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Abstract of the Dissertation

Program Analyses for Cloud Computations

by

Sai Deep Tetali
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 2015

Professor Todd D. Millstein, Chair

Cloud computing has become an essential part of our computing infrastructure. In this

model, data and programs are hosted in (often third-party) data centers that provide APIs

for data access and running large-scale computations. It is used in almost all major internet

services companies and increasingly being considered by other organizations to host their

data and run analytics. However several challenges lie in its full-scale adoption, chief among

them being security, performance and correctness. Security is important as both client data

and computations need to be sent to third-party data centers. Performance is important as

cloud computing involves several development iterations, each running on large-scale data.

Correctness is critical as cloud frameworks are complex distributed systems serving billions

of users every day.

In this dissertation, I argue that program analysis techniques can help address the above

key challenges of cloud computing. I describe three projects that illustrate different aspects

of the solution space: MrCrypt is a system that uses static analysis to guarantee data con-

fidentiality in cloud computations by using homomorphic encryption schemes. Vega is a

library that significantly improves incremental performance by rewriting modified workflows

to use previously computed results. Kuai is a distributed, enumerative model checker that

verifies correctness in Software Defined Networks, the networking layer used by many data

centers.
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CHAPTER 1

Introduction

Cloud computing has become an essential part of our computing infrastructure. It provides

a utility model where computing resources are “rented out” to clients who upload data and

programs to (often third-party) data centers. The main draw towards this model is that

it can provide massive scalability, on-demand, without upfront investment in computing

resources. It is used in almost all major internet services companies and increasingly being

considered by other organizations to host their data and run analytics. However several

challenges lie in its full-scale adoption, chief among them being security, performance and

correctness.

In this dissertation, I argue that program analysis techniques can help in improving several

aspects of cloud computing, including security, performance and correctness.

Security

Security concerns arise as potentially sensitive data and computations need to be uploaded

to external data centers. Additionally cloud providers maximize utilization by having sev-

eral client computations run on the same physical machine. Bugs in cloud infrastructure,

malicious system administrators or lack of proper security measures by the clients can leak

data across client computations. Data confidentiality, an important part of security, has

become increasingly important in the cloud due to several publicized breaches. Examples

include private photos of many users (including celebrities) that were leaked from Apple’s

iCloud photo service and private data and photos leaked from Snapchat — a cloud based

messaging service.

1



However, traditional encryption methods are not a good fit for cloud computations.

These methods aim to protect data when it is stored (in the file system or database) but

force applications to decrypt it on-the-fly to perform any computation. However, when a

program is running in the cloud, we cannot assume that the data decrypted for computation

will not be leaked.

In the next chapter of the dissertation, I use program analysis techniques to achieve data

confidentiality. Traditional systems security relied on either the data or computation to be

under user’s control. However, in a common use case for cloud computing, clients upload

data and computation to servers that are managed by a third-party infrastructure provider.

MrCrypt is a system that provides data confidentiality in this setting by executing client

computations using homomorphic encryption schemes. These schemes allow computations

run directly on encrypted data thus removing the need for decryption and achieving confiden-

tiality. MrCrypt statically analyzes a program to identify the set of operations on each input

data column, in order to select an appropriate homomorphic encryption scheme for that col-

umn, and then transforms the program to operate over encrypted data. The encrypted data

and transformed program are uploaded to the server and executed as usual, and the result of

the computation is decrypted on the client side. I have implemented MrCrypt for Java and

illustrate its practicality on three standard benchmark suites for the Hadoop MapReduce

framework [Whi12].

Performance

I consider improving the performance of incremental computation in the third chapter of

the dissertation. Big data applications (i.e. those that use datasets that are beyond the

capability of traditional databases to store and mange [MCB11]) are a major part of cloud

computing and a large part of a big data pipeline includes ingesting data from several sources,

transforming them into a common format and doing several exploratory computations on

the data to understand its structure. In many such exploratory scenarios, programmers

start out with an initial workflow, observe the output and iteratively improve the workflow

2



by adding new transformations or modifying existing ones until the output is in the desired

form. Every change is usually run anew, discarding all work done in the previous iterations.

The immense scale of the data typical in cloud computations makes these kinds of iterations

very time consuming. It is not uncommon for data scientists to wait for 3+ hours, only to

find that they should have filtered out some obvious outliers. Typically users select a small

sample from the dataset and perform explorations on that set. This approach is incomplete

in most cases. Existing frameworks such as Percolator [PD10] and Naiad [MMI13] allow

computations to be run incrementally when there are small changes in data, but they do not

deal with changes in code.

I describe Vega, a library for incremental computation that handles code changes. It

handles them in two different ways: Vega pushes the changed transformations towards the

end of the workflow as much as possible by using commutativity. This allows the reuse of as

much of the original work as possible. And finally the changes in the code are transformed

into changes in data by taking a difference of the old and new transformers’ outputs that

are then pushed downstream similar to Naiad. To achieve this, Vega introduces an API of

commutative operators on top of the default ones. Vega has been implemented on top of the

Spark framework and I demonstrate significant performance benefits in various ETL [Vas09]

(extract, transform, load) use cases.

Correctness

Finally, cloud frameworks (for computation, communication, authentication etc.) have to

be distributed to be able to scale across many thousands of nodes that are present in data

centers. This increases the complexity of the system tremendously, with many actors per-

forming tasks concurrently, and makes testing and debugging especially difficult. Since cloud

programs often serve millions of users, ensuring correctness of the underlying stack on which

they are built is especially important. High profile bugs include the authentication layer

of Dropbox, a cloud based file synchronization service, that let users log into any account

without requiring a password.
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Many such frameworks have a master-workers architecture where there is a single logical

master and many workers. The master usually has complicated (and often changing) logic

for scheduling tasks and responding to events. Workers usually have the same (relatively

simple) program to run commands given by the master. Frameworks such as Google’s

MapReduce [DG08], Hadoop [Whi12], Dryad [IBY07], Spark [ZCD12] etc. are built using

this architecture. A major challenge in verifying correctness of such systems involves dealing

with both program logic of the master and unbounded communication with workers.

Software Defined Networks (SDN) [FRZ13] is the application of the master-worker archi-

tecture to large-scale networks. In software-defined networking, a software controller man-

ages a distributed collection of switches by installing and uninstalling packet-forwarding rules

in the switches. SDNs allow flexible implementations for expressive and sophisticated net-

work management policies. They are increasingly becoming the networking layer of choice

for data centers and the correctness of their policies determine the correctness of several

mission-critical cloud applications.

I describe Kuai, a distributed enumerative model checker for SDNs. Kuai takes as input

a controller implementation written in Murphi [Dil96], a description of the network topology

(switches and connections), and a safety property, and performs a distributed enumerative

reachability analysis on a cluster of machines. Kuai uses a set of partial order reduction

techniques specific to the SDN domain that help reduce the statespace dramatically. In

addition, Kuai performs an automatic abstraction to handle unboundedly many packets

traversing the network at a given time and unboundedly many control messages between the

controller and the switches. I demonstrate the scalability and coverage of Kuai on standard

SDN benchmarks. I show that the set of partial order reduction techniques significantly

reduces the state spaces of these benchmarks by many orders of magnitude. Another novelty

of Kuai is in demonstrating that current large-scale systems architecture can provide excellent

execution platforms for software verification.

4



CHAPTER 2

MrCrypt

2.1 Introduction

A common use case for cloud computing involves clients uploading data and computation

to servers managed by third-party infrastructure providers. Since the data and programs

are no longer in an environment controlled by the client, private client data may be exposed

to adversarial clients in the cloud server, either by accidental misconfigurations or through

malicious intent. Publicized incidents involving the loss of confidentiality or integrity of

customer data [Kow08] only heighten these concerns. The threat of potential violations to

the confidentiality and integrity of customer data is a key barrier to the adoption of cloud

computing based on third-party infrastructure providers.

One way to alleviate these concerns is to store encrypted data on the cloud and decrypt

it as needed during the cloud computation. However, this approach is insufficient to protect

against adversaries who can potentially view the memory contents of the server, for example

a curious cloud administrator or a malicious client running on the same machine. Therefore,

all computations must be performed on the client side [LKM04, MSL10], which severely

reduces the attractiveness of the cloud model. Theoretically, fully homomorphic encryp-

tion schemes [RAD78, Gen09] offer the possibility of uploading and storing encrypted data

on the cloud and performing arbitrary operations on the encrypted data. Unfortunately,

current implementations of fully homomorphic encryption schemes are still prohibitively

expensive [Gen10, GH11].

In this chapter I present MrCrypt, a system that automatically transforms programs in

5



order to enforce data confidentiality.

MrCrypt is based on the key insight that many useful cloud computations only perform

a small number of operations on each column of the data. While fully homomorphic en-

cryption is expensive, there are efficient encryption schemes that support common subsets

of operations. Thus, instead of encoding each column using a fully homomorphic encryption

scheme, one can encrypt it using a more efficient scheme that supports only the necessary

operations. For example, suppose that the client program sums all the elements of a column.

Instead of a fully homomorphic encryption scheme, one can encrypt the column using the

Paillier cryptosystem [Pai99], which guarantees that

Paillier(x) · Paillier(y) = Paillier(x+ y)

for any x, y, where Paillier(x) denotes the encryption of x using the scheme, and the mul-

tiplication of the codewords on the left is modulo a public key. Thus to compute on the

encrypted data, the program must simply take the product of all codewords. When the

result is decrypted on the client side, the sum of all the numbers is recovered. Similarly, the

El Gamal cryptosystem [ElG85] is homomorphic for multiplication:

ElGamal(x) · ElGamal(y) = ElGamal(x · y)

Similar schemes exist for performing equality checks and range comparisons. In this

way, MrCrypt reduces the problem of securing cloud computations to that of identifying the

subset of primitive operations (such as addition, multiplication, equality checks, and order

comparisons) performed on each column of the input, in order to determine the most efficient

encryption scheme that can be used for the column. MrCrypt uses a static analysis to per-

form the inference task, called encryption scheme inference, on imperative programs. Given

the results of encryption scheme inference, it is straightforward to produce the translated

program that will be sent to the cloud along with the encrypted data.
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2.2 Background

2.2.1 Homomorphic Encryption Schemes

A (public-key) encryption scheme consists of three algorithms (K,E,D) for key-generation,

encryption, and decryption. The key-generation procedure K is a randomized algorithm

that takes a security parameter λ as input and outputs a secret key sk and public key pk .

The encryption procedure E is a randomized algorithm that takes pk and a plaintext m as

input and outputs a ciphertext ψ. The decryption procedure D takes sk and ψ as input and

outputs the plaintext m, i.e., D(sk , E(pk ,m)) = m. The computational complexity of all of

these algorithms must be polynomial in λ.

Given a binary operation f , an encryption scheme is homomorphic for f if there exists

a (possibly randomized) polynomial-time algorithm Eval f , which takes as input the public

key pk and a pair of ciphertexts (ψ1, ψ2) such that

D(sk ,Eval f (pk , ψ1, ψ2)) = f(D(, ψ1), D(, ψ2))

Informally, if ψ1 and ψ2 are respectively encryptions of plaintexts m1 and m2 under pk ,

then Eval f (pk , ψ1, ψ2) is an encryption of f(m1,m2) under pk . For a set of operations F , an

encryption scheme is homomorphic for F if it is homomorphic for each f ∈ F . An encryption

scheme is said to be fully homomorphic if it is homomorphic for {+,×}. It is easy to see

that in this case, any polynomial-sized arithmetic circuit can be evaluated purely on the

ciphertext.

In addition to homomorphic encryption schemes, I shall also consider encryption schemes

with a related property in which the result of an operation can be computed (in clear text)

directly on the ciphertext:

Eval f (pk , ψ1, ψ2) = f(D(, ψ1), D(, ψ2))

For example, using a deterministic encryption scheme, one can check if two values are equal

simply by comparing the ciphertexts for equality, without requiring any information about
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Figure 2.1: A lattice of encryption schemes.

the original values. In the following, I abuse notation and call such encryption schemes

“homomorphic” as well.

Given a set of operations F , one can arrange encryption schemes in a partial order: an

encryption scheme E1 is “less than” a scheme E2 if E1 is homomorphic for F1 ⊆ F , E2 is

homomorphic for F2 ⊆ F , and F2 ⊆ F1. A fully homomorphic encryption scheme is the

unique minimal element in this ordering, and a random encryption scheme is the maximal

element (it is not homomorphic for any operation). Typically, one expects that encryption

schemes “higher” in the ordering (i.e., supporting fewer operations) will have more efficient

implementations.

MrCrypt’s implementation is parameterized by a lattice of encryption schemes. The tool

employs several forms of encryption, which are shown as a lattice in Figure 2.1 along with

the set of operations that each scheme supports.RAND (random) supports no homomor-

phic operations [Sch96]; DET (deterministic) supports equality testing [Sch96]; OP (order-

preserving) supports comparisons [BCL09, BCO11]; AH (additive homomorphic) supports

addition [Pai99]; MH (multiplicative homomorphic) supports multiplication [ElG85]; FH

(fully homomorphic) supports all operations [Gen09]. The DET and OP schemes produce

their results in clear text, while the other schemes are homomorphic in the strict sense. Be-

cause fully homomorphic encryption is not currently practical, MrCrypt does not include an

implementation of it, but I show that it is rarely required in the benchmark programs.
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Figure 2.2: Architecture of MrCrypt; solid boxes show implemented components .

2.2.2 MapReduce

MapReduce [DG10] is a popular distributed programming model introduced by Google for

processing large data sets on clusters. In this model, the computation is divided into three

stages. The map stage invokes a user-defined map function in parallel over the data and

produces a list of intermediate key/value pairs. A shuffle stage in the MapReduce framework

then sorts all the resulting records based on the keys and groups together all values associated

with the same key. Finally, the reduce stage invokes a user-defined reduce function in parallel

to combine the values associated with each key in some fashion, typically producing just

zero or one final values per key. Hadoop MapReduce is an open-source implementation of

MapReduce that is widely used by both researchers and major corporations (e.g., Facebook,

Twitter) to perform large-scale distributed computations.
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2.3 Approach

The architecture of MrCrypt is shown in Figure 2.2. Given a Java program and a data set,

MrCrypt performs static analysis on the program to determine an encryption scheme for each

input column, program variable, and program constant such that each program operation

can be performed homomorphically on encrypted data (encryption scheme inference). The

analysis first generates constraints based on how operations in the program are used, and

then it solves the constraints to determine the most efficient (i.e., highest in the lattice)

encryption scheme to use for each part of the program.

Next the results of the encryption scheme inference are used to transform the program.

Specifically, each call to a primitive operation f in the program is replaced by a call to EvalEf ,

where E is the encryption scheme inferred for the arguments to f . Similarly, each program

constant c is replaced by its encrypted value E E(c), where E is the encryption scheme inferred

for c. The data set is also encrypted according to the inferred encryption schemes on the

client side.

Finally, the encrypted data and the transformed program are uploaded to the (untrusted)

server, where the program is executed. The result is sent back to the client, where it is

decrypted.

We assume a passive (honest-but-curious) adversary model. That is, the adversary can

view all the data uploaded to the server, the program that is uploaded, as well as the entire

execution trace of the program. However, we assume that the adversary does not change

the data, the program, or the result of the program (i.e., no integrity attacks). Please refer

[TLM13] for details about the formalism and security guarantees.

2.3.1 Example

The program in listing 2.1 is inspired by wireless fitness trackers. Users continually upload

fitness information such as the number of calories burnt during a workout to the cloud. This

program uses the MapReduce programming model [DG08] to compute the total number of

10



Integer map(Integer entryDate , Integer entryMonth , Integer entryYear , Integer caloriesBurnt) {

if (entryYear > 2012)

return caloriesBurnt;

else

return 0;

}

Integer reduce(List <Integer > caloriesBurntList) {

Integer sum = 0;

for (Integer caloriesBurnt : caloriesBurntList)

sum += caloriesBurnt;

return sum;

}

Listing 2.1: Fitness Program

calories burnt by a user since the beginning of the year 2013. This result can be used further

to compute statistics such as the average calories burnt per day. Every record includes the

number of calories burnt and the date associated with the event (given by year, month and

day fields). For expository purposes some implementation details of MapReduce frameworks

are omitted, for example the need to parse input data from a file and to produce key-value

pairs as results. However, the example is illustrative of common MapReduce use cases.

The user-defined map function is executed on each row of the data, and it has the effect

of producing all entries from the caloriesBurnt column for which the associated entry year

is greater than 2012. The MapReduce framework collects the values returned by the map

function invocations and passes the resulting list to the user-defined reduce function, which

sums the calories.

Encryption Inference For a variable x, let σ(x) denote the encryption scheme for x,

and similarly for a constant c. When necessary to disambiguate, variables or constants are

subscripted with the name of the function in which they appear. From line 2, it is concluded

that σ(entryYear) = σ(2012) and that σ(entryYear) should support at least >. From lines

3 and 5, σ(caloriesBurntmap) = σ(0map). From line 8, σ(sum) = σ(0reduce). From line

10, σ(sum) = σ(caloriesBurntreduce) and σ(sum) should support at least +. Finally, the

semantics of the MapReduce framework requires that the result from the map function must

11



AH_Integer map(RAND_Integer entryDate , RAND_Integer entryMonth , OP_Integer entryYear ,

AH_Integer caloriesBurnt) {

if (OP_GT(entryYear , [[OP_E (2012)]])

return caloriesBurnt;

else

return [[AH_E (0)]];

}

AH_Integer reduce(List <AH_Integer > caloriesBurntList) {

AH_Integer sum = [[AH_E (0)]];

for (AH_Integer caloriesBurnt : caloriesBurntList)

sum = AH_PLUS(sum , caloriesBurnt );

return sum;

}

Listing 2.2: Encrypted Fitness Program

use the same encryption scheme as the data items in the argument list to the reduce function.

Given the lattice of encryption schemes from Figure 2.1, the best solution to these constraints

maps σ(entryYear) and σ(2012) to OP , σ(entryDate) and σ(entryMonth) to RAND (since

there are no constraints on these variables), and everything else to AH.

The translated program for the example is shown in listing 2.2. First, the primitive

> function is replaced by the corresponding operation in the order-preserving encryption

scheme, which is denoted by OP_GT, and similarly + is replaced by AH_PLUS. Second, each

constant is replaced by an appropriately encrypted version of that constant. For example,

[[OP_E(2012)]] is used to denote the encrypted value of the constant 2012 under the order-

preserving encryption scheme. Note that this value is computed statically and inserted into

the transformed program in place of the original constant.

2.4 Implementation

I have implemented the encryption scheme inference and transformation algorithms for Java

programs.
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2.4.1 Encryption Schemes

I briefly describe the encryption schemes that are currently supported in MrCrypt. Since

there is no efficient scheme for FH currently, MrCrypt throws an exception if FH is required.

(The experimental evaluation shows that this is rarely the case.) In general, I follow the

security parameters from prior work [PRZ11].

RAND is a probabilistic encryption scheme that guarantees IND-CPA but which does not

support any operations on the encrypted data. RAND is implemented using Blowfish [Sch94]

for 32-bit integers and AES [DR02] for strings in CBC mode and with a random initialization

vector. Blowfish produces a 64-bit ciphertext and AES outputs ciphertext as 128-bit blocks.

DET is a deterministic encryption scheme: the same plaintext generates the same cipher-

text. Thus, DET allows checking for equality on the encrypted values. I make the standard

assumption that Blowfish and AES block ciphers are pseudorandom permutations and use

these encryption schemes in ECB mode. For values up to 64 and 128 bits, I use Blowfish

and AES respectively after padding smaller plaintexts to at least 64 bits. For longer strings,

I use AES with a variant of CMC mode [HR03] with a zero initial vector, as is done in

CryptDB [PRZ11].

OP is an order-preserving encryption scheme that allows checking order relations between

encrypted data items. I use the implementation of OP in CryptDB, which follows the algo-

rithm in [BCL09]. Since MrCrypt only does order operations on 32-bit integers, a ciphertext

size of 64 bits for each value is used.

AH allows performing addition on encrypted data. I use CryptDB’s implementation of the

Paillier cryptosystem [Pai99] to support AH. MrCrypt generates 512 bits of ciphertext for

each 32-bit value.

MH allows performing multiplication on encrypted data. I use the El Gamal cryptosystem

[ElG85] to support MH. MrCrypt generates 1024-bit ciphertext for each 32-bit integer.
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2.4.2 Encryption Scheme Inference

MrCrypt is built as an extension to the Polyglot compiler framework [NCM03]. Polyglot is de-

signed to allow language extensions and analysis tools to be written on top of a base compiler

for Java. MrCrypt is written in Scala and interfaces with Polyglot’s intermediate representa-

tion of the Java bytecode. The tool takes as input a Java program and an encryption-scheme

lattice and outputs a translated Java program which runs on the encrypted domain. It uses

Polyglot compiler’s dataflow framework and soundly handles imperative updates, aliasing,

and arbitrary Java control flow in the standard way.

The inference algorithm has been extended in several ways to handle Java programs

that employ the Hadoop MapReduce framework; most of these extensions would also be

useful in conjunction with other cloud computing frameworks. First, the user-defined map

function in Hadoop is given a portion of a file representing the input data and must perform

custom processing based on the file format to parse the data into columns. MrCrypt requires

programmers to annotate the parsing code so it can understand which variables get values

from which columns, which are identified by number. For example, the user should annotate

the following statement, which gets the fifth field in a line of input, with @getColumn(5):

x = Library . s p l i t L i n e ( input , ‘ ’ ) . get ( 5 ) ;

Similarly, the statement that outputs x as the sixth field in a record should be annotated

with @putColumn(6,x).

Second, the inference algorithm has been extended to handle common data structures.

The map function returns a list of key-value pairs and the reduce function accepts a list

of values as an argument. Further, programmers often use container data structures such

as hashmaps and hashsets to remove duplicates, order elements, etc. The implementation

recognizes these data structures by type and encrypts their elements rather than the data

structures themselves. In general the implementation uses a single logical variable for the

purpose of encryption-scheme inference for a data structure’s elements, ensuring that all

elements are encrypted with the same scheme. However, I introduce two logical variables to
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handle lists of key-value pairs, so that keys and values can use different encryption schemes

from one another.

MrCrypt also requires data structures to be annotated with the operations they perform

on their elements, in order to preserve these operations in the encrypted domain. Specifi-

cally, the standard Java hashmap and hashset classes are annotated to require the equality

operation on elements.

Third, the shuffle phase of MapReduce sorts the intermediate keys produced by the map

phase, thereby requiring support for order comparisons. However, in many cases the final

output does not depend on the keys being sorted, instead just requiring that intermediate

values be grouped by their key. Therefore, MrCrypt allows programmers to annotate that

sorting is not required for correctness of the program, allowing it to choose deterministic

encryption for the keys (which preserves equality, necessary for grouping values by key)

rather than order-preserving encryption. The shuffle phase will be performed as usual by

the Hadoop framework but will no longer guarantee that the underlying plaintext keys are

in sorted order.

2.4.3 Optimizations

In order to scale to large datasets, I implemented a number of optimizations to the translator

and runtime which can be categorized as follows:

Data serialization. Textual formats are very commonly used for MapReduce programs,

with numbers represented as decimal strings. This encoding is highly inefficient for the

mostly binary ciphertext data. Hence MrCrypt uses a binary serialization system, Avro1, to

store ciphertext.

Tuning Hadoop framework parameters. I tune Hadoop framework parameters such as

the number of simultaneous map and reduce tasks, heap size, RAM used for shuffle phase,

total number of reduce tasks, block size for the distributed file system, etc. based on the

1http://avro.apache.org
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hardware on which they run. This is a manual process which depends on the program, data

size as well as the cluster resources. These optimizations apply equally well to both the

plaintext and ciphertext programs as they have similar data access patterns.

Efficient encoding of constants. I implemented a simple optimization for the case when

the map function emits constant integer values. For example, in the standard MapReduce

implementation of word count the map function emits the tuple 〈w, 1〉 for every word w in

the input, and the reduce function sums up the numbers in the second component of each

tuple. While this is efficient in the plaintext, the AH ciphertext for the number 1 in the

translated program is 512 bits long. This causes significant slowdowns as the map’s output

is saved to the disk and read back and the entire data is kept in memory while sorting.

The tool applies an optimization whenever either a constant integer value or a final

variable initialized to an constant integer value is emitted by the map function. The op-

timization creates a dictionary in the translated program which associates symbols (repre-

sented by integers) with their ciphertexts. In the word count example, the plaintext map

function contains @putColumn(col0, word) and @putColumn(col1, 1) for every word and

the translated map function contains @putColumn(col1, S) and the reduce function has

access to the dictionary which maps S to the AH ciphertext of 1.

2.5 Evaluation

This section describes the experimental evaluation of MrCrypt. I have applied encryption

scheme inference to all programs in three MapReduce benchmark suites, in order to illustrate

the applicability of the approach. I have also executed programs from one of the three suites

on a cluster at scale to determine the run-time overhead of executing on encrypted data.

Finally, I have used a set of microbenchmarks to isolate the client-side and server-side costs

of encryption.
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2.5.1 Benchmark Programs

The three benchmark suites are respectively listed in Tables 2.1, 2.2 and 2.3. For each

benchmark, the number of source lines of code determined by the SLOCCount tool [Whe15]

are listed.

PIGMIX22 is a set of 17 benchmark programs written for the Pig framework, which

provides a high-level language for writing large-scale data analysis programs called Pig Latin

[ORS08a]. The framework compiles Pig Latin scripts into MapReduce programs and the

runtime manages the evaluation of these programs. The PIGMIX2 benchmarks each come

with Pig Latin scripts as well as hand-written MapReduce programs which the authors

believe are efficient ways to execute the scripts. The programs run on a dataset primarily

comprised of two tables: the PageViews table has 9 columns and the Users table has 6

columns.

Pavlo et al. [PPR09] compare the performance of parallel databases that accept SQL

queries with equivalent MapReduce programs. Their evaluation employs a standard word-

search task [DG10] along with five other MapReduce benchmarks that perform various an-

alytics queries,which I hereafter refer to as “the Brown suite.”

The Purdue MapReduce Benchmarks (PUMA) Suite [ALT12] contains 13 diverse MapRe-

duce programs dealing with different computational and data patterns. In addition to per-

forming encryption scheme inference, I also run these benchmarks on the large datasets that

are provided with the benchmarks: 50GB Wikipedia documents for the Word Count, Grep,

Inverted Index, Term Vector, and Sequence Count benchmarks; 27GB movies data for the

Histogram Movies and Histogram Ratings benchmarks; and upwards of 28GB of synthetic

data for the rest of the benchmarks.

A few modifications to the benchmarks are made to work around current limitations of

MrCrypt:

• The supported encryption schemes do not handle floating-point numbers, so all bench-

2https://cwiki.apache.org/PIG/pigmix.html
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marks that use floating-point numbers have been converted to use integers.

• The implementation of OP supports comparisons for integers but not for strings, ne-

cessitating modifications to three benchmarks. First, I modified the Aggregate Variant

benchmark in the Brown suite to represent an IP address as four integers rather than

a single string. Second, Self Join in the PUMA suite takes as input alphanumerically

sorted text consisting of the string “entryNum” followed by 10 digits. I modified the

input dataset to only include the numbers. Finally, Tera Sort in the PUMA suite sorts

a column for which the input data consists of 10 random characters. I restrict the

input data for this column to be populated by numeric characters.

• Three benchmarks in PIGMIX2 — L8, L15, and L17 — compute an average over some

columns, which requires support for division. I modified these benchmarks to instead

return a pair of the sum and the element count.

2.5.2 Experimental Setup

The experiments were run on the compute cluster at Max Planck Institute for Software

Systems. The MapReduce computations were run on two Dell R910 rack servers each with

4 Intel Xeon X7550 2GHz processors, 64 x 16GB Quad Rank RDIMMs memory and 174GB

storage. The experiments ran on a total of 64 cores and had access to 1TB of RAM and

348GB of permanent storage. The machines were a shared resource and were under light

load from other research projects. The Hadoop framework was configured to run 60 map

and reduce tasks in parallel across the 64 available computational units.

In addition I used four Dell R910 rack servers (each with 2 Intel Xeon X5650 2.66GHz

processors, 48GB RAM and 1TB hard disks) to host the distributed file system. No MapRe-

duce computations were run on these machines and they were only used to serve input data

and to store results. These machines were also a shared resource under regular load from

other researchers.
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2.5.3 Experimental Results

We are interested in three key metrics:

1. Annotation burden: How much extra work must the programmer do to make the

existing MapReduce programs run securely?

2. Inference effectiveness: Does MrCrypt find the most efficient encryption scheme? How

often is fully homomorphic encryption required?

3. Time and space overhead: How much runtime and storage cost does encrypted execu-

tion incur?

2.5.3.1 Annotation Burden

As mentioned in the implementation section, MrCrypt requires programmers to annotate

parsing code to correlate variables with the input columns from which they are read. The

simple getColumn and putColumn annotations were sufficient to cover all of the file formats

used in the benchmarks.

The encryption inference can otherwise be accomplished without any user annotations.

However, as mentioned earlier, MrCrypt allows users to annotate the fact that keys in a

MapReduce program’s output need not be in sorted order. I found that sorting is unnecessary

in 29 of the 36 benchmarks because the specification does not require sorted output, so I

included the associated annotation for these programs.

On average I added 12 annotations to each benchmark, which amounts to 7% of the lines

of code.

2.5.3.2 Encryption Scheme Inference

Since FH is inefficient in practice, the utility of the tool depends on whether it is able to

find efficient encryption schemes for real-world MapReduce programs. I present the results
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for the three benchmark suites in Tables 2.1, 2.2 and 2.3. For each benchmark, I measure

the source lines of code by using the SLOCCount tool [Whe15] along with the encryption

schemes inferred for the input columns. For each encryption scheme the number of columns

for which that scheme was inferred is mentioned in parenthesis. For each benchmark, the

analysis time was less than 1 second, and the entire compilation time (including analysis and

translation) was less than 5 seconds.

On 24 of 36 benchmarks, MrCrypt can identify encryption schemes to support the nec-

essary functionality without requiring fully homomorphic encryption. Hence 66.7% of the

programs can be executed securely through the system. I also manually analyzed each

benchmark to verify the correctness of these results.

In the four cases of the PIGMIX2 suite where FH is required, the programs perform both

equality and addition on the same column of data, for example to obtain a sum of all distinct

values in the column. One of the benchmarks in the Brown suite (UDF) invokes performs

string operations that MrCrypt does not support, one (Search) requires regular expression

evaluation, and the other benchmark (Join) performs a sort on data obtained by computing

a sum over some column. I am not aware of any homomorphic encryption scheme other than

FH supporting both order comparisons and addition. In the PUMA suite, FH is required

for regular-expression evaluation (Grep) and for computing cosine similarity (K-means and

Classification).

Finally, MrCrypt determines that two benchmarks in the PUMA suite require FH for

intermediate data produced by the map function. First, Term Vector counts all occurrences

of words in documents and sort them by their frequency. This is implemented by using the

map function to output 〈doc-name, word, 1〉 for every word, and the reduce to sum up all

the 1s for each word in a document and then sort the words using the sums. Hence the

numbers are both summed up and compared for order which results in FH for that variable.

However, since we need to use DET to encrypt the input words to preserve equality, the

number of occurrences of each (encrypted) word is already being leaked to the adversary.

Hence leaving the integers in plaintext would not entail any extra loss of confidentiality, so
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in fact the benchmark can be executed securely without FH.

Second, Histogram Movies uses the map function to calculate the average rating of each

movie rounded to the nearest 0.5. The reduce function then counts the number of movies

with the same average rating. This functionality requires addition, division, and rounding

operations and hence requires FH. However, I observe that we can refactor the benchmark

into two different MapReduce programs to avoid FH. I refer to these two programs as

Histogram Movies 1 and Histogram Movies 2, and they are also listed in Table 2.3. Histogram

Movies 1 performs just the map phase of the original benchmark, with a trivial reduce,

outputting the sum of all ratings of each movie along with their count. Histogram Movies

2 takes as input the average rating of each movie and performs just the reduce phase of

the original benchmark, counting the number of movies with each average rating. MrCrypt

infers encryption schemes for each of these benchmarks that allows them to execute securely

without requiring FH.

To achieve the functionality of the original Histogram Movies benchmark, the client must

decrypt the AH ciphertext output from Histogram Movies 1, re-encrypt it to use DET after

computing the average and rounding it to the nearest 0.5 (and then doubling it to make

it an integer), and provide the resulting ciphertext as input to Histogram Movies 2. While

the client must perform some extra work, it does so on a small amount of data. On the

input dataset, Histogram Movies 1 operates on 27GB of movie-rating data while Histogram

Movies 2 only operates on 4MB of data that results from summing those ratings per movie

(Table 2.4).

2.5.3.3 Time and Space Overhead

The approach incurs two main sources of performance overhead, which we evaluate sepa-

rately.

Client-side Overhead The client-side overhead consists of the need to encrypt the input

data before sending it to the cloud and decrypt the output data from the computation. I
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evaluated this cost by measuring the time taken for encrypting and decrypting 500 random

32-bit integers. The OP , AH, and MH schemes take an average of 10ms, 4ms, and 1.5ms to

encrypt each integer, respectively, and less than 0.5ms per decryption. Blowfish (the basis

for RAND and DET ) has much less overhead of 200ns for each encryption and decryption

operation. Thus, for example, encrypting one million data items with AH requires a bit

more than one hour. However, in the target application domains the encryption can be

performed incrementally as data is generated, and the encryption cost is amortized across

multiple runs of the cloud computations.

Server-side Overhead The server-side overhead consists of the need to perform homomor-

phic operations on encrypted data rather than the original operations on the plaintext data.

To isolate this overhead I developed a set of microbenchmarks, each of which performs a

single operation one million times on the input data. For each operation I have one version

of the microbenchmark that accepts plaintext integers and another version that uses the

appropriate homomorphic encryption scheme to operate on ciphertext. I use a corpus of

10,000 32-bit integers and their corresponding ciphertexts as the input data. The perfor-

mance overhead for encrypted execution is significant: slowdowns of 2× for DET , 4× for

OP , 500× for AH, and 75× for MH.

Fortunately, the overheads on real MapReduce benchmarks are much lower, since the

homomorphic operations contribute only a small percentage of the overall time. To evaluate

the overhead of encryption on real-world data, I ran the PUMA benchmarks at scale on large

data on a cluster. For each benchmark, I report the runtime for the original program, and

the runtime for the transformed program. I also report the plaintext size and ciphertext size

of the input data. I tabulate the results in Table 2.4.

The homomorphic operations add an insignificant overhead and the size of the ciphertext

is the main factor in determining the runtime of the translated programs. On average the

translated programs take 2.61× as long to execute as the original programs. However,

Histogram Movies 1 is an outlier due to the need for AH, which uses 512 bits of ciphertext

for each 32-bit integer, on a large amount of data. Excluding this benchmark the translated
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programs take an average of 1.57× as long to execute as the original programs.

In the three benchmarks where the program operating on ciphertext runs faster than

the plaintext program (Adjacency List, Self Join, and Tera Sort), the speedup is due to

using binary formats for encoding the encrypted numbers while the plaintext input uses a

particularly inefficient textual format to encode numbers. In these benchmarks, numbers

are padded with zeros to keep the length of each column the same so as to make use of the

built-in sorting algorithm in the shuffle phase. Hence the number 1 would be represented as

0000000001. This approach uses 10 bytes to encode the range of 32-bit integers while the

encrypted data uses at most 8 bytes to store the resulting 64-bit OP ciphertext. The binary

format uses variable-length encoding and hence might use fewer than 8 bytes in some cases.

2.5.4 Discussion

Space Efficiency. Encryption schemes like AH require a significant blowup in space,

which has a direct impact on execution time as well. We can reduce the overhead for Pallier

encryption (the implementation of AH) using a packing optimization [GZ07].

Avoiding Fully Homomorphic Encryption. I showed earlier how refactoring the His-

togram Movies benchmark can make it amenable to this approach, and believe there are

additional opportunities along these lines. For example, four benchmarks that currently re-

quire FH require a “sum of distinct elements” functionality, which typically looks as follows:

I n t eg e r f ( List<Integer> revenues ) {

HashSet<Integer> hs = new HashSet<Integer >() ;

for ( In t eg e r r : revenues ) hs . add ( r ) ;

int sum = 0 ;

for ( In t eg e r r : hs ) sum += r . intValue ( ) ;

return new I n t eg e r (sum ) ;

}

The revenues column has two operations performed on it: equality (from the hashset) and

addition. Hence the tool infers FH in this case. However, this program can be run securely

by keeping two copies of the revenues column, one for equality and the other for addition, and

keeping a correspondence between them (I use the class P2 for pairs, along with associated

23



Benchmark Lines Of Encryption Schemes

Code Inferred for Inputs

L1 137 DET(2), RAND(7)

L2 148 DET(1), RAND(8)

L3 185 AH(1), DET(1), RAND(7)

L4 141 DET(2), RAND(7)

L5 169 DET(1), RAND(8)

L6 139 DET(3), FH(1), RAND(5)

L7 158 DET(1), OP(1), RAND(7)

L8 170 AH(2), RAND(7)

L9 196 OP(1), RAND(8)

L10 245 OP(3), RAND(6)

L11 184 DET(1), RAND(8)

L12 218 AH(1), DET(3), OP(1), RAND(4)

L13 182 DET(1), RAND(8)

L14 183 DET(1), RAND(8)

L15 188 DET(2), FH(2), RAND(5)

L16 134 DET(1), FH(1), RAND(7)

L17 259 FH(5), OP(20)

Table 2.1: Inference results on the PIGMIX2 benchmarks.

operations, from the Java library fj3):

I n t eg e r f ( List<Integer> erevenues ,

L ist<Integer> arevenues ) {

HashSet<Integer> hs = new HashSet<Integer >() ;

L ist<Integer> d i s t i n c t s = l i s t ( ) ;

for (P2<Integer , Integer> p :

erevenues . z ip ( arevenues ) ) {

i f ( ! hs . conta ins (p . 1 ( ) ) ) {

hs . add (p . 1 ( ) ) ;

d i s t i n c t s . cons (p . 2 ( ) ) ;

}

}

int sum = 0 ;

for ( In t eg e r r : d i s t i n c t s )

3http://functionaljava.org/
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Benchmark Lines of Encryption Schemes

Code Inferred for Inputs

Search 109 FH(1)

Select 71 OP(1), RAND(2)

Aggregate 99 AH(1), DET(1), RAND(7)

Aggregate Variant 162 AH(1), DET(3), RAND(7)

Join 518 AH(1), DET(2), FH(1), OP(1), RAND(4)

UDF 58 AH(1), DET(1), FH(1), RAND(6)

Table 2.2: Inference results on benchmarks from the Brown suite.

sum += r . intValue ( ) ;

return new I n t eg e r (sum ) ;

}

It would be interesting to explore performing such preprocessing automatically in order

to extend the applicability of the current approach.

In the next chapter, I use automatic rewrites to do performance optimizations on cloud

programs. Cloud programs are generally split into small functions with well-defined seman-

tics (like the map and reduce functions presented here) which makes a number of analyses

amenable to these applications. In this chapter we took advantage of the usually simple

dataflow that exists between map and reduce functions to add constraints in the inference

algorithm. In the next chapter, we will take advantage of commutativity across such func-

tions to optimize programs for incremental performance when the code in the workflow

changes.
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Benchmark Lines Of Encryption Schemes

Code Inferred for Inputs

Word Count 88 DET(1)

Inverted Index 126 DET(1)

Term Vector* 187 DET(1)

Self Join 136 OP(1)

Adjacency List 157 OP(2)

K-Means 428 DET(1), FH(1), OP(1)

Classification 228 DET(1), FH(1), OP(1)

Histogram Movies* 132 AH(1), RAND(2)

Histogram Movies 1 113 AH(1), RAND(2)

Histogram Movies 2 98 AH(1), DET(1)

Histogram Ratings 115 DET(1), RAND(2)

Sequence Count 124 DET(1)

Ranked Inverted Index 127 DET(4), OP(1)

Tera Sort 192 OP(1), RAND(1)

Grep 55 FH(1)

Table 2.3: Inference results on the PUMA benchmark suite.
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Benchmark Original Program Transformed Program Plaintext Size Ciphertext Size

Runtime (sec) Runtime (sec) (GB) (GB)

Word Count 528 1064 50 79

Inverted Index 395 658 50 79

Term Vector 556 1114 50 79

Self Join 252 234 28 26.1

Adjacency List 823 769 28 26.5

Histogram Movies 1 138 1801 27 388

Histogram Movies 2 22 32 0.004 0.067

Histogram Ratings 214 427 27 36

Sequence Count 492 1006 50 79

Ranked Inverted Index 305 525 37.8 60.3

Tera Sort 1080 1062 28 26.9

Table 2.4: Performance results on the PUMA benchmark suite
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CHAPTER 3

Vega

3.1 Introduction

Data analysts report spending a majority of their time writing code to ingest data from

several sources, transform them into a common format and perform several exploratory

computations on the data to understand its structure [KPH12]. A difficult problem as it is,

this is exacerbated by the immense sizes of data increasingly being collected by organizations.

The scale of the data (ranging from several hundred gigabytes to petabytes) led to the coining

of the term “Big Data Applications”. These programs typically run on the cloud and aim

to extract patterns from several semi-structured data sources.

Extracting such insights from data is usually an iterative process. Programmers start out

with an initial workflow, observe the output and iteratively improve the workflow by adding

new transformations or modifying existing ones until the output is in the desired form.

Prior work ([MMI13], [PD10]) has addressed incremental re-computation in the face of

changes to the input. However, these approaches are not applicable when the code changes.

Existing frameworks run each development iteration anew, discarding all work done in the

previous iterations. The immense scale of the data typical in cloud computations makes these

kinds of iterations very time consuming. It is not uncommon for data scientists to wait for

3+ hours, only to find that they should have filtered out some obvious outliers. To alleviate

this, users typically select a small sample from the dataset and perform explorations on that

set. This approach is incomplete in most cases and many times leads to additional time

spent trying to figure out what was missing in the sample that was present in the original
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dataset.

In this chapter I describe Vega, a library that performs incremental re-computation in

the face of code changes.

3.2 Problem Definition and Approach

To make the problem concrete, define a workflow to be a list of transforms. A transform

is usually a data-parallel function such as map, filter, reduce etc. Please see the previous

chapter for semantics of map and reduce functions. Let us consider consider a workflow

T1 → T2 → . . . → Tn. I.e the input to Ti is the output of Ti−1. We consider the output

of a transform to be a multiset. In our setting, a user has already run the workflow, let

us call the output produced by transform Ti as Oi. The user observes the final output,

On and decides to add a new transform Tα after Tk. The new workflow now becomes

T1 → . . . Tk → Tα → Tk+1 . . . → Tn. Let O′i be the output produced by transform Ti in the

changed workflow. Clearly (1 <= j <= k) ⇒ Oj = O′j and hence a trivial re-computation

solution is to execute Ok → Tα → Tk+1 → . . .→ Tn. Our goal is to do better than this.

We represent a transform by its type and an anonymous function that determines the

action taken by the transform. We use Scala1 syntax for specifying the functions. For

example Map (x => x + 1) is a map transform that increments every input number by 1,

Reduce ((c1, c2) => c1 + c2) is a reduce transform that sums all the values.

A function f : A→ B is invertible if there exists a function finv : B → A such that ∀x ∈

A. finv(f(x)) = x. If a function is invertible, then it is one-to-one, i.e., ∀x1, x2 ∈ A. f(x1) =

f(x2)⇔ x1 = x2. We use ◦ to denote function composition: ∀x ∈ A. (g ◦ f)(x) = g(f(x)).

As a running example, let us take the standard word count workflow used to test several

big data frameworks. We assume the input is a list of words. The workflow is as follows:

Input -> Map (x => (x, 1)) -> Shuffle -> Reduce ((c1, c2) => c1 + c2)

1http://www.scala-lang.org
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The map transform maps every word to a tuple. The shuffle transform aggregates all the

tuples with the same key (first element). The reduce transform sums all the 1’s corresponding

to each word and outputs the count. Figure 3.1 illustrates this example on a small sample

of data.

A first step in cleaning many datasets is to remove stop-words. Inspired by that, we

look at a case where the user decides to include a filter at the beginning of the workflow to

remove all c’s. In this scenario, the user has already run the above workflow and now wants

to incrementally run the following workflow:

Input -> Filter (x => x != ’c’)

-> Map (x => (x, 1)) -> Shuffle -> Reduce ((c1, c2) => c1 + c2)

Here Tα is Filter (x => x != ’c’) .

3.2.1 First Strategy

We first take notice of existing frameworks like Naiad [MMI13] and Percolator [PD10] that

handle small changes in data. Once a computation is run on some input, these frameworks

can execute the same computation on small changes to input very quickly. Usually they

can get results in time proportional to the changes in the inputs. Vega deals with a slightly

different problem where the code changes in each iteration. However Vega can still leverage

their insights by transforming changes in code into changes in data. To do this, we rewrite

the entire workflow so that instead of computing the result directly, it computes the changes

(or ∆s) that should be made to the old results to produce the new result.

To present it formally, consider the changed workflow, T1 → . . . Tk → Tα → Tk+1 . . . →

Tn, where Tα was added. Using this approach, this workflow is rewritten as follows: Ok →

δTα → ∆Tk+1 . . . → ∆Tn. Each ∆Tm outputs 2 multisets, ∆m+ and ∆m− such that O′m =

(Om ∪ ∆m+) \ ∆m−. For our convenience, we denote an element e ∈ ∆m+ as +(e) and an

element e ∈ ∆m− as −(e). Let Oα = Tα(Ok). δTα starts off the delta computation by

producing the ∆ sets as follows: ∆α+ = Oα \Ok and ∆α− = Ok \Oα.
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Figure 3.1: Word count workflow

In the word count example, the original workflow is now rewritten to use transforms on

changes in data. For example δfilter is: (x => if (x == ’c’) then -(x)). This indicates

that the value x whenever it matches the letter ‘c’ should no longer be included downstream.

Map and shuffle transforms are defined similarly. Reduce transform aggregates all the ∆s and

then inverts their values to subtract it from the previously computed result. Figure 3.2 shows

the input and outputs of ∆ transforms. From the figure, we can see that the incremental

computation only uses the two inputs that are different from the previous result.

As I show in section 3.4.1.1, this performs very well for small to medium data sizes.

However, for large data, this approach takes as much time as rerunning the entire computa-

tion. After further investigation, it became clear that there are a couple of reasons for the

degradation in performance:

Space: Since many delta operators require previous outputs to be cached in memory, as

the data size increases, more intermediate data of the original computation has to be kept

in memory along with the ∆s of the incremental computation.

Time: In most workflows, the time to shuffle data dominates the runtime. As the data

size increases, the size of the ∆s that need to be shuffled increases, causing a significant

amount of time spent in the shuffle phase.
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Figure 3.2: Word count workflow using ∆ transforms. The changes are colored red

Figure 3.3: Word count workflow with filter pushed to the end
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This leads to the insight that the farther downstream a new operator is placed, the

less the amount of data that needs to be kept in memory while running the incremental

computation. In addition, placing the new operator past a shuffle will also save significant

time.

3.2.2 Commutative-rewrites

The insight leads to the idea of optimizing the introduced transform so it can be placed

farther downstream. The key idea is to see if we can rewrite Tα into T ′α so that Ok → Tk+1 →

T ′α → . . . Tn produces the same output as the existing workflow Ok → Tα → Tk+1 → . . . Tn.

This saves us from recomputing Tk+1. This process is repeated until we reach the end of the

workflow or we encounter a non-commutative transform.

Going back to our word count example, we first notice that the map function is invertible.

The inverse function is given by minv((w, c)) : w. That is, the inverse just picks the first

component on the tuple. Using this information, we can rewrite the filter function so it can

use the map’s output as follows resulting in the new workflow:

Input -> Map (w => (w, 1)) -> Filter’ (tup => minv(tup) != ’c’)

-> Shuffle -> Reduce ((c1, c2) => c1 + c2)

We then notice shuffle transform aggregates tuples by the keys and our filter is on the keys. So

we can apply the filter after the shuffle step is done. Finally the reduce transform aggregates

the values and does not change the keys. So we can move the filter past this transform as

well. This results in the final workflow:

Input -> Map (x => (x, 1)) -> Shuffle

-> Reduce ((c1, c2) => c1 + c2) -> Filter’ (tup => minv(tup) != ’c’)

Using commutative-rewrites, we have pushed the transform to the end of the workflow.

The final execution strategy takes the cached output of the original workflow and runs it

through the optimized filter. The optimized workflows performs significantly better for all
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sizes of data as presented in section 3.4.1.1. The reason for the scalability is the the incre-

mental computation now runs in time proportional to the output of the initial computation.

The output of the word count workflow depends on the number of unique words present in

the data and this number does not increase significantly on many real world data sets.

3.2.3 Combining the strategies

Commutative-rewrites are useful when pushed past transforms that produce significantly

less output relative to their inputs, such as after a reduce. ∆ computation is more general

while commutative-rewrites might need inverses of functions to be available. Thus Vega

attempts to push a new operator as far past shuffles in the workflow as possible first and

then computes the changes in data brought about by the new transform. The rest of the

workflow proceeds using ∆ computation. This gives us the ∆s (i.e. changes) from the final

result of the original computation. The incremental result is computed by integrating these

changes in the old result.

3.3 Design and Implementation

3.3.1 Vega API

Vega public API is sketched in listing 3.1. Programmers create workflows by instantiating

the WorkFlow class and add transforms using the inject method. This allows transforms

to be injected at any place in the workflow. Then they call the run method to execute it

and get the results. After observing the results, they are able to introduce new transforms

to the workflow by using the inject method again.

The library provides several versions of map and filter transforms. Each map transform

takes a function that performs the map along with its inverse. If the inverse is null, then

the function is assumed to be noninvertible. Vega introduces new transforms (MapKey,

MapValue, FilerKey, FilterValue) on top of default map and filter transforms as transforms
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// transforms

class Map(f: (A => B), finv: (B => A)) extends Transform[A, B]

class Filter(f: (A => Boolean )): Transform[A, A]

// pairwise transforms

class MapKey(f: (K => K’), finv: (K’ => K)) extends Transform [(K, V), (K’, V)]

class MapValue(f: (V => V’), finv: (V’ => V)) extends Transform [(K, V), (K, V’)]

class FilterKey(f: (K => Boolean )): Transform [(K, V), (K, V)]

class FilterValue(f: (V => Boolean )): Transform [(K, V), (K, V)]

class Reduce(f ((V, V) => V’), inv: (V => V), fzero: (V => Boolean ))

: Transform [(K, V), (K, V’)]

class Workflow () {

//For injecting transform ‘t’ in the workflow immediately past the transform ‘after ’

def inject(t: Transform[B, C], after: Transform[A, B]): Unit

//Run the workflow and return the result

def run (): Array[A]

}

Listing 3.1: Vega API

over disjoint fields can be commuted past each other even if they are not invertible. Vega also

provides a suite of functions that can be used in transforms that includes several invertible

and distributive functions.

3.3.2 Implementation

Vega is implemented as a library on top of Apache Spark framework. The basic unit of

a Vega workflow is the class Transform (see listing 3.2). This associates each transform

with a Spark RDD, the basic datastructure used by Spark for execution. It is required to

support one function, t.commuteWith(u) that decides if two transforms, t and u, adjacent

to each other in the workflow can be commuted. commuteWith returns None if they cannot

be commuted, or if they can, it returns a new transformer that can be inserted after u. In

addition, each transform keeps track of the fields read and written by it. This is used in

the implementation of commuteWith function to optimize transforms acting on disjoint fields

(see section 3.3.2.1).
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abstract class Field

case object Row extends Field

case object Column extends Field

// transform from A to B

abstract class Transform[A, B] {

val readSet: Set[Field] = Set(Row , Column)

val writeSet: Set[Field] = Set(Row , Column)

val rdd: RDD[B] = null // Spark RDD corresponding to this transform

def commuteWith(other: Transform[B, C]): Option[Transform[C, C]]

}

Listing 3.2: Vega API

The WorkFlow class provides two ways to chain transforms together. All transforms

added to the WorkFlow object (using the inject method) before calling run are executed

regularly. After the initial run, inject method adds transforms by performing rewrites to

run them incrementally.

3.3.2.1 Commutative-rewrites

Currently we only support maps and filters for commutative-rewrites. The commuteWith

function is defined by the rules in tables 3.1 and 3.2. t.f refers to the filter function if t is

a filter transform, t.m refers to the map function if t is a map transform and t.r the reduce

function if t is reduce transform. f−1 refers to the inverse function of f .

The table matches transforms of type u the columns with that of type of t in the rows.

In particular, the cell for t/u contains the code t′ such that t ◦ u is equivalent to u ◦ t′. For

example, if t is a transform that maps only keys and u is a filter only on values, then t can

be safely commuted with u and no rewrite is necessary. Hence the table cell corresponding

to that case only has t. On the other hand, if t is a map on values, then the map has to be

inverted before applying u filter. This is given by t.f ◦ u.m−1.

Similar case arises when t and u are maps on the same field (key or value). In that case,

u’s map first needs to be inverted, then t applied (because t logically occurs before u in the
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u→ Filter Map

t ↓ Key Value Key Value

Filter (Key) t t t.f ◦ u.m−1 t

Filter (Value) t t t t.f ◦ u.m−1

Map (Key) None t u.m ◦ t.m ◦ u.m−1 t

Map (Value) t None t u.m ◦ t.m ◦ u.m−1

Table 3.1: Rewrite rules 1

workflow) and finally u’s map needs to be applied again. This is given by u.m ◦ t.m ◦u.m−1.

If an invertible map is applied to keys, then it is one-to-one and hence preserves the

grouping of keys done by shuffle. Hence shuffle and reduce transforms can be safely commuted

with such maps. If a map is not invertible, it could potentially require another stage of

shuffling to re-group the values. However, this shuffle is faster as it operates only on the

inputs that are remapped.

Finally, a reduce function cannot commute with an arbitrary map on values. This is

because the reduce function has aggregated the values and there is no way, in general, to

reapply the map on the aggregation. However, in the case where the map function distributes

over the reduce function, we can apply the map after the reduce aggregation is completed.

The distributive property is defined as follows: u.r(t.m(a), t.m(b)) = t.m(u.r(a, b)). This

property implies that the map function can be applied to the aggregate value computed by

reduce function. For example if a map function is doubling its inputs, it can be pushed

after a reduce function that adds all the values (since 2x + 2y = 2(x + y)). We present an

interesting example of this case in section 3.4.2.

When a new transform is introduced, the commutative-rewrite algorithm works as follows:

It starts with the initial placement of the transform and successively refines it by iteratively

calling commuteWith function on the immediate downstream transform until the function

returns None or we have pushed the transform all the way to do end.
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u→ Shuffle Reduce Join

t ↓

Filter (Key) t t t

Filter (Value) t None t.f(res1)

Map (Key) t if invertible or

extra shuffle

t if invertible or

extra shuffle

None

Map (Value) t t if t.f

distributes over u.r

t.f(res1)

Table 3.2: Rewrite rules 2

It is left for future work to verify or construct inverses and distributive annotations. In

addition to reduce, Spark also provides a “combine” transform that aggregates values on the

machine executing the map transform before sending them to the reduce transform. Vega

supports these combine transforms in a similar way to reduce transforms.

3.3.2.2 ∆ Computation

For ∆ computation, Vega follows a strategy similar to Naiad. A general transform t can be

converted into a ∆ transform ∆t as follows: let mp
− and mp

+ be changes propagated from

previous ∆ transform in the workflow and let Op be its previous output. Now generate the

new input for the transform by integrating the changes: I t = (Op ∪mp
+) \mp

−. Construct

∆t = (mt
+,m

t
−) where mt

+ = (t(I t) \ Ot), mt
− = (Ot \ t(I t)) and Ot is the previous output

of t. This runs in the order of the input to t and is clearly inefficient. However, for many

known transforms, the output changes can be computed efficiently.

For example: a map transform with function m can be defined to work on ∆ data as

follows: ∆m(+x) = +m(x), ∆m(−x) = −m(x). Please refer to [MMI13] for details on how

transforms can be optimized to work on ∆ data.
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3.3.3 Changing Transforms

While we have discussed addition of transforms in this section, deletion and changing of

existing transforms follows similar strategies. For ∆ computation, it is just a matter of

taking the “diff” of the workflow before and after the changes and propagating them. For

commutative-rewrites on maps, deletion has the same effect of applying the inverse, while

changing a map is simulated by applying the inverse of the old map, followed by the new

map. Removing a filter or replacing it cannot be handled with commutative rewrites and

we use ∆ computation.

3.4 Evaluation

I evaluate Vega on 3 experiments based on existing workflows on large-scale data. We would

like to understand the expressiveness of the library and its performance characteristics in

each case.

The experiments were carried out on a cluster containing 16 machines with i7 processors,

each running at 3.40GHz and equipped with 4 cores (2 hyper-threads per core), 32GB of

RAM and 1TB of disk capacity. The operating system is 64bit Ubuntu version 12.04. The

datasets were all stored in HDFS version 1.0.4 with a replication factor of one. Vega uses

Spark 1.2.1 as the execution engine for running the workflows.

In each experiment, I run an initial workflow and then make a change to it and run the

changed workflow incrementally. This is compared against running the changed workflow

from scratch. Each experiment is run 3 times and the average time is reported.

I take real queries from existing work and either make incremental versions of them or

add my own incremental queries on top of existing ones. Word count in section 3.4.1 is an

existing workflow that I have made incremental by adding a filter, map, filter over map.

They are inspired by real-world use cases but simplified for this example. All queries are

run on existing data. All the queries in WikiReverse website [Fai15] are made incremental in
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section 3.4.2. The incremental portion of query 3 is my addition on the existing query. All

its queries are also run on existing data. Both initial and incremental queries in section 3.4.3

are from [LDY13] but they do not provide any data, so I just show that the optimizations

work in this scenario.

3.4.1 Word Count

This experiment is based on workflow discussed in the motivating example. As mentioned

before word count is widely used to test big data frameworks and it is representative of many

data analytic workflows. We run the tests on two datasets. One based on [IPW11] (which

we call “Word Bag”) that is composed of 8000 words in Zipf distribution, and another taken

from Wikipedia2. The results for both datasets are shown in table 3.3.

The initial workflow is:

File("...")

-> FlatMap(line => line.split(" "))

-> Map(word => (word, 1))

-> Reduce((count1, count2) => count1 + count2)}

That is, we split every line into words, associate the number 1 with every word, aggregate

all the 1s corresponding to each word and sum them up.

In the first query, we add a filter to only include words that have at least 3 characters.

The new workflow becomes:

File("...")

-> FlatMap(line => line.split(" "))

-> Filter(word => word.length > 2) //added

-> Map(word => (word, 1))

-> Reduce((count1, count2) => count1 + count2)

2https://www.wikipedia.org
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In the second query, we start out with the original workflow of the previous test and add

a map to add suffix to every word in the dataset. This could be useful to convert the output

into comma separate values (CSV) for example. The new workflow becomes:

File("...")

-> FlatMap(line => line.split(" "))

-> Map(word => (word, 1))

-> MapKey(word => word + suffix) //added

-> Reduce((count1, count2) => count1 + count2)

Similar to the previous case, Vega pushes the map all the way to the end and computes

the result.

In the third query, we start out with the previous workflow with the map and add the

filter from the first test to get:

File("...")

-> FlatMap(line => line.split(" "))

-> Filter(word => word.length > 2) //added

-> Map(word => (word, 1))

-> MapKey(word => word + suffix)

-> Reduce((count1, count2) => count1 + count2)

In this case Vega has to also invert the second map, by removing its suffix, to push the

filter towards the end.

From the table we can see that Vega usually computes incremental results an order to

two magnitude faster than rerunning the computation again. The output of any word count

workflow depends on the number of unique words present in the data. This results in two

observations:

1. There aren’t many unique new words added when we go from 50 GB to 100 GB in
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Filter Map Filter over Map

Regular Incremental Regular Incremental Regular Incremental

50 GB Word Bag 69.3 0.5 76.7 0.6 76.4 0.3

100 GB Word Bag 59.3 0.9 67.5 0.7 70.7 0.5

50 GB Wikipedia 209.4 24.4 358.1 27.6 163.2 45.2

100 GB Wikipedia 981.2 26.2 1067.4 29.8 1045.4 47.5

Table 3.3: Results on word count workflow. Time in seconds.

either data sets. Hence, Vega performs incremental computations in roughly the same

time even when the input size has doubled.

2. Since Word Bag only has 8000 unique words, its output is significantly smaller than

Wikipedia set and hence Vega performs significantly better on Word Bag set.

This experiment reiterates an important feature of Vega— it computes incremental results

in time proportional to the output of the initial workflow. Many big data workflows start

out with huge quantities of input data but reduce it down to significantly smaller sizes after

processing. Hence Vega performs especially well on such workflows.

3.4.1.1 Comparing Two Strategies

We use the first query to compare the performance of vanilla ∆ computation and that with

commutative-rewrites. In the first test, we run the filter in-place using ∆s. The result on

Word Bag dataset is plotted in figure 3.4. We notice that while the incremental computation

performs well for small data, it slows down as data size increases, eventually taking as long

as rerunning the changed computation from scratch. As discussed earlier, this is due to the

space required to keep old outputs in cache along with the data required for incremental

computation and time required to shuffle the ∆s.

In the next test, we optimize it with commutative-rewrites first. As discussed in the

example, Vega pushes the filter all the way to the end and computes the result. The results
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Figure 3.4: ∆ Computation Results of query 1 (log-scale used for Y-axis)

on the same Word Bag dataset are plotted in figure 3.5. We notice that the incremental

computation scales really well for all sizes of input data.

3.4.2 Wiki Reverse

The WikiReverse project [Fai15] aims to understand how people use Wikipedia on the web.

It does so by computing a number of statistics such as the number of links incoming to

wikipedia.org domain, the number of links to individual Wikipedia language, the number

of popular websites linking to Wikipedia, and many others. The dataset used by WikiReverse

is Common Crawl Dataset 3. Common Crawl is a non-profit foundation that collects data

from web pages using a crawler and publishes massive corpus of data. This experiment uses

the same data and all the queries used by WikiReverse project (with query 3 below slightly

augmented) and runs them incrementally.

Query 1: We start out with a scenario where an analyst want to compute how many

3https://commoncrawl.org
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Figure 3.5: Rewritten Computation Results of query 1 (log-scale used for Y-axis)

links in the Common Crawl dataset point to Wikipedia.

File("...")

-> Map(extractLinks)

-> Map(link => (link, 1))

-> MapKey(getDomain)

-> MapKey(stringToURL)

-> Reduce((count1, count2) => count1 + count2)

The workflow first extracts links from each crawled page and associates each link with

1 in order to count them later. Domains are extracted from the links and then converted

into Java URL objects. The final reduce groups domains together and counts the number of

links pointing to them.

After running the workflow, the analyst realizes that she has made a slight error here —

she forgot to filter the data to only include wikipedia links. This workflow is measuring the
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Figure 3.6: Query 1 Results (log-scale used for Y-axis)

total number of links present in the Common Crawl dataset instead of measuring just the

Wikipedia links. These kinds of errors are very common in exploratory analysis.

The analyst fixes the error by adding a filter to only include Wikipedia domain. The new

workflow is as follows:

File("...")

-> Map(extractLinks)

-> Map(link => (link, 1))

-> MapKey(getDomain)

-> FilterKey(domain => domain.contains("wikipedia.org")) //added

-> MapKey(stringToURL)

-> Reduce((count1, count2) => count1 + count2)

The response time for this query for various input data sizes is presented in figure 3.6.

Vega is able push the filter to the end and compute the result quickly.
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Query 2: Now let us assume that the analyst is only interested in English language

articles. She could add another filter to the workflow as follows:

File("...")

-> Map(extractLinks)

-> Map(link => (link, 1))

-> MapKey(getDomain)

-> FilterKey(domain => domain.contains("wikipedia.org"))

-> FilterKey(domain => domain.contains("en.")) //added

-> MapKey(stringToURL)

-> Reduce((count1, count2) => count1 + count2)

This only includes domains like en.wikipedia.org or en.m.wikipedia.org — that

point to English language articles. The results are plotted in figure 3.7. Vega pushes this

filter to the end as well and computes the result. In this way, the analyst is able to compute

various analytics such as the most popular languages in Wikipedia (English followed by

Spanish) very quickly using incremental computation.

Query 3: In this test, an analyst would like to measure the incoming traffic generated

by popular sites to Wikipedia. As a first step, she writes the following workflow to calculate

the incoming links from popular sites:

File("...")

-> Map(page => extractPageURL(page), extractLinks(page))

-> FilterValue(link => link.contains("wikipedia.org"))

-> Map((page-url, links) => (page-url, links.length))

-> MapKey(getDomain)

-> MapKey(stringToURL)

-> Reduce((count1, count2) => count1 + count2)

-> Join(popularDomainsRDD)
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Figure 3.7: Query 2 Results (log-scale used for Y-axis)

This query assumes that every incoming link generates the same amount of traffic. How-

ever, in practice, different sites produce different kinds of traffic. Let us make a simplifying

assumption sites with .com domains generate twice as much traffic as other domains on

average. She now adds a weighted map to the workflow as follows:

File("...")

-> Map(page => (extractPageURL(page), extractLinks(page)))

-> FilterValue(link => link.contains("wikipedia.org"))

-> Map((page-url, links) => (page-url, links.length))

-> MapKey(getDomain)

-> Map((domain, link-count) => //added

if (domain.contains(".com")) (domain, (link-count * 2))

else (domain, link-count))

-> MapKey(stringToURL)

-> Reduce((count1, count2) => count1 + count2)
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Figure 3.8: Query 3 Results (log-scale used for Y-axis)

-> Join(popularDomainsRDD)

Vega takes advantage of the distributive property of times over plus and is able to push

past the reduce and eventually past join, hence reusing the entire output of the previous

computation. We plot the results in figure 3.8.

Query 4: In this test, the analyst would like to understand which topics in Wikipedia

are linked to the most. She starts out with this initial workflow:

File("...")

-> Map(page => extractLinks(page))

-> Map(link => (link, 1))

-> FilterKey(link => link.contains("wikipedia.org"))

//extractTopic returns the topic part of the URL

//e.g: returns ‘United_States’ from ‘https://en.wikipedia.org/wiki/United_States’

-> MapKey(link => extractTopic(link))

-> Reduce((count1, count2) => count1 + count2)
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Figure 3.9: Query 4 Results (log-scale used for Y-axis)

While this gives the results that she wants, she realizes that the topics extracted from

URLs have underscores separating them and not spaces. Since it is natural to use spaces to

separate words (and since many word processing libraries assume space as the separator),

she decides to update the workflow to convert underscores to spaces:

File("...")

-> Map(page => extractLinks(page))

-> Map(link => (link, 1))

-> FilterKey(link => link.contains("wikipedia.org"))

//extractTopic returns the topic part of the URL

//e.g: returns ‘United_States’ from ‘https://en.wikipedia.org/wiki/United_States’

-> MapKey(link => extractTopic(link))

//change ‘United_States’ to ‘United States’

-> MapKey(topic => topic.replace(’_’, ’ ’)) //added

-> Reduce((count1, count2) => count1 + count2)
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Since this is an invertible map (the inverse just replaces spaces with underscores), Vega

is able to push it past the reduce and compute the result quickly. The results are plotted in

figure 3.9.

Discussion: Similar to the word count example, we notice that the output of the initial

computation is not very large, even when the initial computation runs on large data. This

makes Vega very effective on such workflows as it runs in time proportional to the output

of the initial computation. This experiment also shows that Vega is applicable to larger

workflows.

3.4.3 Telecom Workflow

This example is taken from [LDY13]. In this scenario, a telecom operator is planning to run

some analytics on user-downloads data. The input is tuples of type (user-id, device,

bytes-downloaded). Our analyst is only interested in non-tethered data, so the initial

workflow (adapted from figure 1 in [LDY13]) is:

input = File("...")

//total traffic per user

joinData =

input

-> Map((user, device, data) => (user, data))

-> Reduce((data1, data2) => data1 + data2)

workflow =

input

-> Map((user, device, data) => (user, device))

-> FilterValue(user => !device.contains("desktop"))

-> Join(joinData)

-> Map((user, device, total-data) => (user, total-data))
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After running the workflow, the analyst realizes that the filter does not remove all the

cases of tethering. She need to also remove devices that contain “badAgent” in them. So

she refines the workflow to handle that case:

workflow =

input

-> Map((user, device, data) => (user, device))

-> FilterValue(device => !device.contains("desktop"))

-> FilterValue(device => !device.contains("badAgent")) //added

-> Join(joinData)

-> Map((user, (device, total-data)) => (user, total-data))

Vega is able to propagate the filter through the join and re-execute the computation

quickly.

Similarly the analyst might want to refine a related workflow (also from figure 1 in

[LDY13]) that computed downloads per device:

input = File("...")

//total traffic per device

joinData =

input

-> Map((user, device, data) => (device, data))

-> Reduce((data1, data2) => data1 + data2)

workflow =

input

-> Map((user, device, data) => (device, user))

-> FilterKey(device => !device.contains("desktop"))

-> Join(joinData)

-> Map((device, (user, total-data)) => (device, total-data))
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The new workflow includes the additional filter as mentioned above. Vega also re-

computes this query by pushing the filter to the end.

3.5 Discussion

Vega’s main use-case is to take programs that can be decomposed into functional operators

and provide interactive performance on small incremental code changes in them. As I have

shown in section 3.4, Vega is applicable to several large-scale exploratory use-cases and works

on structured, semi-structured and unstructured data. Vega’s commutative and ∆ rewrites

are general enough to run on any execution engine that is at least as expressive as Hadoop

(e.g., Spark, Dryad). Vega provides the same fault-tolerance guarantees as the underlying

execution engine.

Vega critically depends on invertible map and reduce functions (for commutative-rewrites

and ∆ computation respectively). For transforms with no such structure, the commutative-

rewrites can still be applied if there is lineage information that keeps track of the inputs to

each transform. That is, to invert a map’s output, we can simply consult the lineage to get

its inputs.

Vega trades space for time by caching previous computations to avoid re-computation.

The amount of memory required to perform incremental re-computation depends on how

much farther downstream the introduced operator can be pushed. In the general case, ∆

computation requires keeping the old outputs of all downstream operators in memory along

with data required for incremental computation. This is usually significantly larger than the

input data. The general trend in data centers has been to increase the RAM in machines

and also to use SSDs for storage. SSDs provide significant speed over magnetic hard disks

and hence can work well as Vega caches.

In the next chapter, we tackle another key challenge in cloud computation, namely cor-

rectness. For this I use a different analysis technique called enumerative model checking.

In this analysis, I simulate all possible behaviors of a program and check each one to see
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if there is any error. While this can get prohibitive for general programs, I develop several

domain-specific optimizations in order to make it tractable for Software Defined Networks,

the networking layer of choice for many cloud applications.
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CHAPTER 4

Kuai

4.1 Introduction

Software-defined networking (SDN) is a novel networking architecture in which a centralized

software controller dynamically updates the packet processing policies in network switches

based on observing the flow of packets in the network [JKM13, FRZ13]. SDNs have been used

to implement sophisticated packet processing policies in networks, and there is increasing

industrial adoption [MAB08, JKM13]. Since cloud applications are inherently network based,

it is critical for the correctness of the applications to have a bug-free networking layer.

This chapter considers the problem of verifying that an SDN satisfies a network-wide

safety property. Since the controller code in an SDN can dynamically change how packets

flow in the network, a bug in the controller code can lead to hard-to-analyze network errors

at run time. Many cloud application frameworks have a similar architecture to SDNs where

there is a single logical master and many workers. The master usually has complicated (and

often changing) logic for scheduling tasks and responding to events. Workers usually have

the same (relatively simple) program to run commands given by the master. Hence the

techniques for verifying SDNs could potentially be useful for other layers in the software

stack as well.

I describe the design of Kuai, a distributed enumerative model checker for SDNs. The

input to Kuai is a model of an SDN consisting of two parts. The first part is the controller,

written in a simplified guarded-command language similar to Murphi [Dil96]. The second

part is the description of a network, consisting of a fixed finite set of switches, a fixed set of
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Figure 4.1: SSH Example

1 def pktIn(pkt)

2 (sw ,pt) = pkt.loc

3 if pkt.prot = SSH:

4 drop(pkt)

5 else:

6 dest = 2 if pt = 1 else 1

7 fwd(pkt , [|dest|], sw)

8 rule r1 = (5,{prot=SSH } ,[||])

9 rule r2 = (1,{port =1} ,[|2|])

10 rule r3 = (1,{port =2} ,[|1|])

11 message cm1 = add(r1)

12 message cm2 = add(r2)

13 message cm3 = add(r3)

14 for sw in [sw1 , sw2]:

15 send_message(cm1 , sw)

16 send_message(cm2 , sw)

17 send_message(cm3 , sw)

Listing 4.1: Controller for SSH

client nodes, and the topology of the network (i.e., the connections between the ports of the

clients and the switches). Given a safety property of the network, Kuai explores the state

space of the SDN to check if the property holds on all executions.

4.2 Example

Figure 4.1 shows a simple SDN. It consists of two switches sw 1 and sw 2 connected to two

clients c1 and c2. Each client has a port and each switch has two ports to send and receive

packets, and the figure shows how the ports are connected to each other. Each connection
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between ports represents a bi-directional communication channel that may reorder packets.

Moreover, the switches are connected to a controller through dedicated links. Packets are

routed in the network using flow tables in switches. A flow table is a collection of prioritized

forwarding rules. A rule consists of a priority, a pattern on packet headers, and a list of

ports. A switch processes an incoming packet based on its flow table. It looks at the highest

priority rule whose pattern matches the packet and forwards the packet to the list of ports

specified in the rule, and drops the packet if the list of ports in the rule is empty. In case

no rule matches a packet, the switch forwards the packet to the controller using a request

queue and waits for a reply from the controller on a forward queue. The controller replies

with a list of ports to which the packet should be forwarded, and optionally sends control

messages to the control queue of one or more switches to update their flow tables. A control

message can add or delete a rule in a switch.

By specifying the rules to be added or deleted, a controller can dynamically control the

behaviors of all switches in an SDN network. For example, suppose we want to implement

the policy that all SSH packets are dropped. The controller can update the switches with

a rule that states that no SSH packets are forwarded, and another that states all non-SSH

packets are forwarded. List 4.1 shows a possible controller that implements this policy.

The controller’s pktIn function gets called when a switch encounters a packet for which

no rules match. We present the implementation in Python-like syntax. The controller first

gets the switch and port corresponding to the packet (line 1). It then checks to see if the

packet’s protocol is SSH. If so, it instructs the switch to drop the packet (line 4), otherwise it

instructs the switch to forward it through the port other than the one it received the packet

(lines 6 and 7). It then creates rules corresponding to the actions described above so the

switches don’t have to consult the controller for SSH packets again. Each rule is a tuple

consisting of an integer priority, match rule (dictionary of type field and value to match (in

line 8 prot=SSH corresponds to protocol field and SSH value)) and a list of ports to forward

the matched packets. If no ports are given, then the packet is dropped (e.g. line 8). The

controller specifies that these rules should be added (lines 11, 12, 13). Alternatively it can
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also instruct switches to remove rules. Finally it instructs the switches to install the rules

(lines 15, 16, 17).

Essentially, the controller adds three rules on the switches: r1 to drop SSH packets, r2

to forward packets from port 1 to port 2, and r3 to forward packets from port 2 to port 1.

Since dropping SSH packets (rule r1) has higher priority, it will match SSH packets, and

rules r2 and r3 will only match (and forward) non-SSH packets. The controller has a subtle

bug. It turns out that a switch can implement rules in arbitrary order. Thus, the switches

may end up adding rules r2 and r3 before adding r1, thus violating the policy. Kuai confirms

the bug A possible fix in this case is to implement a barrier after line 15, to ensure that rule

r1 is added before the other rules. Kuai confirms the policy holds in the fixed version.

The verification of SDNs is challenging due to several reasons. First, even when the

topology is fixed with a finite set of clients and switches, the state space is still unbounded,

as clients may generate unboundedly many packets and these packets could be simultaneously

progressing through the network. For example, client c1 may send a packet to sw 1 at any

point, and an unbounded number of packets can be in the network before sw 1 processes

them. Similarly, there may be an unbounded number of control messages (i.e., messages

sent from the controller to a switch) between the controller and the switches. While there

may be a physical limit on the number of packets and control messages imposed by packet

buffers in the switches, the sizes of these buffers can be large (of the order of megabytes)

and precise modeling of buffers will blow up the state space.

Second, the packets may be processed in arbitrary interleaved orders, and the processing

of one packet may influence the processing of subsequent ones because the controller may

update flow tables based on the first packet. Similarly, control messages between the con-

troller and the switches may be processed in arbitrary order and this may lead to potential

bugs, including the bug pointed to above.
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4.3 Approach

Kuai handles these challenges in the following way. First, instead of modeling unbounded

multisets for packet queues, Kuai implements a counter abstraction where it tracks, for each

possible packet, whether zero or arbitrarily many instances of the packet are waiting in

a multiset. This abstraction enables us to apply finite-state enumerative model checking

approaches.

A finite-state enumerative model checker starts with the initial state of the program and

constructs a graph of all reachable states that arise from it. Every time a node is added to

the reachability graph, the checker checks to see the state of the program corresponding to

that node satisfies the desired property. If any state does not satisfy the property, then we

have found a bug. Otherwise, the program satisfies the property.

In addition, Kuai includes a set of partial-order reduction techniques that are specific to

the SDN domain (discussed in section 4.5). I empirically demonstrate that our set of partial

order reduction techniques significantly reduces the state spaces of SDN benchmarks, often

by many orders of magnitude. For the simple SSH example, the number of explored states

is approximately 2 million without partial order reductions, but only 13 with reductions!

4.4 Formally Modeling Software-defined Networks

Preliminaries. A multiset m over a set Σ is a function Σ → N with finite support (i.e.,

m(σ) 6= 0 for finitely many σ ∈ Σ). By M[Σ] we denote the set of all multisets over Σ. We

shall write m = Jσ2
1, σ3K for the multiset m ∈M[{σ1,σ2,σ3}] with m(σ1) = 2,m(σ2) = 0, and

m(σ3) = 1. We write ∅ for an empty multiset, mapping each σ ∈ Σ to 0. We write {} for an

empty set. Two multisets are ordered by m1 ≤ m2 if for all σ ∈ Σ, we have m1(σ) ≤ m2(σ).

Let m1⊕m2 (resp. m1	m2) be the multiset that maps every element σ ∈ Σ to m1(σ)+m2(σ)

(resp. max{0,m1(σ)−m2(σ)}).

Given a set of states, a (guarded) action α is a pair (g, c) where g is a guard that evaluates
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the states to a boolean and c is a command. A action α is enabled in a state s if the guard

of α evaluates s to true. If α is enabled in s, the command of α can execute and lead to a

new state s′, denoted by s
α−→ s′. We write α(s) = s′ if s

α−→ s′. A transition system TS is

a tuple (S,A,→, s0,AP , L) where S is a set of states, A is a set of actions, →⊆ S × A× S

is a transition relation, s0 ∈ S is the initial state, AP is a set of atomic propositions, and

L : S → 2AP is a labeling function. We write →∗ for the reflexive transitive closure of

→. A state s′ is reachable from s if s →∗ s′. We write s →+ s′ if there is a state t such

that s → t →∗ s′. For a state s, let A(s) be the set of actions enabled in s; we assume

A(s) 6= ∅ for each s ∈ S. The trace of an infinite execution ρ = s
α1−→ s1

α2−→ . . . is defined as

trace(ρ) = L(s)L(s1) . . .. The trace of a finite execution ρ = s
α1−→ s1

α2−→ . . .
αn−→ sn is defined

as trace(ρ) = L(s)L(s1) . . . L(sn). An execution is initial if it starts in s0. Let Traces(TS ) be

the set of traces of initial executions in TS . We define invariants and invariant satisfaction

in the usual way.

Syntax of Software-defined Networks We model an SDN as a network consisting of

nodes, connections, and a controller program. Nodes come from a finite set Clients of

clients and a (disjoint) finite set Switches of switches. Each node n has a finite set of ports

Port(n) ⊆ N which are connected to ports of other nodes. A location (n, pt) is a pair of a

node and a port pt ∈ Port(n). Let Loc be the set of locations. A connection is a pair of

locations. A network is well-formed if there is a bijective function λ : Loc → Loc, called the

topology function, such that {((n, pt), λ(n, pt)) | (n, pt) ∈ Loc} is the set of connections and

no two clients are connected directly.

We model a packet pkt in the network as a tuple (a1, . . . , ak, loc), where (a1, . . . , ak) ∈

{0, 1}k models an abstraction of the packet data and loc ∈ Loc indicates the location of pkt .

Let Packet be the set of all packets.

Each switch contains a set of rules that determine how packets are forwarded. A rule

is a tuple (priority , pattern, ports), where priority ∈ N determines the priority of the rule,

pattern is a proposition over Packet , and ports is a multiset of ports. We write Rule to

denote the set of all rules. Intuitively, a packet matches a rule if it satisfies pattern. A
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type client {

Port : set of nat

pq : multiset of packets

}

rule "send(c, pkt)"

true ==> send(c, pkt)

end

rule "recv(c,pkt ,pkts)"

exist(pkt:c.pq , true) ==> recv(c,pkt ,pkts)

end

Listing 4.2: Client

switch forwards a packet along ports for the highest priority rule that matches.

Rules are added or deleted on a switch by the controller through a set of control messages

CM = {add(r), del(r) | r ∈ Rule}. Additionally, the controller uses a barrier message b to

synchronize.

A client c ∈ Clients is modeled as in List 4.2. It consists of a finite set Port of ports and

a packet queue pq ∈ M[Packet ] containing a multiset of packets which have arrived at the

client. We use (guarded) actions to model behaviors of clients. An action is written as “rule

name guard =⇒ command end.” Predicate exist(i : X,ϕ) asserts that there is an element

i in the set (or multiset) X such that the predicate ϕ holds. Additionally, if exist(i : X,ϕ)

holds, then the variable i is bound to an element of X that satisfies ϕ and can be used later

in the command part. In each step, a client c can (1) send a non-deterministically chosen

packet pkt along some ports (rule send), or (2) receive a packet pkt from its packet queue

and (optionally) send a multiset of packets pkts on some ports (rule recv).

A switch sw is modeled as in List 4.3. It consists of a set of ports, a flow table ft ⊆ Rule,

a packet queue pq containing packets arriving from neighboring nodes, a control queue cq

containing control messages or barriers from the controller, a forward queue fq consisting of

at most one pair (pkt , ports) through which the controller tells the switch to forward packet

pkt along the ports ports , and a boolean variable wait . Predicate noBarrier(sw) asserts

sw .cq does not contain a barrier. Predicate bestmatch(sw , r, pkt) asserts that r is the highest

priority rule whose pattern matches the packet pkt in switch sw’s flow table.
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type switch {

Port : set of nat

ft : set of rules

pq : multiset of packets

cq : list of barriers and

multisets of control messages

fq : set of forward messages

wait : boolean

}

rule "match(sw,pkt ,r)"

!sw.wait & noBarrier(sw) &

exist(pkt:sw.pq ,

exist(r:sw.ft, bestmatch(sw ,r,pkt ))) ==>

match(sw,pkt ,r)

end

rule "nomatch(sw ,pkt)"

!sw.wait & noBarrier(sw) & !RqFull(controller) &

exist(pkt:sw.pq ,

!exist(r:sw.ft,bestmatch(sw ,r,pkt ))) ==>

nomatch(sw,pkt)

end

rule "add(sw,r)"

!sw.wait & noBarrier(sw) &

exist(add(r):sw.cq[0],true) ==>

add(sw ,r)

end

rule "delete(sw ,r)"

!sw.wait & noBarrier(sw) &

exist(del(r):sw.cq[0],true) ==>

delete(sw,r)

end

rule "fwd(sw,pkt ,pts)"

sw.wait & noBarrier(sw) &

exist((pkt ,pts):fq, true) ==>

fwd(sw ,pkt ,pts)

end

rule "barrier(sw)"

!noBarrier(sw) ==>

barrier(sw)

end

Listing 4.3: Switch

Intuitively, a switch has a normal mode and a waiting mode determined by the wait

variable. When the switch is in the normal mode, as long as there is no barrier in its control

queue, it can either attempt to forward a packet from its packet queue based on its flow table,
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type controller {

CS : set of control states

cs0 : CS

cs : CS

rq : set of packets

κ : N+

pktIn : function

}

rule "ctrl(pkt ,cs)"

exist(pkt:controller.rq, true) ==>

ctrl(pkt ,controller.cs)

end

Listing 4.4: Controller

or update its flow table according to a control message in its control queue. When the switch

cannot find a matching rule in its flow table for a packet, it can initiate a request to the

controller, change to the waiting mode, and wait for a forward message from the controller

telling it how to forward the packet. Once it receives a forward message (pkt , pts) and there

is no barrier in the control queue, it forwards the pending packet pkt to the ports in pts ,

and changes back to the normal mode. If the control queue contains one or more barriers,

the switch dequeues all control messages up to the first barrier from its control queue and

updates its flow table.

A controller controller is modeled as in List 4.4. It is a tuple (CS , cs0, cs, rq, κ, pktIn)

where CS is a finite set of control states, cs0 ∈ CS is the initial control state, cs is the current

control state, rq is a finite request queue of size κ ≥ 1 consisting of packets forwarded to

the controller from switches, and pktIn is a function that takes a packet pkt and a control

state cs1, and returns a tuple (η, (pkt , pts), cs2) where η is a function from Switches to

(M[CM ] ∪ {b})∗, (pkt , pts) is a forward message, and cs2 is a control state. Intuitively, in

each step, the controller removes a packet pkt from rq and executes pktIn(pkt , controller .cs).

Based on the result (η, (pkt , pts), cs ′), it sends back to the source of the packet the forward

message (pkt , pts) that specifies pkt should be forwarded along pts , and goes to a new control

state cs ′. Further, for each switch sw in the network it appends η(sw) to sw ’s control queue.

Semantics of Software-defined Networks The semantics of an SDN is given as a
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transition system. Let N = (Clients , Switches , λ,Packet ,Rule, controller) be an SDN, where

each component is as defined above.

A state s of the SDN N is a quadruple (π, δ, cs , rq), where π is a function mapping

each client c ∈ Clients to its packet queue pq and δ is a function mapping each switch

sw ∈ Switches to a tuple (pq , cq , fq , ft ,wait) consisting of its packet queue, control queue,

forward queue, flow table, and the wait variable.

The semantics of an SDNN is given by a transition system TS (N ) = (S,A,→, s0,AP , L).

Here, S is the set of states, s0 = (π0, δ0, cs0, {}) is the initial state, and A = Send ∪ Recv ∪

Match∪NoMatch∪Add ∪Del ∪Forward ∪Barrier ∪Ctrl . The actions are informally defined

as follows:

1. send(c, pkt) enqueues pkt in the packet queue of switch connected to the destination

port in the packet.

2. recv(c, pkt , pkts) dequeues pkt from the packet queue for the client.

3. match(sw , pkt , r) enqueues pkt in the packet queue of switch or client connected to the

port identified by the rule.

4. nomatch(sw , pkt) sets the wait variable and enqueues the packet to the controller’s

packet queue.

5. add(sw , r) adds rule r to the flow table of switch sw .

6. del(sw , r) removes rule r from the flow table of switch sw .

7. fwd(sw , pkt , pts) enqueues pkt in the packet queue of the client or switch connected to

the destination port in the packet. (The port set by the controller.) Finally, unsets

the wait variable.

8. barrier(sw) dequeues rules in the control queue of switch sw and processes them until

one barrier is removed from the control queue.
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9. ctrl(pkt , cs) calls the pktIn function of the controller cs with using packet pkt as argu-

ment. The controller can send messages to any switch in the topology to add or remove

rules. Eventually it should send fwd message to the switch from which the packet has

originated.

An atomic proposition p ∈ AP is an assertion over packet fields or over control states. Define

an SDN specification as a safety property �φ where φ is a formula over AP and � is the

“globally” operator of linear-temporal logic. The model checking problem for an SDN asks,

given an SDN N and an SDN specification �φ, if TS (N ) satisfies �φ. For example, blocking

SSH packets can be specified as �
∧

pkt∈Packet(pkt .loc.n ∈ Clients ∧ pkt .src ∈ Clients ∧

pkt .loc.n 6= pkt .src ⇒ pkt .prot 6= SSH).

4.5 Optimizations

I now describe partial-order reduction and abstraction techniques that reduce the state

space. These techniques use the structure of SDNs and, as I demonstrate empirically, are

crucial in making the model checking scale to non-trivial examples. The formalization of the

optimizations including their correctness theorems are stated in [MTW14]; the proofs are in

[MTW].

Partial Order Reduction Let TS = (S,A,→, s0,AP , L) be an action-deterministic transi-

tion system, i.e., s
α−→ s′ and s

α−→ s′′ implies s′ = s′′. Given two actions α, β ∈ A with α 6= β,

α and β are independent if for any s ∈ S with α, β ∈ A(s), β ∈ A(α(s)), α ∈ A(β(s))), and

α(β(s)) = β(α(s)). The actions α and β are dependent if α and β are not independent. An

action α ∈ A is a stutter action if for each transition s
α−→ s′ in TS , we have L(s) = L(s′).

For i ∈ {1, 2}, let TS i = (Si,Ai,→i, s
i
0,AP , Li) be transition systems. Infinite executions

ρ1 of TS 1 and ρ2 of TS 2 are stutter-equivalent, denoted ρ1 , ρ2, if there is an infinite sequence

A0A1A2 . . . with Ai ⊆ AP , and natural numbers n0, n1, n2, . . . ,m0,m1,m2, . . . ≥ 1 such that

trace(ρ1) = A0 . . . A0︸ ︷︷ ︸
n0 times

A1 . . . A1︸ ︷︷ ︸
n1 times

A2 . . . A2︸ ︷︷ ︸
n2 times

. . .

64



trace(ρ2) = A0 . . . A0︸ ︷︷ ︸
m0 times

A1 . . . A1︸ ︷︷ ︸
m1 times

A2 . . . A2︸ ︷︷ ︸
m2 times

. . .

TS 1 and TS 2 are stutter equivalent, denoted TS 1 , TS 2 , if TS 1 E TS 2 and TS 2 E TS 1,

where E is defined by: TS 1 ETS 2 iff for all ρ1 ∈ Traces(TS 1). ∃ρ2 ∈ Traces(TS 2). ρ1 , ρ2.

Let �φ an arbitrary safety property. If TS 1 , TS 2 then TS 1 satisfies �φ if and only if

TS 2 satisfies �φ. If TS 1 E TS 2 then TS 2 satisfies �φ implies TS 1 satisfies �φ.

4.5.1 Barrier Optimization

This is based on an observation that when a barrier is present in the control queue, the only

action the switch can fire is the barrier action (all other rules are guarded by no barrier

predicate). Hence we can always flush out control queues of switches until there are no

barriers in them. This implies that after a control action is executed, one can immediately

update flow tables of switches whose control queue has barriers added by the controller.

Hence a control action and successive barrier actions can be merged. I present details about

how we can prove this below. These details are elided for the rest of the optimizations.

Its correctness is shown by viewing it as an instance of partial order reduction.

For an SDN N , note that TS (N ) is not action-deterministic due to barrier actions.

With different fetching orders, barrier(sw) may lead to multiple states. Define b(s, sw) as

the number of transitions of the form s
barrier(sw)−−−−−−→ s′. Note that a barrier action from any s

leads to at most 2|Rule| states. Hence for each transition s
barrier(sw)−−−−−−→ si where 1 ≤ i ≤ b(s, sw),

we can append the action with the index i, i.e., s
barrier(sw)i−−−−−−−→ si. In the following, we redefine

the set Barrier = {barrier(sw)i | sw ∈ Switches ∧ 1 ≤ i ≤ 2|Rule|}, and assume that TS (N )

is action-deterministic by renaming barrier actions.

A switch sw has a barrier iff there is a barrier in sw ’s control queue. A state s has a

barrier, denoted hasb(s), iff some switch sw ∈ Switches has a barrier in s. Define the ample

set for every state s in TS (N ) as follows: if s has a barrier, then ample(s) = {barrier(sw)i |

1 ≤ i ≤ b(s, sw) ∧ sw has a barrier in s}, that is, all barrier actions enabled in s. If s does

not have a barrier, then ample(s) = A(s).
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Given TS (N ), we now define a transition system T̂S = (Ŝ,A,⇒, s0,AP , L) where Ŝ = S

is the set of states, and the transition relation ⇒ is defined as: if s
α−→ s′ and α ∈ ample(s),

then s
α
=⇒ s′.

We claim that TS (N ) , T̂S .

Intuitively, it holds because any barrier action is independent of other actions and is a

stutter action. Hence for an infinite execution s
α1−→ s1 . . .

αn−→ sn
barrier(sw)−−−−−−→ t in TS (N ) where

s has a barrier and αi is not a barrier action for all 1 ≤ i ≤ n, we can permute barrier(sw)

forward until s and obtain a stutter-equivalent execution in T̂S .

Hence, we can merge a control action and successive barrier actions into a single transi-

tion. This optimization does not introduce any false positives.

4.5.2 Client Optimization

Given transition system TS 2 = (S2,A2,→2, s0,AP2, L2), we further reduce the state space

by observing that any receive action of a client is a stutter action and is independent of

other actions. Formally, we define ample(s) for each state s ∈ S2 as follows: if there is a

client in s such that its packet queue is not empty, then ample(s) = {recv(c, pkt , pkts) |

pkt is in c.pq at s}, that is, all receive actions enabled in s. Otherwise, ample(s) = A(s).

We now define a transition system TS 3 = (S3,A3,→3, s0,AP3, L3) where S3 = S2, A3 = A2,

AP3 = AP2, L3 = L2, and where the transition relation →3 is defined as: if s
α−→2 s

′ and

α ∈ ample(s), then s
α−→3 s

′.

The intuition here is that the invariants we want to check are on controller state and

packet queues and not on the clients themselves. Hence, the internal actions of the clients

are independent of the system. In addition, since the queues already simulate arbitrary

packet delays, we can fire all the client receive rules at once instead of simulating all actions

of the system for every individual client receive. This optimization does not introduce any

false positives.
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4.5.3 (0,∞) Abstraction

The (0,∞) abstraction bounds the size of packet queues and the multiset in each control

queue. The idea is as follows. One can regard a multiset as a counter that counts the number

of elements in it exactly. Instead, (0,∞) abstraction abstracts a multiset so that for each

element e, it either does not contain e (i.e. 0) or contains unboundedly many copies of e

(i.e. ∞). Then the size of an abstracted multiset is bounded. Note that for any state in

the system, any switch’s control queue contains exactly one multiset. Hence, the abstraction

bounds the length of control queues.

This gives us an abstract state transition system that has significantly fewer states than

the concrete SDN system. The abstraction is sound in that if any safety property is proven

in the abstract system, then it can be proven in the concrete system. However, this is an

overabstraction and can introduce false positives: a bug present in the abstract transition

system may not be present in the concrete system.

4.5.4 All Packets in One Shot Abstraction

So far, a switch processes a single packet at a time. We can further reduce the reachable

state space by forcing a switch to process all packets matched by some rule at a time.

The intermediate states produced by successive match actions in a switch are removed.

Intuitively, all the matched packets are just forwarded to their output ports. Since the

output ports already simulate arbitrary delays, there are no extra behaviors to be lost by

pushing all the matched rules in one go instead of pushing them one at a time. This is a

sound overabstraction, i.e. any safety property satisfied by the optimized transition system

will be satisfied by the original system. However bugs found in the optimized system may

not be present in the original system.
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4.5.5 Controller Optimization

We consider a restricted class of SDNs in which the size κ of the controller’s request queue is

one. Under this restriction, we can define a new transition system that is stutter equivalent

to the previous system and has fewer reachable states. The idea is to observe that since the

controller queue has length 1, only one switch can talk to the controller at any time and

the other switches will have to wait until the controller is done processing. Hence the non-

determinism we need to simulate is the order in which the controller processes the waiting

switches. This way we can merge the no-match and control actions. This abstraction is

restricted to certain classes of controllers and does not introduce any false positives.

4.6 Implementation and Evaluation

Kuai1 is implemented on top of PReach [BBP10], a distributed enumerative model checker

built on Murphi. This allows Kuai to distribute the model checking over a number of nodes in

a cluster and enables Kuai to scale to large state spaces. We model switches, clients, and the

controller as concurrent Murphi processes which communicate using message passing, with

the queues modeled as multisets. I manually abstract IP packets using predicates used in the

controller. I implement (0,∞)-counter abstraction as a library on top of Murphi multisets.

Kuai takes as input topology information such as the number of switches, clients, and

their connections, (manually) abstracted packets, and the controller code written as a Murphi

process, and invariants written in Murphi syntax. We found it fairly straightforward to port

POX [POX] controllers due to the imperative features of Murphi. Murphi allows arbitrary

first order logic formulas as invariants and it is easy to specify safety properties. Kuai

compiles them into a single Murphi file and the model checking effort is then distributed

across several machines using PReach. Finally the output of the tool is an error trace if the

program invariant fails, or success otherwise.

I have evaluated Kuai on a number of real world OpenFlow benchmarks. The experiments

1The tool can be downloaded at https://github.com/t-saideep/kuai
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Program Bytes/ w/o optimizations w/ optimizations

state States Time States Time

SSH 2×2 304 2,283,527 23.52s 13 6.40s

ML 3×3 320 9,109,456 89.99s 5308 6.39s

ML 6×3 748 23,926,202 604.07s

ML 9×2 1276 18,615,767 793.84s

FW(S) 1×2 332 2,110,986 26.89s 3645 5.45s

FW(M) 2×4 448 45,507 8.03s

FW(M) 3×4 560 512,439 55.06s

FW(M) 4×4 676 5,360,871 475.54s

RS 4×4 764 4998 6.60s

RS 4×5 764 590,570 82.82s

RS 4×6 764 5,112,013 327.39s

SIM 5×6 632 167 6.23s

SIM 5×8 632 167 6.34s

SIM 5×12 1108 167 6.85s

Table 4.1: Kuai Experimental results.

were performed on a cluster of 5 Dell R910 rack servers each with 4 Intel Xeon X7550 2GHz

processors, 64 x 16GB Quad Rank RDIMMs memory and 174GB storage. Our experiments

had access to a total of 150 cores and had access to 4TB of RAM.

Table 4.1 shows a summary of experimental results and compares against model checking

without the optimizations from Section 4.5. Empty rows indicate model checking did not

terminate in 1 hour or ran out of memory. The number X×Y in the Program column means

that there are X switches and Y clients in the example. Figure 4.2 shows the scalability of

model checking with increasing distribution on the three largest examples. We noticed that

the performance of the distributed model checker plateaued around 70 Erlang processes on

these and other large examples. Thus, times (in table 4.1) are provided for configurations

that use 70 Erlang processes. As we introduced abstractions, it is possible that we get false

positives. I verified the existence of all bugs reported by Kuai manually and there were no

false positives.

Besides the table, I plot the MAC learning example in Figure 4.3, which shows how

significantly our optimization techniques reduce the state space. Though we still suffer from

the state-space explosion problem, our optimizations delay it and enable us to verify SDNs

with much larger configurations.
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Figure 4.2: Verification time vs processes ◦ ML 9×2 ∆ ML 6×3 � FW(M) 4×4

Figure 4.3: State space of MAC learning controller: ∆: optimized, ◦ unoptimized
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I now describe the benchmarks in detail.

SSH I run Kuai on the SSH controller from Listing 4.1. It finds the control message reordering

bug in 0.1 seconds. By adding a barrier after line 15, Kuai proves the correctness in 6.4

seconds by exploring 13 states. In contrast, the unoptimized version explores over 2 million

states.

MAC Learning Controller (ML) This is based on the POX [POX] implementation of

the standard ethernet discovery protocol. We check there are no forwarding loops (similar to

[SNM13]), i.e., a packet should not reach a switch more than once. Packets are augmented

with a bit for each switch which gets set when the switch processes that packet. The

invariant is specified using these visit-bits (called reached): � ∀sw ∈ Switches . ∀pkt ∈

sw .pq. (¬pkt .reached(sw)).

A cycle in the topology will lead to forwarding loops as the controller does not compute

the minimum spanning tree. We discover the bug in a cyclic topology of 3 switches 3 clients

in 0.47 seconds. We re-ran the example on a topology containing the minimum spanning tree

of the original cyclic topology and the tool is able to prove that there were no forwarding

loops in 6.39 seconds. We scale the example by adding more switches. We notice that while

the verification on topology with 9 switches and 2 clients has fewer states than the one with

6 switches and 3 clients, each state in the latter case is bigger than the former and hence

the memory and communication overheads are higher.

Single Switch Firewall (FW(S)) This is based on an advanced GENI assignment [GEN]

on building an OpenFlow based firewall. The controller takes as input a simple configuration

file which is a list of tuples of the form (client1, port1, client2, port2). This specifies that

packets originating from client1 on port1 can be forwarded to client2 on port2. We abbreviate

the tuples as (client1: port1→ client2: port2). Any flow not explicitly allowed is forbidden.

The flows are uni-directional and the above flow will reject traffic initiated by client2 on

port2 towards client1 on port1. However, once client1 initiates a flow, the firewall should

allow client2 to reply back, making the flow bi-directional until client1 closes the connection.
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The naive implementation of the controller is as follows: on receiving a packet (c1: p1→

c2: p2), check if there is a tuple matching the flow in the policy. If it does, add rules

(c1: p1 → c2: p2) and (c2: p2 → c1: p1) and forward the packet to c2. Otherwise add

a rule to drop packets of the form (c1: p1 → c2: p2). The invariant to verify here is to

ensure the policy of the firewall, i.e., a packet from c1: p1 should be forwarded to c2: p2

if and only if (c1: p2 → c2: p2) exists in the firewall policy or if (c2: p2 → c1: p1) exists

in the policy and c2 has already initiated the corresponding flow. The following formula

specifies that allowed packets should not be dropped: �∀p ∈ Packet . on dropped(p) ⇒

¬flows [p.src][packet.src port][packet.dest][p.dest port], where on dropped(p) is set if a packet-

drop transition is fired on packet p (and reset at the beginning of every transition). flows is

an auxiliary variable in the controller which keeps track of allowed flows based on the firewall

policy and initiating client.

I ran the experiment on a topology with 2 clients and a firewall and found an interesting

bug in its implementation which is caused by not assigning proper priorities to rules. For

example, when (c1: p1 → c2: p2) is present in the policy but not (c2: p2 → c1: p1), the

rule to drop flows should have a lower priority than the rules to allow flows. Otherwise,

the following bug would occur. If c2 initiates the flow (c2: p2→ c1: p1) then the controller

adds a rule to drop packets matching that flow. Later on, if c1 initiates (c1: p1 → c2: p2)

and the controller adds the corresponding rules to allow the flow on both directions, the

switch now has two conflicting rules of the same priority. One to allow and the other to drop

(c2: p2 → c1: p1). The switch may non-deterministically choose to drop the packet. Once

we fixed the bug, the tool could prove the invariant in 5.45 seconds.

Multiple Switch Firewalls (FW(M)) I extend the above example to include multiple

replicated firewalls for load balancing. We now allow the clients to send packets to all of

these firewalls. I augment the implementation of the single switch controller to add the same

rules on all firewalls. However, this implementation no longer ensures the invariant in the

multi-switch setting.

Consider the case with two firewalls, f1 and f2. The tool reports the following bug: c1
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initiates (c1: p1 → c2: p2) on firewall f1. The controller adds the corresponding rules to

allow flows in both directions to f1 and f2 but only sends a barrier to f1. Now f2 delays

the installation of (c2: p2 → c1: p1) and c2 replies back to c1 through f2 which forwards

the packet to the controller. The controller then drops the packet.

The fix here is to add the rules along with barriers on all switches and not just the switch

from which the packet originates. With this fix the tool is able to prove the property in 8

seconds. In order to test the scalability, we tested the tool on increasing number of firewalls

in the topology.

Resonance (RS) Resonance [NRF09] is a system for ensuring security in large networks

using OpenFlow switches. When a new client enters the network, it is assigned registration

state and is only allowed to communicate with a web portal. The portal either authenti-

cates a client by sending a signal to the controller (and the controller assigns the client an

authenticated state), or sets the client to quarantined state. In the authenticated state, the

client is only allowed to communicate with a scanner. The scanner ensures that the client

is not infected and sends a signal to the controller and lets the controller assign it an oper-

ational state. If an infection is detected, it is assigned a quarantined state. The clients in

operational state are periodically scanned and moved to the quarantined state if they are

infected. Quarantined clients cannot communicate with other clients.

In our model, the web portal non-deterministically chooses to authenticate or quarantine

a client and the scanner non-deterministically marks a client operational or quarantined. We

check the invariant that packets from quarantined clients should not be forwarded: �∀p ∈

Packet . on forward(p) ⇒ (state(p.src) 6= Quarantined). Similar to on drop, on forward is

set when packet-forward transition is fired and reset before the beginning of every transition.

The controller follows the Resonance algorithm [NRF09].

I ran the experiment on a topology of two clients, one portal, one scanner and four

switches. The topology is the same as in Figure 2 of [NRF09] without DHCP and DNS

clients. Kuai proves the invariant in 6.6 seconds. I scale up the example by increasing the
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number of clients.

Simple (SIM) Simple [QTC13] is a policy enforcement layer built on top of OpenFlow

to ensure efficient middlebox traffic steering. In many network settings, traffic is routed

through several middleboxes, such as firewalls, loggers, proxies, etc., before reaching the

final destination. Simple takes a middlebox policy as input and translates this to forwarding

rules to ensure the policy holds. The invariant ensures that all source packets to a client will

be received and forwarded by the middleboxes specified in a given policy before the packet

reaches its destination.

I ran the experiment on a topology of two clients, two firewalls, one IDS, one proxy and

five switches (see Figure 1 of [QTC13]). Kuai can prove the invariant in 6.48 seconds.

We scale up the example by fixing the destination client and increasing the number

of source clients that can send packets to it. Because of our “all packets in one shot”

optimization (section 4.5.4), no matter how many packets get queued initially, they are all

forwarded in lock-step as the controller forwarding rule applies to all incoming packets.
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CHAPTER 5

Related Work

5.1 MrCrypt (Chapter 2)

Computing over encrypted data. The problem of (fully) homomorphic encryption was

posed by Rivest, Adleman, and Dertouzos [RAD78], and the first fully homomorphic scheme

was discovered by Gentry [Gen09]. Implementations of Gentry’s construction remains pro-

hibitively expensive [GH11]. A more efficient encryption scheme [NLV11] can perform un-

bounded additions but only a bounded number of multiplications. Cryptographically se-

cure multi-party computations are also theoretically possible for general circuit evaluation

[Yao86, SYY99]. Homomorphic encryption schemes have been proposed to protect data se-

curity in several applications including secure financial transactions [BRR09], secure voting

[HS00], and sensor networks [CMT05].

The work closest to our own is the CryptDB project [PRZ11], which uses homomorphic

encryption to run queries securely on relational databases. CryptDB encrypts the data in

all possible encryption schemes, layered on top of each other in a structure resembling our

lattice. A trusted proxy stands between clients and the database system, analyzes the SQL

queries on the fly, and decrypts the relevant columns to the right encryption layers so that

the query can be executed. The key difference between these two efforts is that MrCrypt

performs static analysis of imperative Java programs while CryptDB performs analysis on

database queries and so is limited to computations that are expressible in pure SQL (i.e.,

no user-defined functions). Further, because MrCrypt has up-front access to the programs,

it can statically determine the best encryption schemes to use, avoiding the need to encrypt

75



data with multiple schemes and to employ a trusted proxy. However, encrypting data with

multiple schemes allows some queries to be executed using CryptDB that cannot be handled

by our system. Finally, we have formalized our approach and proven its correctness and

security guarantees, while CryptDB provides only informal guarantees.

Other work in the database community has used homomorphic encryption for particular

kinds of queries. For example, SADS [RVB09] allows encrypted text search and other work

uses additive homomorphic schemes to support sum and average queries [GZ07]. These

systems do not support general imperative computations.

Cryptographic schemes have been used to provide privacy and integrity in systems run-

ning on untrusted servers [LKM04, MSL10]. However, these systems have so far required

application logic to be executed purely on the client. Our goal, on the other hand, is to

enable computations to run directly on untrusted servers. It may be possible to incorporate

ideas from these systems in order to augment our approach to guarantee integrity in addition

to confidentiality.

Mitchell et al. formalize a domain-specific language (DSL) whose type system ensures

that programs can be translated to run securely using either FH or secure multiparty com-

putation [MSS12]. They also describe an implementation of their DSL embedded in Haskell.

This approach can potentially be more expressive than ours but requires programmers to

write programs in a specialized language, while MrCrypt handles existing Java programs

with minimal code annotations. Finally, Mitchell et al. do not consider the use of partially

homomorphic encryption schemes.

Static and dynamic analysis for security. There is a large body of work on static

and dynamic techniques for enforcing security policies or for finding security vulnerabilities.

Most language-based approaches to enforcing confidentiality are based on the notion of se-

cure information flow [SM03]. These approaches are less applicable to the setting of cloud

computing, where the adversary can have direct access to the machine on which a compu-

tation is being performed. For example, a common threat model in the context of secure
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information flow assumes the adversary has access only to the public inputs and outputs of

a computation. Researchers have augmented traditional information-flow type systems to

reason about confidentiality in the presence of cryptographic operations [Vau11, FPR11], but

these approaches require programmers to manually employ cryptography in their programs.

MrCrypt also leverages static analysis techniques, but for a different purpose — to identify

the most efficient encryption schemes to use for each input column of data. As described

in our formalism, this analysis is similar to techniques for flow-insensitive type qualifier

inference [OP97, FJK06].

Computing in untrusted environments. The Excalibur system [SRG12] uses trusted

platform modules (TPMs) to guarantee that privileged cloud administrators cannot inspect

or tamper with the contents of a VM. While this approach provides the same security guar-

antees as MrCrypt, it requires additional investment from the cloud companies to install

special TPM chips on each node in the cloud and for managing keys. CLAMP [PMW09]

prevents web servers from leaking sensitive user data by isolating code running on behalf of

one user from that of other users. However, CLAMP does not protect user confidentiality

against honest-but-curious cloud administrators. Finally, work on differential privacy for

MapReduce (e.g., [RSK10]) is dual to our concern: in that setting the server is trusted but

information exposed to clients is minimized.

5.2 Vega (Chapter 3)

Program transformations for cloud. Several programs transformations have been ap-

plied for cloud programs. Apache Pig [ORS08b] is a source-to-source transformer that trans-

lates high-level PigLatin code to low-level MapReduce code. In the process it applies several

optimizations to improve performance. However, Pig system does not have any support for

incremental code changes. Other transformations include improving performance by adding

support for additional hardware [CSR10]. Other programs transformations have been suc-

cessfully applied to areas such as security ([TLM13], [PRZ11], [MSS12]) but these cannot be
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applied to improve performance.

Incremental view maintenance. Incremental view maintenance is a well studied problem

([GMS93], [CW91], [NJL12]) where changes in input data are propagated through a set of

relations (or views) on input data. Naiad [MMI13] is an application of these techniques

to large scale data with additional support for nested control flow. Most of the work in

this area deals with data changes and a few restricted code changes (such as addition of

relations to a union of relations). In addition, the ideas are best suited for structured data.

Vega is specifically built to handle more general code changes and can handle incremental

computation in both structured and unstructured settings.

Database query optimization. Traditional database query planning [Cha98] involves two

kinds of optimizations: logical plan optimization that rewrites the query to an equivalent

and hopefully more performant one; and physical plan optimization that chooses the best

implementation for the physical operators (such as joins) based on the query being executed

and input data. Vega’s optimizations are closer in spirit to the logical plan optimizations.

Traditional query planning usually does not take into account results of the old queries and

does not have a system to cache results for future use. [AXL15] is an application of database

query planning to large scale workflows. It compiles high-level dataframe API into low level

Spark operators. Vega optimizes Spark workflows directly without the need for another

high-level language. However Vega’s performance optimizations serve a very different goal:

for example [AXL15] optimizations will try to push the filters as close to the source of data

as possible while Vega tries to push the filters toward the end of the workflow if it can reuse

existing results.

ETL frameworks. Several frameworks exist for extract, transform, load (ETL) workflows

in databases (see [Vas09] for a comprehensive survey). The main focus of these projects is to

provide general rules for cleaning up and homogenizing structured data. Some frameworks

attempt to automatically derive rules by observing patterns in data. While Vega can be

applied to ETL use-cases, it solves a general data exploration problem. Vega transforms
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can be arbitrary functions, not necessarily tied to a specific domain. Most of the ETL

frameworks’ rules critically depend on structured data and relational constraints such as

uniqueness and functional dependencies. Vega works on unstructured data and is not tied

to any specific constraint structure.

Fast approximate answers. Frameworks such as [AGP00], [BCD03], [OBE09] can provide

interactive response times by providing approximate answers to ad-hoc queries. [AMP13]

provides approximates answers in large-scale setting. The key idea behind them is to sample

enough data upfront, so they can answer significant number of queries by extrapolating from

the samples. Vega performs no sampling, computes directly on the base data and provides

exact answers.

5.3 Kuai (Chapter 4)

There is a lot of systems and networking interest in SDNs [JKM13, FRZ13] and standards

such as Openflow [MAB08]. From the formal methods perspective, research has focused on

verified programming language frameworks for writing SDN controllers [FHF11, GRF13].

Here, verification refers to correct compilation from Frenetic to executable code, or to check-

ing composability of programs, not the correctness of invariants.

Previous model checking attempts for SDNs mostly focused either on proving a static

snapshot of the network [KVM12] or on model checking or symbolic simulation techniques

for a fixed number of packets [CVP12, NGD13]. Recent work extended to controller updates

and arbitrary number of packets [SNM13], but used a manual process to add non-interference

lemmas. In contrast, our technique automatically deals with unboundedly many packets and,

thanks to the partial-order techniques, scales to much larger configurations than reported in

[SNM13]. Program verification for SDN controllers using loop invariants and SMT solving

has been proposed recently [BBG14]. While the invariants can quantify over the network (and

therefore not limited to finite topologies), the model of the network ignores asynchronous

interleavings of packet and control message processing that we handle here.
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Our work builds on top of distributed enumerative model checking and the PReach tool

[BBP10]. Our contribution is identifying domain specific state space reduction heuristics

that enable us to explore large configurations.

80



CHAPTER 6

Conclusion

Programming language design has already played an important role in cloud computing by

providing restricted but sufficiently expressive programming models to deal with issues such

as resource contention and fault-tolerance.

In this dissertation, I have provided evidence that the complimentary aspect to design,

program analysis, can bring just as many advantages to cloud system design and have laid

groundwork for further adoption. I have presented three projects that tackle key challenges

in cloud computing.

MrCrypt is a framework that ensures data confidentiality when both code and data are

present in a third-party datacenter. It achieves this by automatically transforming Java

programs to use homomorphic encryption schemes. MrCrypt is able to securely execute

majority of the cloud benchmarks with modest encryption overheads. The project can be

extended in several directions. It would be very useful to ensure integrity of computations

— i.e. to make sure the result returned by the cloud is correct. It would also be useful

to expand the tool to handle different classes of programs, especially in machine learning

domain (see [BPT14] for some interesting developments in this area).

Vega is a library that performs incremental re-computation in the face of code changes.

It achieves this by rewriting Big Data workflows to reuse previous results. Vega achieves

one to two orders magnitude performance gains in several real-world workflows. Currently

Vega provides libraries for various functions and their inverses that are commonly used by

programmers. For future work, we would like to automatically infer the inverses or at least

check that the inverse of a function given by the user is correct. The “algebraic” approach of

81



Vega (i.e. using inversion and distribution) can also be extended to other important domains

such as machine-learning (for example by using techniques presented in [Izb13]).

Kuai is a software model checking tool that verifies safety properties of Software Defined

Networks. It achieves this by using abstractions to make state-space finite, then applying

partial order reduction to reduce it significantly and finally using a distributed checker to

parallelize the task across many nodes. Kuai is able to verify correctness in many SDN

benchmarks. Possible extensions include adding support for liveness properties and extend-

ing it to other critical areas such as the authentication layer. This would involve developing

additional domain-specific partial order reductions.

An overarching goal of this dissertation is to push expert domain knowledge into the

compiler level as much as possible so that many (non-expert) programmers can benefit from

it. MrCrypt frees the programmers from knowing and correctly using specialized encryption

algorithms, Vega alleviates the programmer’s burden when it comes to performance tuning

and Kuai frees the programmer from coming up with manual proofs to ensure correctness of

their network policies. The area of program analysis provides rich tools to achieve this in a

sound and efficient way.
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