Skip to main content
eScholarship
Open Access Publications from the University of California

Epigenetic regulation of HIV-1 latency by cytosine methylation.

  • Author(s): Kauder, Steven E
  • Bosque, Alberto
  • Lindqvist, Annica
  • Planelles, Vicente
  • Verdin, Eric
  • et al.
Abstract

Human immunodeficiency virus type 1 (HIV-1) persists in a latent state within resting CD4+ T cells of infected persons treated with highly active antiretroviral therapy (HAART). This reservoir must be eliminated for the clearance of infection. Using a cDNA library screen, we have identified methyl-CpG binding domain protein 2 (MBD2) as a regulator of HIV-1 latency. Two CpG islands flank the HIV-1 transcription start site and are methylated in latently infected Jurkat cells and primary CD4+ T cells. MBD2 and histone deacetylase 2 (HDAC2) are found at one of these CpG islands during latency. Inhibition of cytosine methylation with 5-aza-2'deoxycytidine (aza-CdR) abrogates recruitment of MBD2 and HDAC2. Furthermore, aza-CdR potently synergizes with the NF-kappaB activators prostratin or TNF-alpha to reactivate latent HIV-1. These observations confirm that cytosine methylation and MBD2 are epigenetic regulators of HIV-1 latency. Clearance of HIV-1 from infected persons may be enhanced by inclusion of DNA methylation inhibitors, such as aza-CdR, and NF-kappaB activators into current antiviral therapies.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
Current View