Skip to main content
eScholarship
Open Access Publications from the University of California

UCSF

UC San Francisco Previously Published Works bannerUCSF

Proteomic analysis of the role of S‐nitrosoglutathione reductase in lipopolysaccharide‐challenged mice

Abstract

S-Nitrosoglutathione reductase (GSNOR) is a key regulator of protein S-nitrosylation, the covalent modification of cysteine residues by nitric oxide that can affect activities of many proteins. We recently discovered that excessive S-nitrosylation from GSNOR deficiency in mice under inflammation inactivates the key DNA repair protein O(6) -alkylguanine-DNA alkyltransferase and promotes both spontaneous and carcinogen-induced hepatocellular carcinoma. To explore further the mechanism of tumorigenesis due to GSNOR deficiency, we compared the protein expression profiles in the livers of wild-type and GSNOR-deficient (GSNOR(-/-) ) mice that were challenged with lipopolysaccharide to induce inflammation and expression of inducible nitric oxide synthase (iNOS). Two-dimensional difference gel electrophoresis analysis identified 38 protein spots of significantly increased intensity and 31 protein spots of significantly decreased intensity in the GSNOR(-/-) mice compared to those in the wild-type mice. We subsequently identified 19 upregulated and 19 downregulated proteins in GSNOR(-/-) mice using mass spectrometry. Immunoblot analysis confirmed in GSNOR(-/-) mice a large increase in the expression of the pro-inflammatory mediator S100A9, a protein previously implicated in human liver carcinogenesis. We also found a decrease in the expression of multiple members of the protein disulfide-isomerase (PDI) family and an alteration in the expression pattern of the endoplasmic reticulum (ER) chaperones in GSNOR(-/-) mice. Furthermore, altered expression of these proteins from GSNOR deficiency was prevented in mice lacking both GSNOR and iNOS. In addition, we detected S-nitrosylation of two members of the PDI protein family. These results suggest that S-nitrosylation resulting from GSNOR deficiency may promote carcinogenesis under inflammatory conditions in part through the disruption of inflammatory and ER stress responses.

Many UC-authored scholarly publications are freely available on this site because of the UC's open access policies. Let us know how this access is important for you.

Main Content
For improved accessibility of PDF content, download the file to your device.
Current View