- Main
JUNO Conceptual Design Report
- Adam, T;
- An, F;
- An, G;
- An, Q;
- Anfimov, N;
- Antonelli, V;
- Baccolo, G;
- Baldoncini, M;
- Baussan, E;
- Bellato, M;
- Bezrukov, L;
- Bick, D;
- Blyth, S;
- Boarin, S;
- Brigatti, A;
- Brugière, T;
- Brugnera, R;
- Avanzini, M Buizza;
- Busto, J;
- Cabrera, A;
- Cai, H;
- Cai, X;
- Cammi, A;
- Cao, D;
- Cao, G;
- Cao, J;
- Chang, J;
- Chang, Y;
- Chen, M;
- Chen, P;
- Chen, Q;
- Chen, S;
- Chen, S;
- Chen, S;
- Chen, X;
- Chen, Y;
- Cheng, Y;
- Chiesa, D;
- Chukanov, A;
- Clemenza, M;
- Clerbaux, B;
- D'Angelo, D;
- Kerret, H de;
- Deng, Z;
- Deng, Z;
- Ding, X;
- Ding, Y;
- Djurcic, Z;
- Dmitrievsky, S;
- Dolgareva, M;
- Dornic, D;
- Doroshkevich, E;
- Dracos, M;
- Drapier, O;
- Dusini, S;
- Díaz, MA;
- Enqvist, T;
- Fan, D;
- Fang, C;
- Fang, J;
- Fang, X;
- Favart, L;
- Fedoseev, D;
- Fiorentini, G;
- Ford, R;
- Formozov, A;
- Gaigher, R;
- Gan, H;
- Garfagnini, A;
- Gaudiot, G;
- Genster, C;
- Giammarchi, M;
- Giuliani, F;
- Gonchar, M;
- Gong, G;
- Gong, H;
- Gonin, M;
- Gornushkin, Y;
- Grassi, M;
- Grewing, C;
- Gromov, V;
- Gu, M;
- Guan, M;
- Guarino, V;
- Guo, W;
- Guo, X;
- Guo, Y;
- Göger-Neff, M;
- Hackspacher, P;
- Hagner, C;
- Han, R;
- Han, Z;
- Hao, J;
- He, M;
- Hellgartner, D;
- Heng, Y;
- Hong, D;
- Hou, S;
- Hsiung, Y;
- Hu, B;
- Hu, J;
- Hu, S;
- Hu, T;
- Hu, W;
- Huang, H;
- Huang, X;
- Huang, X;
- Huo, L;
- Huo, W;
- Ioannisian, A;
- Ioannisyan, D;
- Jeitler, M;
- Jen, K;
- Jetter, S;
- Ji, X;
- Ji, X;
- Jian, S;
- Jiang, D;
- Jiang, X;
- Jollet, C;
- Kaiser, M;
- Kan, B;
- Kang, L;
- Karagounis, M;
- Kazarian, N;
- Kettell, S;
- Korablev, D;
- Krasnoperov, A;
- Krokhaleva, S;
- Krumshteyn, Z;
- Kruth, A;
- Kuusiniemi, P;
- Lachenmaier, T;
- Lei, L;
- Lei, R;
- Lei, X;
- Leitner, R;
- Lenz, F;
- Li, C;
- Li, F;
- Li, F;
- Li, J;
- Li, N;
- Li, S;
- Li, T;
- Li, W;
- Li, W;
- Li, X;
- Li, X;
- Li, X;
- Li, X;
- Li, Y;
- Li, Y;
- Li, Z;
- Liang, H;
- Liang, H;
- Liang, J;
- Licciardi, M;
- Lin, G;
- Lin, S;
- Lin, T;
- Lin, Y;
- Lippi, I;
- Liu, G;
- Liu, H;
- Liu, H;
- Liu, J;
- Liu, J;
- Liu, J;
- Liu, J;
- Liu, Q;
- Liu, Q;
- Liu, S;
- Liu, S;
- Liu, Y;
- Lombardi, P;
- Long, Y;
- Lorenz, S;
- Lu, C;
- Lu, F;
- Lu, H;
- Lu, J;
- Lu, J;
- Lu, J;
- Lubsandorzhiev, B;
- Lubsandorzhiev, S;
- Ludhova, L;
- Luo, F;
- Luo, S;
- Lv, Z;
- Lyashuk, V;
- Ma, Q;
- Ma, S;
- Ma, X;
- Ma, X;
- Malyshkin, Y;
- Mantovani, F;
- Mao, Y;
- Mari, S;
- Mayilyan, D;
- McDonough, W;
- Meng, G;
- Meregaglia, A;
- Meroni, E;
- Mezzetto, M;
- Min, J;
- Miramonti, L;
- Montuschi, M;
- Morozov, N;
- Mueller, T;
- Muralidharan, P;
- Nastasi, M;
- Naumov, D;
- Naumova, E;
- Nemchenok, I;
- Ning, Z;
- Nunokawa, H;
- Oberauer, L;
- Ochoa-Ricoux, JP;
- Olshevskiy, A;
- Ortica, F;
- Pan, H;
- Paoloni, A;
- Parkalian, N;
- Parmeggiano, S;
- Pec, V;
- Pelliccia, N;
- Peng, H;
- Poussot, P;
- Pozzi, S;
- Previtali, E;
- Prummer, S;
- Qi, F;
- Qi, M;
- Qian, S;
- Qian, X;
- Qiao, H;
- Qin, Z;
- Ranucci, G;
- Re, A;
- Ren, B;
- Ren, J;
- Rezinko, T;
- Ricci, B;
- Robens, M;
- Romani, A;
- Roskovec, B;
- Ruan, X;
- Ruan, X;
- Rybnikov, A;
- Sadovsky, A;
- Saggese, P;
- Salamanna, G;
- Sawatzki, J;
- Schuler, J;
- Selyunin, A;
- Shi, G;
- Shi, J;
- Shi, Y;
- Sinev, V;
- Sirignano, C;
- Sisti, M;
- Smirnov, O;
- Soiron, M;
- Stahl, A;
- Stanco, L;
- Steinmann, J;
- Strati, V;
- Sun, G;
- Sun, X;
- Sun, Y;
- Sun, Y;
- Taichenachev, D;
- Tang, J;
- Tietzsch, A;
- Tkachev, I;
- Trzaska, WH;
- Tung, Y;
- Waasen, S van;
- Volpe, C;
- Vorobel, V;
- Votano, L;
- Wang, C;
- Wang, C;
- Wang, C;
- Wang, G;
- Wang, H;
- Wang, M;
- Wang, R;
- Wang, S;
- Wang, W;
- Wang, W;
- Wang, Y;
- Wang, Y;
- Wang, Y;
- Wang, Y;
- Wang, Z;
- Wang, Z;
- Wang, Z;
- Wang, Z;
- Wang, Z;
- Wei, W;
- Wei, Y;
- Weifels, M;
- Wen, L;
- Wen, Y;
- Wiebusch, C;
- Wipperfurth, S;
- Wong, SC;
- Wonsak, B;
- Wu, C;
- Wu, Q;
- Wu, Z;
- Wurm, M;
- Wurtz, J;
- Xi, Y;
- Xia, D;
- Xia, J;
- Xiao, M;
- Xie, Y;
- Xu, J;
- Xu, J;
- Xu, L;
- Xu, Y;
- Yan, B;
- Yan, X;
- Yang, C;
- Yang, C;
- Yang, H;
- Yang, L;
- Yang, M;
- Yang, Y;
- Yang, Y;
- Yang, Y;
- Yanovich, E;
- Yao, Y;
- Ye, M;
- Ye, X;
- Yegin, U;
- Yermia, F;
- You, Z;
- Yu, B;
- Yu, C;
- Yu, C;
- Yu, G;
- Yu, Z;
- Yuan, Y;
- Yuan, Z;
- Zanetti, M;
- Zeng, P;
- Zeng, S;
- Zeng, T;
- Zhan, L;
- Zhang, C;
- Zhang, F;
- Zhang, G;
- Zhang, H;
- Zhang, J;
- Zhang, J;
- Zhang, J;
- Zhang, K;
- Zhang, P;
- Zhang, Q;
- Zhang, T;
- Zhang, X;
- Zhang, X;
- Zhang, Y;
- Zhang, Y;
- Zhang, Y;
- Zhang, Y;
- Zhang, Y;
- Zhang, Y;
- Zhang, Z;
- Zhang, Z;
- Zhao, J;
- Zhao, M;
- Zhao, T;
- Zhao, Y;
- Zheng, H;
- Zheng, M;
- Zheng, X;
- Zheng, Y;
- Zhong, W;
- Zhou, G;
- Zhou, J;
- Zhou, L;
- Zhou, N;
- Zhou, R;
- Zhou, S;
- Zhou, W;
- Zhou, X;
- Zhou, Y;
- Zhu, H;
- Zhu, K;
- Zhuang, H;
- Zong, L;
- Zou, J
- et al.
Abstract
The Jiangmen Underground Neutrino Observatory (JUNO) is proposed to determine the neutrino mass hierarchy using an underground liquid scintillator detector. It is located 53 km away from both Yangjiang and Taishan Nuclear Power Plants in Guangdong, China. The experimental hall, spanning more than 50 meters, is under a granite mountain of over 700 m overburden. Within six years of running, the detection of reactor antineutrinos can resolve the neutrino mass hierarchy at a confidence level of 3-4$\sigma$, and determine neutrino oscillation parameters $\sin^2\theta_{12}$, $\Delta m^2_{21}$, and $|\Delta m^2_{ee}|$ to an accuracy of better than 1%. The JUNO detector can be also used to study terrestrial and extra-terrestrial neutrinos and new physics beyond the Standard Model. The central detector contains 20,000 tons liquid scintillator with an acrylic sphere of 35 m in diameter. $\sim$17,000 508-mm diameter PMTs with high quantum efficiency provide $\sim$75% optical coverage. The current choice of the liquid scintillator is: linear alkyl benzene (LAB) as the solvent, plus PPO as the scintillation fluor and a wavelength-shifter (Bis-MSB). The number of detected photoelectrons per MeV is larger than 1,100 and the energy resolution is expected to be 3% at 1 MeV. The calibration system is designed to deploy multiple sources to cover the entire energy range of reactor antineutrinos, and to achieve a full-volume position coverage inside the detector. The veto system is used for muon detection, muon induced background study and reduction. It consists of a Water Cherenkov detector and a Top Tracker system. The readout system, the detector control system and the offline system insure efficient and stable data acquisition and processing.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-