Skip to main content
The feasibility study of XACT imaging for characterizing osteoporosis
Abstract
Background
Osteoporosis is a progressive bone disease that is characterized by a decrease in bone mass and the deterioration in bone microarchitecture, which might be related to age and space travel. An unmet need exists for the development of novel imaging technologies to characterize osteoporosis.Purpose
The purpose of our study is to investigate the feasibility of X-ray-induced acoustic computed tomography (XACT) imaging for osteoporosis detection.Methods
An in-house simulation workflow was developed to assess the ability of XACT for osteoporosis detection. To evaluate this simulation workflow, a three-dimensional digital bone phantom for XACT imaging was created by a series of two-dimensional micro-computed tomography (micro-CT) slices of normal and osteoporotic bones in mice. In XACT imaging, the initial acoustic pressure rise caused by the X-ray induce acoustic (XA) effect is proportional to bone density. First, region growing was deployed for image segmentation of different materials inside the bone. Then k-wave simulations were deployed to model XA wave propagation, attenuation, and detection. Finally, the time-varying pressure signals detected at each transducer location were used to reconstruct the XACT image with a time-reversal reconstruction algorithm.Results
Through the simulated XACT images, cortical porosity has been calculated, and XA signal spectra slopes have been analyzed for the detection of osteoporosis. The results have demonstrated that osteoporotic bones have lower bone mineral density and higher spectra slopes. These findings from XACT images were in good agreement with porosity calculation from micro-CT images.Conclusion
This work explores the feasibility of using XACT imaging as a new imaging tool for Osteoporosis detection. Considering that acoustic signals are generated by X-ray absorption, XACT imaging can be combined with traditional X-ray imaging that holds potential for clinical management of osteoporosis and other bone diseases.Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.