Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Robust estimation of the number of components for mixtures of linear regression models

Abstract

In this paper, we investigate a robust estimation of the number of components in the mixture of regression models using trimmed information criteria. Compared to the traditional information criteria, the trimmed criteria are robust and not sensitive to outliers. The superiority of the trimmed methods in comparison with the traditional information criterion methods is illustrated through a simulation study. Two real data applications are also used to illustrate the effectiveness of the trimmed model selection methods.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View