Skip to main content
eScholarship
Open Access Publications from the University of California

UCLA

UCLA Previously Published Works bannerUCLA

Voluntary exercise blocks Western diet-induced gene expression of the chemokines CXCL10 and CCL2 in the prefrontal cortex

Abstract

Obesity increases inflammation, both peripherally and centrally, and exercise can ameliorate some of the negative health outcomes associated with obesity. Within the brain, the effect of obesity on inflammation has been well characterized in the hypothalamus and hippocampus, but has been relatively understudied in other brain regions. The current study was designed to address two primary questions; (1) whether western diet (high fat/high sucrose) consumption would increase markers of inflammation in the prefrontal cortex and (2) whether concurrent voluntary wheel running would ameliorate any inflammation. Adult male mice were exposed to a western diet or a control diet for 8weeks. Concurrently, half the animals were given running wheels in their home cages, while half did not have access to wheels. At the conclusion of the study, prefrontal cortex was removed and expression of 18 proinflammatory genes was assayed. Expression of a number of proinflammatory molecules was upregulated by consumption of the western diet. For two chemokines, chemokine (C-C motif) ligand 2 (CCL2) and C-X-C motif chemokine 10 (CXCL10), voluntary exercise blocked the increase in the expression of these genes. Cluster analysis confirmed that the majority of the tested genes were upregulated by western diet, and identified another small cluster of genes that were downregulated by either diet or exercise. These data identify a proinflammatory phenotype within the prefrontal cortex of mice fed a western diet, and indicate that chemokine induction can be blocked by voluntary exercise.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View