Skip to main content
eScholarship
Open Access Publications from the University of California

Nondissipative Martensitic Phase Transformation after Multimillion Superelastic Cycles

Abstract

Superelastic alloys used for stents, biomedical implants, and solid-state cooling devices rely on their reversible stress-induced martensitic transformations. These applications require the alloy to sustain high deformability over millions of cycles without failure. Here, we report an alloy capable of enduring 10×10^{7} tensile stress-induced phase transformations while still exhibiting over 2% recoverable elastic strains. After millions of cycles, the alloy is highly reversible with zero stress hysteresis. We show that the major martensite variant is reversible even after multimillions of cycles under tensile loadings with a highly coherent (11[over ¯]0)_{A} interface. This discovery provides new insights into martensitic transformation, and may guide the development of superelastic alloys for multimillion cycling applications.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View