Skip to main content
eScholarship
Open Access Publications from the University of California

UC Davis

UC Davis Previously Published Works bannerUC Davis

Driving torsion scans with wavefront propagation

Published Web Location

https://doi.org/10.1063/5.0009232
Abstract

The parameterization of torsional/dihedral angle potential energy terms is a crucial part of developing molecular mechanics force fields. Quantum mechanical (QM) methods are often used to provide samples of the potential energy surface (PES) for fitting the empirical parameters in these force field terms. To ensure that the sampled molecular configurations are thermodynamically feasible, constrained QM geometry optimizations are typically carried out, which relax the orthogonal degrees of freedom while fixing the target torsion angle(s) on a grid of values. However, the quality of results and computational cost are affected by various factors on a non-trivial PES, such as dependence on the chosen scan direction and the lack of efficient approaches to integrate results started from multiple initial guesses. In this paper, we propose a systematic and versatile workflow called TorsionDrive to generate energy-minimized structures on a grid of torsion constraints by means of a recursive wavefront propagation algorithm, which resolves the deficiencies of conventional scanning approaches and generates higher quality QM data for force field development. The capabilities of our method are presented for multi-dimensional scans and multiple initial guess structures, and an integration with the MolSSI QCArchive distributed computing ecosystem is described. The method is implemented in an open-source software package that is compatible with many QM software packages and energy minimization codes.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View