Skip to main content
eScholarship
Open Access Publications from the University of California

OPTIMIZATION AND SINGLE-SHOT CHARACTERIZATION OF ULTRASHORT THz PULSES FROM A LASER WAKEFIELD ACCELERATOR

  • Author(s): Plateau, G. R.
  • et al.
Abstract

We present spatiotemporal characterization of J-class ultrashort THz pulses generated from a laser wakefield accelerator (LWFA). Accelerated electrons, resulting from the interaction of a high-intensity laser pulse with a plasma, emit high-intensity THz pulses as coherent transition radiation. Such high peak-power THz pulses, suitable for high-field (MV/cm) pump-probe experiments, also provide a non-invasive bunch-length diagnostic and thus feedback for the accelerator. The characterization of the THz pulses includes energy measurement using a Golay cell, 2D sign-resolved electro-optic measurement and single-shot spatiotemporal electric-field distribution retrieval using a new technique, coined temporal electric-field cross-Correlation (TEX). All three techniques corroborate THz pulses of 5 muJ, with peak fields of 100's of kV/cm and ~;;0:4 ps rms duration.

Main Content
Current View