Skip to main content
eScholarship
Open Access Publications from the University of California

UC San Diego

UC San Diego Previously Published Works bannerUC San Diego

Background-free imaging of chemical bonds by a simple and robust frequency-modulated stimulated Raman scattering microscopy.

Published Web Location

https://doi.org/10.1364/oe.391016
Abstract

Being able to image chemical bonds with high sensitivity and speed, stimulated Raman scattering (SRS) microscopy has made a major impact in biomedical optics. However, it is well known that the standard SRS microscopy suffers from various backgrounds, limiting the achievable contrast, quantification and sensitivity. While many frequency-modulation (FM) SRS schemes have been demonstrated to retrieve the sharp vibrational contrast, they often require customized laser systems and/or complicated laser pulse shaping or introduce additional noise, thereby hindering wide adoption. Herein we report a simple but robust strategy for FM-SRS microscopy based on a popular commercial laser system and regular optics. Harnessing self-phase modulation induced self-balanced spectral splitting of picosecond Stokes beam propagating in standard single-mode silica fibers, a high-performance FM-SRS system is constructed without introducing any additional signal noise. Our strategy enables adaptive spectral resolution for background-free SRS imaging of Raman modes with different linewidths. The generality of our method is demonstrated on a variety of Raman modes with effective suppressing of backgrounds including non-resonant cross phase modulation and electronic background from two-photon absorption or pump-probe process. As such, our method is promising to be adopted by the SRS microscopy community for background-free chemical imaging.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View