- Main
Biogenic and Anthropogenic Secondary Organic Aerosols Become Fluorescent after Highly Acidic Aging
Published Web Location
https://doi.org/10.1021/acs.jpca.4c04287Abstract
Primary biological aerosol particles (PBAPs) and secondary organic aerosol (SOA) both contain organic compounds that share similar chemical and optical properties. Fluorescence is often used to characterize PBAPs; however, this may be hindered due to interferences from fluorophores in SOA. Despite extensive efforts to understand the aging of SOA under elevated particle acidity conditions, little is known about how these processes affect the fluorescence of SOA and thereby their interference with the measurements of PBAPs. The objective of this study is to investigate the fluorescence of SOA and understand the influence of acidity on the optical properties of organic aerosols and potential interference for the analysis of bioaerosols. The SOA was generated by O3- or OH-initiated oxidation of d-limonene or α-pinene, as well as by OH-initiated oxidation of toluene or xylene. The SOA compounds were then aged by exposure to varying concentrations of aqueous H2SO4 for 2 days. Absorption and fluorescence spectrophotometry were used to examine the changes in the optical properties before and after aging. The key observation was the appearance of strongly light-absorbing and fluorescent compounds at pH = ∼-1, suggesting that acidity is a major driver of SOA aging. The aged SOA from biogenic precursors (d-limonene and α-pinene) resulted in stronger fluorescence than the aged SOA from toluene and xylene. The absorption spectra of the aged SOA changed drastically in shape upon dilution, whereas the shapes of the fluorescence spectra remained the same, suggesting that the fluorophores and chromophores in SOA are separate sets of species. The fluorescence spectra of aged SOA overlapped with the fluorescence spectra of PBAPs, suggesting that SOA exposed to highly acidic conditions can be confused with PBAPs detected by fluorescence-based methods. These processes are likely to play a role in the atmospheric regions where high concentrations of H2SO4 persist, such as the upper troposphere and lower stratosphere.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-