Skip to main content
eScholarship
Open Access Publications from the University of California

UC Riverside

UC Riverside Previously Published Works bannerUC Riverside

Selection-dependent and Independent Generation of CRISPR/Cas9-mediated Gene Knockouts in Mammalian Cells.

Published Web Location

https://doi.org/10.3791/55903
Abstract

The CRISPR/Cas9 genome engineering system has revolutionized biology by allowing for precise genome editing with little effort. Guided by a single guide RNA (sgRNA) that confers specificity, the Cas9 protein cleaves both DNA strands at the targeted locus. The DNA break can trigger either non-homologous end joining (NHEJ) or homology directed repair (HDR). NHEJ can introduce small deletions or insertions which lead to frame-shift mutations, while HDR allows for larger and more precise perturbations. Here, we present protocols for generating knockout cell lines by coupling established CRISPR/Cas9 methods with two options for downstream selection/screening. The NHEJ approach uses a single sgRNA cut site and selection-independent screening, where protein production is assessed by dot immunoblot in a high-throughput manner. The HDR approach uses two sgRNA cut sites that span the gene of interest. Together with a provided HDR template, this method can achieve deletion of tens of kb, aided by the inserted selectable resistance marker. The appropriate applications and advantages of each method are discussed.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View