Skip to main content
eScholarship
Open Access Publications from the University of California

Improved Physical Design for Manufacturing Awareness and Advanced VLSI

  • Author(s): Wang, Lutong
  • Advisor(s): Kahng, Andrew B
  • et al.
Abstract

Increasing challenges arise with each new semiconductor technology node, especially in advanced nodes, where the industry tries to extract every ounce of benefit as it approaches the limits of physics, through manufacturing-aware design technology co-optimization and design-based equivalent scaling. The increasing complexity of design and process technologies, and ever-more complex design rules, also become hurdles for academic researchers, separating academic researchers from the most up-to-date technical issues.

This thesis presents innovative methodologies and optimizations to address the above challenges. There are three directions in this thesis: (i) manufacturing-aware design technology co-optimization; (ii) advanced node design-based equivalent scaling; and (iii) an open source academic detailed routing flow.

To realize manufacturing-aware design technology co-optimization, this thesis presents two works: (i) a multi-row detailed placement optimization for neighbor diffusion effect mitigation between neighboring standard cells; and (ii) a post-routing optimization to generate 2D block mask layout for dummy segment removal in self-aligned multiple patterning.

To achieve advanced node design-based equivalent scaling, this thesis presents two improved physical design methodologies: (i) a post-placement flop tray generation approach for clock power reduction; and (ii) a detailed placement approach to exploit inter-row M1 routing for congestion and wirelength reduction.

To address the increasing gap between academia and industry, this thesis presents two works toward an open source academic detailed routing flow: (i) a complete, robust, scalable and design ruleaware dynamic programming-based pin access analysis framework; and (ii) TritonRoute – the open source detailed router that is capable of delivering DRC-clean detailed routing solutions in advanced nodes.

This thesis concludes with a summary of its contributions and open directions for future research.

Main Content
Current View