- Main
Visualization of Freezing Process in situ upon Cooling and Warming of Aqueous Solutions
Published Web Location
https://doi.org/10.1038/srep07414Abstract
The freezing of aqueous solutions and reciprocal distribution of ice and a freeze-concentrated solution (FCS) are poorly understood in spite of their importance in fields ranging from biotechnology and life sciences to geophysics and climate change. Using an optical cryo-microscope and differential scanning calorimetry, we demonstrate that upon cooling of citric acid and sucrose solutions a fast freezing process results in a continuous ice framework (IF) and two freeze-concentrated solution regions of different concentrations, FCS1 and FCS2. The FCS1 is maximally freeze-concentrated and interweaves with IF. The less concentrated FCS2 envelops the entire IF/FCS1. We find that upon further cooling, the FCS1 transforms to glass, whereas the slow freezing of FCS2 continues until it is terminated by a FCS2-glass transition. We observe the resumed slow freezing of FCS2 upon subsequent warming. The net thermal effect of the resumed freezing and a reverse glass-FCS1 transition produces the Ttr2-transition which before has only been observed upon warming of frozen hydrocarbon solutions and which nature has remained misunderstood for decades.
Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.
Main Content
Enter the password to open this PDF file:
-
-
-
-
-
-
-
-
-
-
-
-
-
-