e

st
al

ls

47



4.3.4.2 Stalls

Figure 4.8 shows the fraction of execution time spent on system stalls occurring from

various functional units. Branch misprediction stalls are not shown in this figure for simplicity

since they are out of the scope of this work and are not affected by the e-PDEMI architecture

with respect to the Baseline architecture. The remainder of the execution time is spent in active

operation. The e-PDEMI architecture reduces Instruction Window pressure in most cases. This

is partially because both the Baseline and the e-PDEMI architectures stop fetching instructions

during a replay, and since the e-PDEMI architecture uses commit time verification, it puts more

pressure on the Re-order buffer rather than the Instruction Window in the average case. The

e-PDEMI architecture clearly has more stalls due to replays, but on average it has slightly less

stalls in total as seen in the plot, due to avoiding Load Store Queue stalls.

The e-PDEMI architecture reduces total stalls during the execution of dealII with

respect to the baseline architecture by almost 50%. By saving all store queue stalls and some

instruction window stalls, the e-PDEMI architecture is able to tolerate increases in re-order

buffer and replay stalls.

One method of potentially improving the baseline architecture’s performance would

be to increase the instruction window size. However, increasing the instruction window size

is very costly because it would have to be significantly increased, and instruction windows are

typically implemented using fully associative CAMs which would consume substantially more

power. The e-PDEMI architecture in the average case nearly doubles re-order buffer stalls,

but because it does not experience Load Store Queue related stalls, overall stalls are reduced.

While in most cases where the e-PDEMI architecture saves Load Store Queue stalls, it gains

them back in replays. However as shown in Figures 4.3 and 4.6, the e-PDEMI architecture is

able to preserve the performance of the Baseline architecture and save energy.

4.3.5 VPC Performance

Approximately 17.8% of the memory reads result in correctly predicted data from the

VPC buffer. This accounts for significant energy savings by simultaneously preventing read

accesses to the VPC which consume much more energy than VPC buffer accesses while also

correctly predicting the loads’ required data thus also avoiding energy costly replays. Soplex

experiences the highest rate of VPC Buffer correct predictions which translate to less than av-
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Figure 4.9: The majority of speculative accesses hit in the VPC

erage VPC energy consumption. The prediction accuracy of the VPC Buffer is very important

for performance and energy consumption. If the VPC Buffer frequently predicts incorrectly,

then the resulting replays will cause the e-PDEMI architecture’s serialization mechanism to

serialize most memory instructions and performance will be dramatically degraded as seen in

Figure 4.13 and discussed in Section 4.3.7. On average, 0.4% of the accesses to the VPC Buffer

receive incorrect data which then result in replays. 81% of reads miss in the VPC Buffer and

thus access the VPC. 72% of reads result in a VPC hit and 9.4% of reads trigger a miss re-

quest to the L2 filter cache which will return a line of non-speculatively updated data (from the

back-end in-order execution).

4.3.6 Sizing Characteristics

Figure 4.10 shows the effect of increasing the size of the L2 filter cache. Figure 4.10

presents instructions per cycle (IPC), energy per instruction and energy-delay product data nor-

malized to the standard e-PDEMI architecture configuration of a 4KB filter cache. Although

performance does not appreciably change as the L2 Filter Cache size is increased, energy per in-

struction of the overall e-PDEMI architecture does increase. The configuration of the e-PDEMI

architecture evaluated throughout the rest of this work therefore uses an L2 filter cache size of

4KB to reduce the L2 filter cache’s impact on energy without reducing performance.
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Figure 4.11: A small 32 or 64 VPC-Filter is Enough

The VPC buffer has been shown to be a critical component of the e-PDEMI architec-

ture. It simultaneously filters accesses to the VPC for energy savings, and prevents speculative

data pollution in the VPC which can result in severe replay increases degrading performance.

Figure 4.11 shows energy per instruction and IPC as functions of the number of entries in the

VPC buffer. IPC and energy per instruction almost do not change over the range of 8 to 256
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entries, although there is a very small reduction of overall energy per instruction at 64 entries

with little impact to IPC and thus 64 entries was selected as the standard VPC Buffer size.

4.3.7 Additional Characterization
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Figure 4.12: Enabling write allocate policy in VPC has negligible perfor-
mance and energy impact

Figure 4.12 shows the IPC and energy per instruction results of allowing write al-

location in the VPC normalized to the results of not allowing write allocation. The standard

VPC does not allow allocation on write misses. When store instructions are issued to the VPC

at retirement, if the cache line needed by a store is not present in the VPC, the write does not

proceed. This avoids extra accesses to the L2 Filter Cache in order to service write misses from

the VPC while the same store simultaneously executes to the L2 Filter Cache at retirement.

Figure 4.12 shows that by allowing write allocation in the VPC, IPC is on average

99.9% of the IPC when VPC write allocation is disallowed. Applications such as astar, dealII ,

hmmer, omnet and soplex show some IPC improvement along with some energy per instruc-

tion reduction, while other applications such as milc, bzip2, and leslie3d do not because write

allocation in the VPC is speculative and thus can increase the VPC miss rate as well as pollute

the VPC with speculative data that can cause additional misprediction replays. In Figure 4.12,
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energy per instruction is on average 99.5% of the nonwrite-miss allowed VPC policy, so the

VPC is not allowed write allocation resulting in implementation simplicity with no loss of en-

ergy efficiency or performance.
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Figure 4.13: A VPC with VPC buffer displacements enabled degrades per-
formance and increases EPI

Figure 4.13 illustrates that allowing the VPC buffer to displace into the VPC reduces

IPC by 33.4% on average. This is because excessive out-of-order speculative data is polluting

the VPC as opposed to being overwritten as program execution progresses. This effect can be

seen by the increase in replays by 21.2% shown in Figure 4.13. Finally, this increase in replays

results in 24.6% increased energy per instruction for the e-PDEMI architecture. As a result,

e-PDEMI does not allow the VPC Buffer to displace into the VPC.
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Chapter 5

The Multicore e-PDEMI Architecture

5.1 ePDEMI Multi-Core Architecture

The ePDEMI multi-core Architecture builds upon the energy efficient memory spec-

ulation proposed and evaluated in Chapter 4 by supporting the Sequential Consistency memory

model and removing a traditional invalidation-based memory coherence protocol.
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Figure 5.1: Baseline and proposed multi-core architectures

5.1.1 Baseline Multicore Memory Hierarchy

The multicore baseline implementation is composed of multiple instances of the base-

line core discussed in Chapter 4 each with a private L1 and L2 data cache. Shown in Figure 5.1,

each baseline core has a private TLB that is accessed in parallel with the L1 data cache. This

is increases performance supported by configuring the private L1 data caches to be virtually

indexed and physically checked. Each private L2 cache is connected to an interconnection
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network. Each private cache maintains coherence by implementing the Modified, Owned, Ex-

clusive, Shared, or Inavlid (MOESI) [6] memory coherence protocol.

5.1.2 Cache Inclusion

In order for lower level caches to be aware of data present in higher level caches,

the baseline system uses a policy of cache inclusion where a line residing in an L1 data cache

must also reside in the L2 and L3 caches below it. A cache line placed in the L2 or L3 data

cache by one processor, may be evicted due to the request of a conflicting cache line by another

processor. Figure 5.2 illustrates this potential scenario. In step 1, Processor 1 issues a read of

address A to its private L1 data cache, since this is a cold request, this triggers ensuing read

requests to Processor 1’s private L2 cache and the shared L3 cache in steps 2 and 3. Steps 4,

5, and 6 show the requested cache line being stored in the shared L3 cache, and Processor 1’s

private L2 and L1 caches.

Starting in the lower right corner of Figure 5.2 Processor 2 issues a read request for

Address B in step 7. Again, this is a cold request for Address B and steps 8 and 9 show the

ensuing read requests to higher cache levels. At step 10, the shared L3 cache determines that

there is a line conflict between Address A and Address B. Address A must be evicted. Step

11 shows that the shared L3 cache evicts Address A and replaces it with Address B. However,

because Address A no longer resides in the shared L3 cache, the cache inclusion policy prevents

it from residing in any higher levels of the cache hierarchy. Thus, step 12a shows the shared L3

cache sending an invalidate message for the cache line corresponding to Address A (which also

corresponds to the newly cached Address B) to Processor 1’s private L2 cache. Cache inclusion

again requires that if a line is invalidated in the private L2 cache, it must also be invalidated in

the private L1 cache above it. Step 13a shows the final invalidation message sent from Processor

1’s private L2 cache to its private L1 data cache. Simultaneously, steps 12b and 13b show Addr

B being cached in Processor 2’s private L2 and L1 caches.

5.1.3 MOESI Memory Coherence

As seen in Figure 5.1, each core of the baseline architecture has private L1 and L2

data caches. In order for data to be kept coherent between private data caches, a coherence

protocol is required. Without such a protocol, data stored in private caches can become stale.
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Figure 5.3 shows a case where private caches could become incoherence without a coherence

mechanism in place.

Step 1 of Figure 5.3 shows Processor 1 issuing a cold read operation for Address A.

Steps 2, 3, and 4 show the ensuing read requests issued to each next lower cache level until the

shared L3 cache requests Address A’s data from main memory. Address A’s value is found to

be 5, and a 5 value is written back to each of the requesting caches in steps 5 and 6. Sometime

later, Processor 2 issues a write request at Address A with value 7 to its L1 data cache in step

7. Later in steps 8 and 9 the value 7 propagates to Processor 2’s private L2 cache and the

shared L3 cache. At this point, Processor 2’s complete memory hierarchy contains a different

value at Address A than Processor 1’s private L1 and L2 caches. Inclusion does not prevent

this problem from occuring because all operations in this example were performed to the same

memory address. Later in time if Processor 1 were to issue a read request for Address A to its

L1 data cache, its L1 data cache would hit and return the value 5. Processor 1’s L1 and L2 data

caches have no way of knowing that data they are caching has been modified in a higher level

cache, or other private caches on the system. The MOESI coherence protocol and memory

interconnect included in the baseline architecture are the mechanisms that provide caches on

the system with this information. Figure 5.4 shows the same scenario again, this time corrected

using the MOESI protocol.

As in Figure 5.3, steps 1 through 3 occur in the same way in Figure 5.4. Steps 4,

5, and 6 occur similarly to their counter parts in Figure 5.3 with the addition that each cached

line is appended with state information. Because steps 1 through 3 are cold read requests, the

resulting cache lines in the shared L3 cache, and Processor 1’s L1 and L2 caches are marked

as being in the “Exclusive” state of the MOESI protocol. Step 7 initiates the write operation

from Processor 2 to Address A. Due to inclusion, that write operation must be also carried out

in Processor 2’s L2 cache (shown in step 8) and the shared L3 cache (shown in step 9). The

difference in Figure 5.4’s steps 7, 8, and 9 is that each of the resulting cache lines is marked

in the “Modified” state from the MOESI protocol. Further, because of cache inclusion, the

shared L3 cache would be aware that Processor 1’s private L2 cache is storing now stale data

at Address A and per the implemented coherence protocol it must issue an invalidation of those

cached lines. Step 10 shows the invalidation of Processor 1’s private L2 cache, and similarly due

to inclusion, Processor 1’s private L2 cache would be aware that Processor 1’s private L1 data
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cache is also caching stale data at Address A and would send an invalidation message for that

cache line (shown in step 11). By the end of step 11, it is clear that if Processor 1 were to initiate

a read of Address A, its L1 and L2 caches would miss and receive the updated Modified data

from the shared L3 cache thus preventing the incoherence problem discussed above and shown

in Figure 5.3. Once such a read request took place, all of the cache line copies corresponding

to Address A on the system would be marked “Shared”, and Processor 2’s copy would change

state to Owned.

As discussed previously, the multicore baseline system in this work uses the MOESI [6]

protocol for memory coherence. The states for an MOESI protocol are:

• Invalid: A cache line in the invalid state does not hold a valid copy of the data. Valid

copies of the data can be either in main memory or another processor cache.

• Exclusive: A cache line in the exclusive state holds the most recent, correct copy of the

data. The copy in main memory is also the most recent, correct copy of the data. No other

processor holds a copy of the data.

• Shared: A cache line in the shared state holds the most recent, correct copy of the data.

Other processors in the system may hold copies of the data in the shared state, as well. If

no other processor holds it in the owned state, then the copy in main memory is also the

most recent.

• Modified: A cache line in the modified state holds the most recent, correct copy of the

data. The copy in main memory is stale (incorrect), and no other processor holds a copy.

• Owned: A cache line in the owned state holds the most recent, correct copy of the data.

The owned state is similar to the shared state in that other processors can hold a copy of

the most recent, correct data. Unlike the shared state, however, the copy in main memory

can be stale (incorrect). Only one processor can hold the data in the owned state all other

processors must hold the data in the shared state.

Figure 5.5 shows the valid state transitions for the baseline architecture’s coherence protocol. A

key differentiator of the MOESI protocol compared to other coherence protocols such as MEI,

MSI, or MESI is the presence of the “Owned” state representing data that is both owned and

shared. This delays the need to write back modified data to main memory. Eventually such
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modified data will be written back to main memory on an eviction, but can reside in a cache

coherent memory hierachy indefinitely until that event.
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Figure 5.5: The MOESI protocol state transitions

The MOESI coherence protocol that the baseline system uses requires messages fa-

cilitating coherent cache line state changes to be sent between cache structures. This message

passing is supported by a memory interconnection network. Many such networks have been pro-

posed such as Intel’s Quick Path Interconnect [43] and AMD’s HyperTransport [4]. Although

the energy consumption of such an interconnect is not considered in this work, the baseline

architecture’s total energy consumption will be increased due to its reliance on a coherence

interconnection network. Further, as core densities increase, these networks are challenged to
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scale their bandwidths accordingly. Depending on the protocols implemented on the network,

the available bandwidth can become insufficient. Additionally, the energy consumption of in-

creasingly scaled networks can become significant. Many works investigating the tradeoffs of

network topologies are motivated by these scaling challenges [14,23,53,54,63]. There has also

been significant work investigating the acceleration or simplification of interconnect verification

due to its complexity [22, 31, 68, 69]. In Section 5.3.1 it can be seen that including a coherence

protocol and the required interconnect in the baseline architecture is crucial to support the base-

line’s high performance. However, the e-PDEMI multi-core architecture and memory hierarchy

are able to tolerate its removal while sustaining the same high performance as the baseline ar-

chitecture while avoiding the additional complexity and energy consumption that including a

coherence mechanism would require.

5.1.4 e-PDEMI Multicore Memory Hierarchy

As discussed in Chapter 4, the ePDEMI architecture’s speculative design allows it to

tolerate extended latency in its memory hierarchy. The multi-core e-PDEMI architecture relies

on that memory latency tolerance to support reduced coherence complexity. As also introduced

in Chapter 4, the e-PDEMI architecture verifies speculatively executed memory operations at

the out-of-order processor’s retirement stage which is performed in-order. Because of this in-

order issuance of memory operation to the multi-core e-PDEMI memory hierarchy, and details

discussed below in Section 5.1.5, the multi-core e-PDEMI architecture also provides the Se-

quential Consistency Memory Model.

5.1.4.1 Off The Critical Path

Because access to the main memory hierarchy is off the critical path, the e-PDEMI

architecture is able to tolerate longer memory latencies. As a result, from Figure 5.1 it can be

seen that the e-PDEMI memory hierarchy is composed of a set of private TLBs accessed by

each e-PDEMI core, which will access a single shared banked L2 Filter Cache, which can ac-

cess a larger shared banked L2 cache before the last level shared L3 cache. Since there are no

private data caches in the multi-core e-PDEMI system, any given cache line will only reside in

each structure in exactly one location. As a result, data on the e-PDEMI system cannot become

incoherent even in a multiple-reader/multiple-writer scenario. A coherence protocol, coherence
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support structures, and coherence interconnect are therefore not included in the multi-core e-

PDEMI architecture. Finally, because of the multi-core e-PDEMI shared cache hierarchy and

the in-order commit of stores from e-PDEMI cores discussed above, stores become globally

visible in program order. Therefore, the multi-core e-PDEMI architecture meets the first re-

quirement for Sequential Consistency set forth by Lamport [45], that memory operations from

a given processor be issued to the memory hierarchy in program order.

Figure 5.6 shows the multi-core e-PDEMI architecture memory hierarchy providing

memory coherence in the scenario shown in Figure 5.3 where the baseline architecture memory

hiearchy became incoherent without the use of a coherence protocol and interconnect mecha-

nism. In steps 1 through 3, Processor 1 makes a cold read request for address A to the shared

banked L2 Filter Cache which results in cold read requests to the shared banked L2 Cache and

shared L3 Cache. In steps 4, 5, and 6 the cache line containing the data (equal to 5 at that time)

at address A is returned to each of the requesting caches. Sometime later in step 7, Processor

2 initiates a write operation to address A with value 7 to the shared banked L2 Filter Cache.

Because the L2 Filter Cache banks are address indexed, there is only one bank that address

A may reside and thus the old value 5 is overwritten with the new value 7. Steps 8 through

12 carry out the update later in time of the higher level caches. The most important aspect of

this operation to note, is that after step 8, if Processor 1 were to initiate a new read request for

address A, it would read the correctly updated value 7. Thus, the e-PDEMI memory hierarchy

is always coherent without needing a coherence protocol or interconnect.

5.1.5 Sequential Consistency on e-PDEMI

As described above, the e-PDEMI architecture supports sequential consistency. At

verification, the ROB issues instructions in program order to the memory hierarchy for verifi-

cation. This meets Lamport’s first requirement that all memory operations on a given processor

be issued to the memory hierarchy in program order. Every cycle a memory operation can go to

one of the address mapped L2 Filter cache banks, each of which is non-blocking and has a Miss

Information Status Holding Register(MSHR) [42]. If a memory operation misses, it will pin

down the corresponding cache line in the MSHR. Subsequent memory operations to the same

address will also get pinned down in the same bank’s MSHR, until the original store miss re-

quest is serviced. Once the original memory operation miss is resolved, all outstanding requests
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for that line are fullfilled in the order in which they were received by the L2 Filter cache bank.

This MSHR mechanism meets Lamport’s [45] second requirement for Sequential Consisitency,

that memory elements only process requests to the same datum in the order in which they were

received.

5.1.6 Two Phase Commit Protocol

In order to support increased memory instruction retirement throughput, ePDEMI

introduces a two phase commit protocol similar to the two phase commit protocol used in

databases. Each cycle the ROB can send a memory verification request. If the request misses

in the corresponding cache bank, it is held in the bank’s MSHR, like any other request, until

the earliest outstanding miss to the required cache line is serviced. Once a memory request is

either a hit, or has its miss resolved, the MSHR sends a commit signal to the ROB which will

then retire outstanding memory instructions in program order. Since the MSHR services all

outstanding memory requests to the same line in the order in which they were received, and

because memory verification requests are sent by the ROB in program order, the MSHR im-

plicitly maintains the global visibility of stores in program order thus meeting the definition of

sequential consistency.

Figure 5.7 shows an example of the two phase commit protocol that occurs between

the Reorder Buffer (ROB) of each processor and the shared cache hierarchy in the multi-core

e-PDEMI architecture. Note, that for simplicity the shared L2 cache and shared L3 cache are

not shown although Figure 5.7 assumes that L2 Filter Cache misses are serviced by those lower

cache levels. It can be seen in Figure 5.7 that each processor’s ROB has a commit pointer and a

head pointer. The head pointer points to the operation in the ROB to be retired and the commit

pointer points to the last operation in the ROB that has been retired. It is important to note that

the ROB can, and in practice will, contain any instruction type and is only restricted to memory

operations in Figure 5.7 for simplicity of explanation. In time step 1, both processors’ ROBs

initiate the first phase of e-PDEMI’s two phase protocol by issuing the operations pointed to by

each ROB’s head pointer to the shared cache hierarchy. For simplicity of explanation, Figure 5.7

assumes each request in time step 1 maps to a different bank of the L2 Filter Cache structure

and thus the requests are processed in parallel. If both requests mapped to the same L2 Filter

Cache bank, then the Bank arbitration logic will serialize these requests deterministically. This
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arbitration behavior is included in the simulations presented in this work. At the end of time

step 1, each processor’s ROB moves its head pointer up one entry. The ROB’s primary function

is to retire instructions in-order and it is assumed that the head pointer moves through buffered

instruction in program order.

In time step 2, both processor’s ROBs again issue their respective memory requests

pointed to by their head pointers. In time step 3, both processor’s ROBs again issue the memory

operations pointed to by their head pointers. Additionally during time step 3, The L2 Filter

Cache banks corresponding to the requests issued during time step 1 send back the second phase

of the e-PDEMI two phase commit protocol by confirming the two requests as correct. Recall

that the purpose of the in-order retire-time verification of memory instructions is to compare

the speculatively consumed values of each memory instruction to the guaranteeed correct data

stored in the e-PDEMI memory hierarchy, thus the second phase of the two phase commit

protocol is crucial. In this case the requests were verified as correct. If either of them had been

found incorrectly speculated, a replay would have been triggerd in the issuing ROB.

Since both processor’s ROB’s received a confirmation signal on their first requests,

they advance their commit pointers by one entry, indicating that each of their respective first

entries has now been retired. In time step 4, Processor 1’s ROB receives a replay signal from

the L2 Filter Cache for the Load from address D that it issued during time step 2. This signal

indicates that the Load from address D consumed incorrect speculative data during out-of-order

execution. Since the L2 Filter Cache provides correct data to the Load from address D, that

instruction is allowed to retire and processor 1’s ROB initiates a replay from the next instruction

proceeding that Load. Thus processor 1’s ROB is flash cleared of the instructions between that

load and the current position of its head pointer by moving the commit pointer to the entry after

the Load from address D, and moving the head pointer to be at the same entry as the commit

pointer.

Processor 2’s ROB receives a bulk phase two confirmation from the L2 Filter cache

during time step 4. Bulk confirmations are allowed in the e-PDEMI two phase commit protocol.

They are handled sequentially by the ROB. This means that the ROB will only move its commit

pointer past the earliest confirmed memory operation. Because in time step 4 both the Load

from address X and the Load from address L are confirmed to processor 2’s ROB, its commit

pointer can be moved to the instruction after the Load from address L. If the L2 Filter Cache had
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instead only confirmed the Load from address L, the commit pointer would not be permitted

to advance, because the earlier Load from address X had not been confirmed. This mechanism

enforces the in-order retirement of instructions from the ROB. Finally, although not shown in

the example depicted in Figure 5.7, Store instructions are assumed by the processors’ ROBs to

be silently confirmed since they do not require verification as in the case of Load instructions.
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Figure 5.7: The e-PDEMI two-phase commit protocol for memory operation retire-
ment

The e-PDEMI architecture is designed to perform memory speculation in the context

of energy consumption as the primary design parameter, while also maintaining the high per-

formance of a super-scalar out-of-order processor. The multi-core e-PDEMI architecture and
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TBS Periodic Sampler Parameter Value

nInstSkip Tuned for each benchmark
nInstSkipThreads 0
nSampleMax 480M To allow for completion
nInstRabbit 2.53M
nInstWarmup 2.4M
nInstDetail 20K
nInstTiming 50K

Table 5.1: TBS Periodic Mode Sampler Parameter Values

memory hierarchy extend these benefits further by simplifying the complexity and energy cost

typically associated with neccessary coherence protocols and mechanisms. As shown in the

evaluation presented next in this chapter, while the e-PDEMI architecture can sustain the same

high performance as the baseline without using a coherence protocol with private caches, adding

a coherence protocol with private caches does not substantially improve the performance of the

e-PDEMI system. In contrast, the baseline system cannot maintain its performance without the

use of private caches and a coherence protocol over an interconnect. The baseline system cannot

tolerate the additional latency associated with a shared cache hierarchy. Finally, the e-PDEMI

architecture simplifies the programming model for programmers by supporting Sequential Con-

sistency commonly accepted as the most intuitive memory consistency model.

5.2 Experimental Setup

The evaluation of the multi-core e-PDEMI system used a simulation setup similar to

the infrastructure described in Chapter 4 execept that instead of a TASS-like [38] simulator, it

instead used an extended multi-core version known as TBS [39]. TBS also modifies SESC [55]

and uses a modified version of McPAT [47] for power estimation. The TBS sampler mode that

was selected was the Periodic Sampler Mode. Table 5.1 shows the Periodic Sampler Mode

parameters used for multi-core evaluation of the e-PDEMI architecture.

Table 5.2 lists the parameters used to simulate each core of the baseline architecture,

and Table 5.3 lists the parameters used to simulate each core of the proposed architecture. All

simulated multi-threaded benchmarks shown in Table 5.4 were run to completion, because us-

ing dynamic instruction based performance metrics such as Instructions per Cycle can often be
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Baseline Architecture

Issue Width 4 Instructions
Re-order Buffer 256 Instructions
Load Queue 48 Loads
Store Queue 32 Stores
Branch Predictor OGEHL
BTB 4K entries - 4-way
Integer ALUs 4 units
Floating Point ALUs 4 units
L1 TLB 64 entries / Fully Assoc. / 1 cycle
L1 Data Cache 16KB / 4-way / 4 cycles

Private, per-core
L2 Cache 512KB / 16-way / 7 cycles

Private, per-core
L3 Cache 8MB / 32-way / 14 cycles

4 Banks

Table 5.2: Baseline architectural parameters

misleading for multi-threaded workloads due to dynamic generation of thread synchronization

instructions such as locks. By simulating each benchmark to completion, performance is mea-

sured directly by comparing the execution time of each benchmark on the baseline architecture

with the execution time of each benchmark on the e-PDEMI architecture.

5.3 Evaluation

Figure 5.8 shows the performance of the multi-core Baseline and e-PDEMI archi-

tectures in terms of benchmark completion times. Completion times are presented instead of

IPC as noted in the previous section. Looking at Figure 5.8, the e-PDEMI architecture per-

formance is essentially equivalent to the Baseline architecture, with a worst-case slowdown

in ocean of 8%. In some cases greater speed ups can be achieved, the greatest of which is

canneal at 14%. canneal benefits from e-PDEMI’s efficient handling of memory ordering in-

structions(membarrier, memfence, etc.). In the Baseline architecture, when a memory barrier,

or memory fence instruction is encountered, the pipeline must be stalled, so that the ROB can be

drained and all previously inflight instructions must be retired, before execution can continue.

This mechanism is needed to guarantee that all store instructions prior to the memory barrier or
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e-PDEMI Architecture

Issue Width 4 Instructions
Re-order Buffer 256 Instructions
Branch Predictor OGEHL
BTB 4K entries - 4-way
Integer ALUs 4 units
Floating Point ALUs 4 units
L1 TLB 64 entries / Fully Assoc. / 1 cycle
VPC Cache 16KB / 4-way / 4 cycles
VPC Buffer 64 entries
Mem Spec Buffer 48 Load entries, 32 Store entries
Filter Cache 4KB / 16-way /6 cycles

Shared, Banked as many as cores
L2 Cache 512KB / 16-way / 7 cycles

Shared, Banked as many as cores
L3 Cache 8MB / 32-way / 14 cycles

4 banks

Table 5.3: Proposed e-PDEMI architectural parameters

Suite Benchmark

PARSEC blackscholes, bodytrack, canneal, x264
(simlarge input set) fluidanimate, swaptions, facesim
SPLASH fft, fmm, ocean, radix

Table 5.4: Simulated PARSEC and SPLASH Benchmarks

fence are globally visible to all instructions executing after the memory barrier or fence.

In the e-PDEMI architecture, when a memory barrier or memory fence instruction is

encountered, e-PDEMI is not required to stall the pipeline to drain the ROB. The in-order com-

mit of memory instructions to a shared memory hierarchy instead of private memory hierarchy

guarantees that each Store instruction will be globally visible to any proceeding Load instruc-

tion at any point in time. This is the same mechanism that provides Sequential Consistency on

the e-PDEMI architecture.

5.3.1 Private Cache Coherence Impact

Figure 5.9 shows that the Baseline architecture performance is particularly sensitive

to the memory hierarchy configuration. Figure 5.9 explores the performance impact on both
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Figure 5.8: Multi-core e-PDEMI has the same performance as the baseline
architecture
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Figure 5.9: Private Cache Coherence doesn’t improve e-PDEMI, but is critical for the
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architectures of having a shared memory hierarchy with no invalidation-based coherence as in

the proposed e-PDEMI architecture, and having a private memory hierarchy with invalidation-

based coherence as in the Baseline architecture. It can be seen that e-PDEMI appears mostly

insensitive to this configuration choice, but the Baseline architecture performance suffers by

over 20% without a private cache hierarchy with invalidation based coherence. The baseline

architecture suffers because e-PDEMI’s memory hierarchy accesses are off the critical path

and therefore not sensitive to the additional contention latency inherent in a shared memory

hierarchy. However, all of the Baseline architecture’s memory hierarchy accesses are on the

execution critical path and thus the additional latency of a shared memory hierarchy is not well

tolerated.

5.3.2 Instruction Replay Impact

While the e-PDEMI architecture does increase replays, the proportion of instructions

that are actually replayed is small on average, as shown in Figure 4.7 and Figure 5.10. Because

the e-PDEMI architecture does not use StoreSets, it is more likely to trigger replays (due to

misprediction) than the Baseline architecture. The e-PDEMI architecture increases the fraction

of instructions replayed on average by 3.33% in the single-core implementation and 1.9% in

the multi-core implementation. As shown in Figure 4.8, this increase in replays is mitigated

by the e-PDEMI architecture experiencing slightly fewer stalls on average than the Baseline

architecture. The e-PDEMI architecture experiences slightly fewer stalls because it does not

experience Load Store Queue stalls, does not use StoreSets, and stops fetching new instructions

in the event of a replay.

It is also important to note that, as was seen in Figure 4.3, the e-PDEMI architecture

is able to recover any additional energy consumption it experiences due to increased replays by

saving the additional energy per instruction associated with the Load Store Queue and StoreSets.

Finally, Figure 5.8 shows that additional replays in the multi-core e-PDEMI architecture do

not significantly impact its performance. In the case of ocean, an additional 6.3% dynamic

instructions are executed due to replays, which only degrades performance by 8% in the worst

case.

Figure 5.10 corresponds with Figure 4.7 showing that in the multi-core case e-PDEMI

does not create significantly more dynamic instructions due to replay. On the multicore e-
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Figure 5.10: e-PDEMI has less than 2% for multi-core configurations in-
crease in instructions executed on average as a result of memory replays

PDEMI architecture, there are three possible causes of replay. The first and most prevalent

is the same as on the single-core e-PDEMI implementation, where local mispredictions in the

VPC Buffer or VPC cause a load to consume incorrect speculative data. The other two replay

types can occur due to the timing of remote data sharing. If a load on core 0 needs to consume

the data stored by a store on core 1, because there is no communication or coherence between

cores’ VPCs, the load will only be able to consume the data once the Store has retired and

committed its data to the shared memory hierarchy. The data the load requires at execution

time could be in a remote VPC Buffer or VPC. Additionally, it is possible that the load could

consume stale data from its own VPC that was written by a previous local store. These cases

were specifically tracked and found to be rare.

In order to be sure there was no malfunction or oversight in the performed simulations,

a a micro-benchmark was created (shown as “heavyshare” in Figure 5.10) to attempt to force

this behavior by having threads simply increment the same counter in tight loop, requiring each

thread to read the value of the counter and then write a new value. It was found that when

executing this benchmark, replays due to data being present in a remote VPC Buffer or VPC
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account for 17.5% of total replays for a 4 threaded simulation as shown in Figure 5.10, and up

to 23% of total replays for an 8 threaded simulation. For the rest of the simulated PARSEC

benchmarks, we see that although local replays increase moderately, remote triggered replays

do not become a substantial contributor. Because e-PDEMI supports sequential consistency and

uses a shared memory hierarchy across cores, store data becomes globally visible in program

order. As such, either a load will hit in its local VPC (either consuming the correct data or

triggering a replay), or a load will miss in its local VPC and the data it consumes from the

memory hierarchy will be sequentially updated data.
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Figure 5.11: Quad-core e-PDEMI has 10% Average Energy Savings

Figure 5.11 illustrates total energy consumption for each multicore benchmark run-

ning on both the multi-core baseline architecture and proposed multi-core e-PDEMI architec-

ture as described in Section 5.1. The most important insight Figure 5.11 provides is that the

e-PDEMI architecture reduces total energy consumption across all benchmarks. The average
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energy per instruction reduction is 10% in the multicore case. The “Rest” of the core energy

consumption is equivalent between the Baseline and e-PDEMI systems due to the stall trading

behavior discussed in Chapter 4 and shown in Figure 4.8. As in the single-core case, this may

seem counter intuitive because memory instructions must be verified, but also as in the single

core case, verification does not impact register file nor re-order buffer energy consumption with

respect to the baseline. The relatively small memory speculation buffer is again relied upon to

store the additional data required by the memory operation verification process. This avoids

increasing pressure and activity rates for the re-order buffer or register file which could increase

energy consumption.

Because the multi-core e-PDEMI system generates a very small overhead of addi-

tional dynamic instructions executed due to replays as shown in Figure 5.10, the additional

energy cost to the structures such as the re-order buffer and rename logic is small.

The multi-core e-PDEMI architecture again re-balances memory hierarchy structures

to avoid increasing energy consumption. With memory hierarchy accesses off the critical path,

the multi-core e-PDEMI architecture is able to tolerate the longer latencies associated with a

unified shared cache hierachy as shown in Figure 5.1. As in the single core case, the addition

of the L2 Filter cache avoids potentially energy costly accesses to the L2 cache during memory

operation verification. To contend with contention from multiple cores in the multi-core e-

PDEMI architecture, the L2 Filter cache becomes a banked structure, matching the number of

banks to the number of cores as shown in Table 5.3

The baseline architecture was also simulated with an L2 Filter cache to evaluate its

sensitivity to such a design choice. There was no appreciable performance impact, but a small

increase in energy consumption. An L2 Filter cache is therefore not included in the Baseline

architecture. In the e-PDEMI architecture, many of the L2 Filter accesses are memory ver-

ification requests which are off the critical path. Therefore, e-PDEMI is able to tolerate the

additional potential latency associated with adding a new structure into the memory hierarchy.

The VPC Buffer and VPC collectively have a high hit rate which, although does not guaran-

tee that correct data is consumed by load instructions, does prevent accesses to the Filter L2

cache. In a multicore implementation, the Baseline architecture is required to maintain coher-

ence between private L2 Filter caches whereas, because e-PDEMI uses a multi-banked shared

L2 Filter cache, no coherence accesses are required. The drawback to making each structure in
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the memory hierarchy a multi-banked shared structure across the e-PDEMI cores is that the to-

tal leakage energy is increased, which accounts for the larger proportion of “MemHier” energy

consumption shown in Figure 5.11.

Neither the baseline nor e-PDEMI architectures experience any significant energy

per instruction in the L2 or L3 caches (labeled “MemHier”) in the single core case shown in

Figure 4.3.

As in the single-core case, the multi-core e-PDEMI system benefits from the VPC

being more energy efficient than the L1 cache with the same size and organization. Additionally,

the same VPC optimizations discussed in Chapter 4 contribute to reducing the multi-core e-

PDEMI system’s total energy consumption such as using the VPC buffer to reduce main VPC

access rates, not allowing write allocations, and not displacing speculative data from the VPC

buffer to the VPC.
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Chapter 6

Conclusions

Memory speculation in modern out-of-order processors is vital to their high perfor-

mance. Because of ordering requirements between memory instructions, many energy consum-

ing structures have been proposed to avoid those hazards. The most common of these are the

fully associative Load and Store Queues. In addition to consuming significant energy, their fully

associative natures also make these structures difficult to scale.

The introduction of multi-core processors, with their need for coherent shared mem-

ory, has motivated many protocols and mechanisms to facilitate the management of coherent

shared and private memory structures. That management is often carried out over an intercon-

nection network.

In addition to the complexity of coherence protocols and networks, multi-core pro-

grammers must be accutely aware of the memory consistency models that their target archi-

tectures support. Commonly, programmers must use explicit program semantics in order to

guarantee the ordering of their programs’ memory operations. As core densities increase, the

probability for heavily threaded programs to experience transient bugs that can sometimes man-

ifest and sometimes not manifest becomes greater and the programmer is left with a choice be-

tween repeatable deterministic program execution or high-performance program execution with

potentially non-deterministic results due to multi-core memory data races.

The e-PDEMI architecture has been designed as a novel approach to out-of-order

memory speculation with energy consumption as the first design constraint. It simplifies out-

of-order processors’ memory sub-system implementation and delivers straight-forward mem-

ory disambiguation. Supporting energy efficiency, e-PDEMI focusses on simple, reduced-
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complexity mechanisms to support its ability to execute memory operations in a high-performance

out-of-order Super Scalar processor.

e-PDEMI consists of a Virtual Predictive Cache and filter caches with low complexity.

The Load Store Queue and StoreSets are removed in favor of a decoupled memory speculation

mechanism with in-order commit and verification. e-PDEMI reduces overall processor energy

by 16.4% on average with no average performance impact and up to a 14% speedup in multi-

core applications with frequent memory fences or barriers.

In-order verification, novel two-phase commit, and an address mapped cache hierar-

chy make stores appear globally in program order, supporting Sequential Memory Consistency.

This work simplifies the implementation of an out-of-order processor’s memory sub-system

and provides straight forward memory disambiguation, removes the coherence protocol and

interconnect, and supports Sequential Consistency.

Simulation using the SPEC2006 and PARSEC benchmark suites demonstrates that

the e-PDEMI architecture provides equivalent performance to a state of the art out-of-order

processor and saves energy.
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Chapter 7

Future Work

7.1 ePDEMI for High Core Denisities

This work shows that ePDEMI supports sequential consistency and does not require

a coherence mechanism while maintaining the performance of the baseline architecture. The

presented performance evaluations appear to scale over one, four, and eight cores. Additionally,

ePDEMI’s sequential memory consistency model and non-reliance on a coherence protocol

are not impacted by the number of cores and therefore pose no scaling challenges to ePDEMI.

However, ePDEMI’s evaluated energy benefits appear to not to scale as well as the other metrics

measured in this work.

Figure 5.11 in Section 5.3.2 shows that the energy benefits of ePDEMI begin to di-

minish as the number of cores increases. This effect is attributable to the total dynamic and

leakage energy for the L2 and L3 caches which begin to dominate the total processor energy

consumption as core counts incease. As a result, although ePDEMI continues to achieve signif-

icant power savings in the VPC and related structures with respect to the baseline processor’s

LSQ and related structures, the energy consumption that those structures account for on both

ePDEMI and the baseline processor becomes a smaller fraction of the total processor energy

dissipation due to the leakage power of the memory hierarchy. This trend is intuitive because

as the number of cores increases on both architectures, the size of the L2 and L3 cache struc-

tures also increases, ultimately increasing the leakage energy of those larger memory structures.

On the ePDEMI architecture, this is due to each shared memory structure’s number of banks

linearly scaling with the number of cores. On the baseline architecture, this trend comes from
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the addition of private L2 caches and the scaling up of the shared L3 cache as core count is

increased. In both cases, the amount of total cache area increases with the number of cores and

thus the total leakage power for the cache hierarchy increases as well. Because the memory

speculation structures’ energy consumption becomes a small fraction of total processor energy

consumption as core counts increase, this suggests that the ePDEMI design may need to be

extended to maintain the energy benefits shown in this work at higher core counts on a single

multiprocessor die.

7.1.1 Cache Area Management

A potential area of investigation would be to evaluate the effect of not linearly scal-

ing the number of banks for each structure in ePDEMI’s shared cache hierarchy linearly with

the number of cores. If this technique were to not significantly degrade performance, ePDEMI

might be able to continue to scale its existing energy benefits effectively to higher core counts,

and achieve greater energy benefits than shown in this work. This potential energy reduction

opportunity is due to ePDEMI’s shifting of memory hierarchy accesses off the critical path and

the resultant memory access latency tolerance. Intuitively, the effect of not scaling the number

of banks in ePDEMI’s shared memory hierarchy with the number of cores in a multiprocessor

ePDEMI system would be to increase contention for those banks amongst the cores. As the

number of cores increased, so too would bank contention. The increased bank contention could

lead to cores experiencing increased latency on each of their accesses to the memory hierarchy.

However, because ePDEMI uses the two phase commit protocol described in Section 5.1.6,

the ePDEMI retirement phase for memory instructions can tolerate increased latency and such

a configuration might be able to maintain equivalent performance while not suffering the in-

creased leakage energy consumption due to the additional banks scaling linearly with ePDEMI

core counts. Such a study would need to examine the various bank provisioning options for

ePDEMI multiprocessor systems of core count going beyond the eight core configuration shown

in this work. Options for bank provisioning could include simple provisioning schemes such as

having fixed ratios of core to banks i.e. 2:1, 3:1, etc. where several ratios could be evaluated.

Additionally, such a multiprocessor ePDEMI system could provide an equal number

of banks to cores, but keep many of the banks in an “off” state until some criterion were met,

stimulating the activation of additional banks under some circumstances but not all. Such an
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evaluation would need to consider several different activation criteria, and perhaps different

methodologies of detecting those criteria.

Another related study could be the evaluation of allowing cores to have priority access

to certain banks. If less banks than cores were provided, leading to increased bank contention as

suggested above, one possible solution could be to give certain cores priority access to certain

banks to maintain high performance. Several priority algorithms could be devised and evalu-

ated, and potentially could compliment the bank partitioning schemes discussed above to not

only maintain performance but also achieve higher energy savings for ePDEMI than shown in

this work.

Each of the proposed evaluations above would not be complete without a similar in-

vestigation of the proposed techniques in the baseline multiprocessor architecture. Intuitively

the baseline architecture cannot tolerate additional latency in its memory hierarchy because its

memory hierarchy is on the critical path. However this assertion must be confirmed by com-

pleting the necessary evaluation. In the case of the baseline multiprocessor architecture, each

core has a private L1 and L2 data cache and the shared L3 data cache size is scaled with the

number of cores. This work has shown already that the baseline architecture cannot tolerate a

fully shared memory hierarchy amongst cores. However, evaluating whether the baseline archi-

tecture could equivalently tolerate a smaller cache area, as proposed for ePDEMI above, would

involve grouping cores to share particular private L1 and L2 data caches. Many permutations

could be studied. For example, every core could have a private L1 data cache, but L1 caches

could share L2 caches in pairs, or every two cores could share one L1 data cache, and so on.

The completion of this study could provide insights into possible techniques to scale the bene-

fits of the ePDEMI architecture to core counts greater than eight and possibly show that given

a well-performing cache size configuration, ePDEMI could potentially increase its reduction of

energy consumption more than shown in this work if the baseline processor could not tolerate a

similar cache size configuration.

7.1.2 ePDEMI Clustering

ePDEMI might employ a clustering configuration to enable scaling of the energy

benefits discussed in this work. Figure 7.1 shows such a clustered ePDEMI architecture. In this

configuration, several ePDEMI cores are grouped together and share a memory hierarchy as
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described in Section 5.1.4. However, as shown in Figure 7.1, several of these ePDEMI clusters

could be combined to form a much larger ePDEMI CMP consisting of total core counts beyond

sixteen. Significant investigation would be required to evaluate such a scaling technique.

Core n

TLB(0)
TLB(1)
TLB(2)
TLB(n)

L2
Filter

nBanks

L2
Cache

nBanks

Core 0

ePDEMI

Core n

TLB(0)
TLB(1)
TLB(2)
TLB(n)

L2
Filter

nBanks

L2
Cache

nBanks

Core 0

ePDEMI

Core n

TLB(0)
TLB(1)
TLB(2)
TLB(n)

L2
Filter

nBanks

L2
Cache

nBanks

Core 0

ePDEMI

Core n

TLB(0)
TLB(1)
TLB(2)
TLB(n)

L2
Filter

nBanks

L2
Cache

nBanks

Core 0

ePDEMI

L3 Cache
mBanks

Cluster 0

Cluster 1 Cluster 2

Cluster m

n = num cores
m = num clusters

Figure 7.1: ePDEMI Clustered Architecture

One potential area of study could be an analysis of the tradeoffs between enabling a

hierarchical address mapped shared memory hierarchy between clusters and a high level cache

coherence protocol between clusters. Such systems are closely related to systems referred to

as a Distributed Shared Memory System [50]. In the case of a hierarchical address mapped

shared memory, each cluster would consist of several ePDEMI cores with the shared address

mapped memory subsystem discussed in this work. Each cluster would be assigned a region of

the system’s total physical address space as shown in Figure 7.2. When the memory hierarchy

for a given core missed on an address outside of its cluster’s assigned address space, it would

initiate a request to the home cluster for that memory address. The home cluster would then

provide the requested data. In this way, the ePDEMI shared memory hierarchy paradigm would

be maintained. However, it is likely that such a design could lead to severe memory access

latencies for clusters accessing addresses outside of their home address space. The first evalu-

ation step would consider whether ePDEMI’s existing memory latency tolerance could tolerate
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that additional latency without performance degradation. If the increased memory access la-

tency did degrade performance, additional investigation of designs to avoid that latency could

be conducted.
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Figure 7.2: ePDEMI Clustered Architecture with Memory Mapping

Instead of mapping the ePDEMI clustered system’s physical address space across

each of the clusters, Figure 7.3 shows a configuration where each cluster could be allowed to

cache copies of any accessed memory addresses, effectively making each cluster’s memory

hierarchy private to that cluster of cores. In such a case, as discussed in Section 5.1.3, cache co-

herence would become necessary between clusters. An investigation of which cache coherence

implementation would provide the best performance and energy efficiency given ePDEMI’s

latency tolerance would be essential.

Additionally, it could be possible to arrange ePDEMI clusters into a hierarchal design

where groups of clusters could share a private memory hierarchy, becoming members of the

same coherence domain as shown in Figure 7.4, which would allow for a coarser grain cache co-

herence granularity at the expense of memory access latency inside a given coherence domain.

Inside of each coherence domain, the full physical memory address space would be mapped

across the banks of the shared memory structures. Accesses would proceed as discussed above
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Figure 7.3: ePDEMI Clustered Architecture with Coherence

in the fully memory mapped clustered architecture, with the exception that for a given miss

inside a coherence domain, that domain would first attempt a coherence operation with other

coherence domains before triggering an access to main memory. Such a study could evaluate

how many clusters could be members of a coherence domain before inter-domain cross-cluster

memory access latency became too long to maintain performance.

7.1.3 Page Migration

A different approach to reducing memory access latency across clusters could be to

migrate virtual memory pages between clusters actively working with the associated physical

addresses. ePDEMI cores could be grouped into clusters with the full system physical address

space mapped across the clusters. However, the additional access latency described previously

could be mitigated by detecting performance degradation and changing the address map across

the clusters appropriately. For example, if cores in cluster zero were continually accessing

memory addresses from a virtual page assigned to cluster one, the system could migrate that

virtual page to cluster zero’s memory hierarchy and remap the associated addresses to cluster

zero. The effect of such a migration would be that cluster zero’s future accesses would be
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Figure 7.4: ePDEMI Clustered Domains Architecture with Coarse Grain Coherence

local accesses and would thus avoid long latency inter-cluster accesses. The tradeoff of such a

technique would be that any future accesses from cluster one to that page would then be remote.

The cost of this tradeoff as well as how to decide when to migrate a page would be the central

questions to be answered by a future study.

7.1.4 Future Work Challenges

A challenge to further evaluating the scalability to ePDEMI beyond sixteen cores is

the availability of benchmarks with workloads that would sufficiently stress such large systems.

If the clustered systems discussed previously consisted of sixteen cores per cluster, a four cluster

system would be composed of 64 cores with approximately 64MB of cache capacity between

the L2 and L3 caches in the system. However, the multi-threaded shared-memory workloads

presented in this work are not designed to scale to so many threads, particularly because their

working set sizes could easily fit within such a sizable amount of cache storage, and are not

large enough to require such a large number of worker threads. As a result, it would be crucial,

before pursuing the future work outlined above, to identify several new workloads designed to

scale beyond sixteen threads, ideally with very large working set sizes requiring substantially

more worker threads than those presented in this work. A possible related future study could

consider what applications could be scaled beyond sixteen threads with large workloads that
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would be relevant to various usage scenarios.

This work has shown that the ePDEMI architecture provides sequential consistency

and removes coherence for single chip multiprocessor (CMP) dies consisting of one, four, and

eight cores. As discussed previously, the ePDEMI energy benefit may face a scaling challenge

due to leakage energy scaling as core count increases. However, although there exists today

systems consisting of tens and even hundreds of processor cores, there are very few single die

CMPs that consist of many more cores than have been studied in this work. This is most true

for desktop CMPs, although server CMPs have not significantly surpassed eight cores in recent

years. Figure 7.5 shows the progression of the highest core count available CMP processors

from Intel, AMD, IBM, and Oracle (formerly Sun) over the last 20 years. Today, the most cores

available in an Intel high-performance out-of-order superscalar CMP comes in the server-class

Xeon E7-8870 with ten cores. AMD offers 16 cores in its Opteron 6386SE. Oracle offered

up to 16 cores in the SPARC T3 processor released in 2006, but in 2011 Oracle decreased the

number of cores provided in its new SPARC T4 processor to eight. In 2013, Oracle will release

the SPARC T5 processor which will feature 16 cores once again. IBM currently offers its

POWER7 processors with up to eight cores. From surveying today’s high-end server processor

market space and reviewing the market over the last 20 years as shown in Figure 7.5, it is clear

that per-die CMP core counts are not increasing as rapidly as they did in the previous decade.

Therefore, although scalability is an area of future investigation for ePDEMI, it is important to

note that the work presented in this dissertation is not only relevant today, but appears to be

relevant to the observed trend of the current high-performance multiprocessor marketplace.
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